خاستگاه ماکمانتیسم آدکتیسم در منطقه‌ی مسجد داغی جلفای آذربایجان شرقی

روح الله عبداللهی، علی کنعانی، محمدرضا جو، فاطمه سراج‌قلیان، شهره حسن‌پور

1-دانشکده ریمیانی‌نشانی دانشگاه تهران
2-گروه زمین‌شناسی دانشگاه ملی تبریز
3-سیرکت ملی صنایع مس ایران

(دریافت مقاله: ۸۹/۳/۲۶، نسخه نهایی: ۸۹/۲/۱۱)

چکیده: سنگ‌های آتش‌نشانی و توده‌های نیمه‌عمیق لوسن-الگوس سنگ‌های داغی در ۳۵ کیلومتری شرق جلفا و در کنار رود ارس واقع شده‌اند. این منطقه از نظر زمین‌شناسی خصوصی‌ترین برخی از زون البرز بااختیار آذربایجان است. سنگ‌های آتش‌نشانی از نوع ریولیت، داسیتی‌ها تا آندزیتی و سنگ‌های نیمه عمیق شامل موترونت پورفیری تا دیوریت پورفیری هستند. غنی‌شدنی از عناصر Ba/Ta و Na/Ba و نیابتی بالای Ti، Ta و Hf به عنصر HREE نسبت به HFE و LREE (13 and Yb<1.4) MgO<6% MgO<3%, Sr<40ppm Sr/Y<15, Sr/Y<18) HREE و نسبت بالایی Yb/La/Yb و Sr/Y و نسبت بالایی Ba/La/La/Yb و Sr/Y برخوردار این سنگ‌هایی هستند که در حاشیه‌های منطقه‌ای در کنار رودخانه‌های سدی پدیده‌اند.

واژه‌های کلیدی: ماکمانتیسم آدکتیسم، فوران‌شهر؛ بوسته‌های اقیانوسی، مسجد داغی، آذربایجان.

مقدمه
در اثر ورود آدکتیسم به جریان‌های‌اشکال‌گذاری از ذوب‌های بومی‌های اقیانوسی و کوه‌های (کنترل‌شده) به وجود آمدیده می‌باشد. در اثر ورود آدکتیسم به جریان‌های‌اشکال‌گذاری از ذوب‌های بومی‌های اقیانوسی و کوه‌های (کنترل‌شده) به وجود آمدیده می‌باشد. نسبت بالایی Yb/La/Yb و Sr/Y و نسبت بالایی Ba/La/La/Yb و Sr/Y برخوردار این سنگ‌هایی هستند که در حاشیه‌های منطقه‌ای در کنار رودخانه‌های سدی پدیده‌اند.

Kananian@Khayam.ut.ac.ir
آدکتی‌ها یکی از اعضای دیگر ترکیباتی است که می‌توانند پیامدهای گوناگونی را در سطح سطحی و زیستی و در هم‌مرحله‌ای با سایر ترکیبات داشته باشند. این پیامدهای شامل تغییرات در هوا، آب، سطح زمین و سایر محیط‌های زیستی می‌تواند باشد. تحقیقات نشان می‌دهند که آدکتی‌ها می‌توانند به عنوان عناصری منجر به پیروی و تغییرات در سطح زمین شوند.

مطالعات نشان می‌دهند که آدکتی‌ها می‌توانند به عنوان عناصری منجر به پیروی و تغییرات در سطح زمین شوند.

مراجع:
1. همسه، آدکتی‌ها یکی از اعضا یکی از اعضای دیگر ترکیباتی است که می‌توانند پیامدهای گوناگونی را در سطح سطحی و زیستی و در هم‌مرحله‌ای با سایر ترکیبات داشته باشند. این پیامدهای شامل تغییرات در هوا، آب، سطح زمین و سایر محیط‌های زیستی می‌تواند باشد. تحقیقات نشان می‌دهند که آدکتی‌ها می‌توانند به عنوان عناصری منجر به پیروی و تغییرات در سطح زمین شوند.
جدول 1 نتایج آنالیز روش‌هایی سنگ‌های اشکان و توده‌های نیمه عمق منطقه مسجد داغی.

<table>
<thead>
<tr>
<th>جریان (S)</th>
<th>M01</th>
<th>M02</th>
<th>M08</th>
<th>M16</th>
<th>M34</th>
<th>M40</th>
<th>M07</th>
<th>M10</th>
<th>M11</th>
<th>M14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>44.1</td>
<td>44.6</td>
<td>44.8</td>
<td>45.1</td>
<td>45.2</td>
<td>45.2</td>
<td>45.1</td>
<td>45.1</td>
<td>45.1</td>
<td>45.1</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.7</td>
</tr>
<tr>
<td>Al2O3</td>
<td>15.9</td>
<td>16.4</td>
<td>16.2</td>
<td>16.2</td>
<td>16.3</td>
<td>16.3</td>
<td>16.3</td>
<td>16.3</td>
<td>16.3</td>
<td>16.3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>2.7</td>
</tr>
<tr>
<td>CaO</td>
<td>4.1</td>
</tr>
<tr>
<td>K2O</td>
<td>0.7</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.6</td>
</tr>
<tr>
<td>Ba</td>
<td>1.8</td>
</tr>
<tr>
<td>Rb</td>
<td>0.7</td>
</tr>
<tr>
<td>Sr</td>
<td>0.7</td>
</tr>
<tr>
<td>Zr</td>
<td>0.7</td>
</tr>
<tr>
<td>Nb</td>
<td>0.7</td>
</tr>
<tr>
<td>Ni</td>
<td>0.7</td>
</tr>
<tr>
<td>Co</td>
<td>0.7</td>
</tr>
<tr>
<td>Zn</td>
<td>0.7</td>
</tr>
<tr>
<td>Cu</td>
<td>0.7</td>
</tr>
<tr>
<td>Cr</td>
<td>0.7</td>
</tr>
<tr>
<td>Mn</td>
<td>0.7</td>
</tr>
<tr>
<td>Fe</td>
<td>0.7</td>
</tr>
<tr>
<td>V</td>
<td>0.7</td>
</tr>
<tr>
<td>W</td>
<td>0.7</td>
</tr>
<tr>
<td>Hf</td>
<td>0.7</td>
</tr>
<tr>
<td>Mo</td>
<td>0.7</td>
</tr>
<tr>
<td>Pb</td>
<td>0.7</td>
</tr>
<tr>
<td>Th</td>
<td>0.7</td>
</tr>
<tr>
<td>U</td>
<td>0.7</td>
</tr>
<tr>
<td>V</td>
<td>0.7</td>
</tr>
<tr>
<td>Nb</td>
<td>0.7</td>
</tr>
<tr>
<td>Zn</td>
<td>0.7</td>
</tr>
<tr>
<td>Cu</td>
<td>0.7</td>
</tr>
<tr>
<td>Cr</td>
<td>0.7</td>
</tr>
<tr>
<td>Mn</td>
<td>0.7</td>
</tr>
<tr>
<td>Fe</td>
<td>0.7</td>
</tr>
<tr>
<td>V</td>
<td>0.7</td>
</tr>
<tr>
<td>W</td>
<td>0.7</td>
</tr>
<tr>
<td>Hf</td>
<td>0.7</td>
</tr>
</tbody>
</table>
سنگ شناسی
سنگ‌های آتش‌شکنی مورد بررسی با ترکب ریولیتی داسیتی و تراکی اندزینی در دو گروه انتخاپ بورفوری، غربی، پویی کلیپیتک، میکروکانیت و تراکیت‌های منطقه داشته‌اند. در این سنگ‌ها فنورپیست‌های پلاژیوکلاژ، اپتیک، اپتیک، میکروکانیت و مقابر کمی کوارتز درون‌زین‌های مختلف دریافت گردیده‌اند. در برخی نمونه‌ها، فنورپیست‌ها در داخل زین‌هایی از ریز بورفوری نیز می‌دهند. کهی زیر نیز سنت گیره‌ای تغییرهای پلاژیوکلاژ بافت تراکیتی به وجود آمد. حدود ۲۰ درصد فنورپیست‌ها را در شرایط بورفوری پلاژیوکلاژ تشکیل می‌دهند و اندام‌های خود در آنها به ۱ سنتمتر نیز می‌رسد. این بورفوری‌ها به شکل در دل بوخ و دارای مکانی بندی و یک گروه‌ها ساختار منطقه‌های هستند و غالباً به کانی‌های آپتیک، آزیتیت،

و کریپت‌های شدیدان. کانی‌های ارتوکلاژ با فراوانی ۲۰ تا ۲۵ درصد مالک کاراپاس دارند و پیشتر به کانی‌های آپتیک و تراکی اندزینی در دو گروه انتخاپ بورفوری، غربی، پویی کلیپیتک، میکروکانیت و تراکیت‌های منطقه داشته‌اند. در این سنگ‌ها فنورپیست‌های پلاژیوکلاژ، اپتیک، اپتیک، میکروکانیت و مقابر کمی کوارتز درون‌زین‌های مختلف دریافت گردیده‌اند. در برخی نمونه‌ها، فنورپیست‌ها در داخل زین‌هایی از ریز بورفوری نیز می‌دهند. کهی زیر نیز سنت گیره‌ای تغییرهای پلاژیوکلاژ بافت تراکیتی به وجود آمد. حدود ۲۰ درصد فنورپیست‌ها را در شرایط بورفوری پلاژیوکلاژ تشکیل می‌دهند و اندام‌های خود در آنها به ۱ سنتمتر نیز می‌رسد. این بورفوری‌ها به شکل در دل بوخ و دارای مکانی بندی و یک گروه‌ها ساختار منطقه‌های هستند و غالباً به کانی‌های آپتیک، آزیتیت،
تشکیل دادنی. آمپنیول به فراوانی در این سنگ‌ها دیده می‌شود. کانال‌ها یا اجزای دیگر در این مجموعه بیوتیت است که گاهی به صورت فنکسپست ول معمولاً در زمینه سنگ مشاهده می‌شود. در این سنگ‌ها گرافیت کرت می‌باشد و آن در صورتی که در این سنگ‌ها باشد، خواهد بود. این سنگ‌ها با کنار گذاشتن و کرما در این سنگ‌ها با کارتون و کرما در این سنگ‌های سبز و جاده‌ای می‌باشد.

کانال‌های ریز داخلی از دیگر باره‌های مشاهده می‌شود. می‌توان به کاره‌های سری‌ایت و پولی‌کلیپتیک اشاره کرد. فنکسپستهای فلهدار به فراوانی در این سنگ‌ها بافت می‌شوند و حدود 80 درصد فنکسپسته‌ها را تشکیل می‌دهند.

این بانک‌ها یا سه‌درال‌ها، به‌طور دیگر در سنگ‌های سبز و جاده‌ی این می‌باشد و معمولاً داخلی از کانال‌هایی که در این سنگ‌ها بافت می‌شوند. در برخی موارد فنکسپست ارتکز سایر داخلی از بانک‌ها، پلاژیوکلاز و کانال‌ی کرما سبز شبیه به این سنگ‌ها بافت می‌شوند. در اینسنگ‌ها بافت می‌شوند. در اینسنگ‌ها بافت می‌شوند.
محاسبه شده است.

بهشتی این سنگ‌ها در نمونه‌های تغییرات قلبی‌ای نسبت به
سیلیس (شکل ۵، ۶ الف) در قلمرو نمایه قلبی‌ای [۲۷ و در
نمونه‌های FeO_f/MgO نسبت به شکل ۵-ب در گستره
ی احتمال قلبی‌های حادرو [۲۸] فرآیند عناصر نادر خیال
بی‌چرخه شده نسبت به کندریت
[۲۸] در شکل ۶ مشاهده می‌شود. در این نمونه‌ها غنی
شدگی Av:(La/Yb(n) ~ 1) HREE قابل توجهی به LREE نسبت به
قابلیت تحرک کمتری دارد نیز استفاده
کردند. بنابر این نمونه [۲۷] سنگ‌های آنتفنشایی در قلمرو
رویاک/آنتفنشای و تراکی آنتفنشای سنج‌های نیمه عمیق در
گستره تراکی آنتفنشای قرار گرفته‌اند (شکل ۴-ب) در
نمونه‌های منطقه بررسی میزان SiO₂ منیتر با ۱۷ درصد و
MgO کمتر از ۲ درصد است. میزان Al₂O₃ از ۱۴ تا
۱۵ درصد تغییر می‌کند و میانگین آن حدود ۱۵ درصد

\[
\text{شکل ۴ الف) نمونه‌های بروندلی TAS و B) نمونه‌های شکل ۵-ب نسبت به نسبت FeO(T)/MgO نسبت به قلبی‌های این سنگ‌های نیمه عمیق و نسبت به عثمانی‌ای است.}
\]

 مثل معروف سنگ‌های آنتفنشایی و علامت مربع به سنگ‌های نیمه عمیق وابسته است.

\[
\text{شکل ۵ الف) نمونه‌های NaO₂ + K₂O نسبت به FeO(T)/MgO نسبت به سنگ‌های قلبی‌هایه ۴ اند.}
\]

سنگ‌های قلبی‌هایه ۴ اند.
به اتصال عناصر کم متحرک باشد. جنابی در شکل 8
ملاحظه می‌شود، در نمونه‌های که بر پایه عناصر کم متحرک
ترسیم شده‌اند، مانند ثرمود، نیتر، آیری، و هیدرای
نابجی در آن‌ها گزارش شده است. نیمراهی مسج‌داده‌گی
هم‌کم در گسترده‌ترین محدوده زمین‌ساخت وی‌ال‌سی به فرووانس
قرار می‌گیرند.

پرس [32] به‌منظور شناخت بهتر می‌کند. و از این
فرووانس از ریف‌های نیم‌روی (MORB) و جزایر ای‌پایوی (OIB)
(نمودار تغییرات نیم‌روی (OIB) نسبت به
ریف‌های نیم‌روی (MORB) تغییرات نسبت به
را پیشنهاد گردیده است. بنابراین نمونه‌های به
در قلمرو آتش‌نشانی وی‌ال‌سی به فرووانس قرار می‌گیرند (شکل
8). شاندل و گروتین [33] نیز نشان می‌دهند که
سبک‌های حاشیه‌ای فعال قاره‌ای را از آتش‌نشانی‌های درون
صفحه‌ای تفکیک می‌کنند. بنابراین نمونه‌های مورد نظر
در گسترده‌تری حاشیه‌ای فعال قاره‌ای قرار می‌گیرند (شکل
10).

شکل 6 نمودار تغییرات فراوانی عناصر نادر خاکی که نسبت به کنترلی به‌شماراند [29]. علامت مشابه شکل 4 اند.

شکل 7 تغییرات عناصر نادر و نادر خاکی نمونه‌ها که نسبت به کنترلی به‌شماراند (شکل 4) اند.

محلیت زمین‌ساختی
سنگ‌های آتش‌نشانی و توده‌های نیمه‌عمیق مورد بررسی در
نمودار عادی صارمی نسبت به کنترلی و غنی شدگی مسج‌داده‌گی
عنایتی در نسبت LILE وREE هستند. این ویژگی‌ها مشابه با ویژگی‌های Zoned-
سنگ‌هایی است که در مسیر وی‌ال‌سی به فرووانس شکل
در این Ba/Ta و Ba/Nb شهادت [30] علاوه بر آن نسبت
سنگ‌های با لایه و مقادیر آن‌ها تا ۴۰۰۰ تا ۱۵۰۰ تا ۳۰۰۰ نسبت به
با LREE و با آن‌ها تا ۳۰۰۰ سنتیمتری به قاره‌ای فعال قاره‌ای است. برای
تعمین با‌گیاهان زمین‌ساختی سنگ‌های آدرن، نمونه‌های
Zoned-
سنگ‌هایی مختلفی به‌شماراند ولی به‌شماراند
ردنبندی نمونه‌های مورد بررسی از عناصری استفاده شود که
تحت تاثیر فراوانی‌های بارانی به‌شماراند و هوازدگی قرار نگیرند و
نیز توسط [2] طراحی شده است که آدایکته‌ها از ماده‌های دیگر تشکیل شده در تابه‌های زمین‌پوش کلاسیک (داکهن) حلال از ذوب گوشه‌شده، تکه‌کشی می‌کند (شکل 11). جنگله در این شکل ملاحظه می‌گردد که نمونه‌های مورد بررسی در گسترده‌ی آدایکته‌ها واقع شده‌اند.

پژوهش
سنگ‌های آنزنشتالی، توده‌های نیمه‌عمیق، مسجد داغ، دارای ویژگی‌های چون 57% MgO، 3% SiO2، میزان بالینی Sr و Y (400) و میزان بالینی بالا (13 and Yb<1.4) HREE می‌باشند و به عبارتی (La/Yb)N>12 и Ba/La بالا 40 بالا 12 و Sr/Y بالا 1.4 و Yb بالا 1.4 و Ba/La بالا 43.77 نمودارهای آدایکته‌ها را نشان می‌دهند [3].

به عقیده [3] مادگی‌های آداتیکی از ذوب پوسته افیلاتوپی گرم و جوان ریشه می‌گیرند. در حالی که زه‌هشتران دیرگر عقیده دارند که آداتیکی‌ها هیچ‌گونه تعدادی جون و جوانی در سیلیس و آداتیکی‌های کم سیلیس در نمودارهای به‌جای‌اند. آداتیکی‌های کم سیلیس گروه REE به ندرت وجود دارند. آداتیکی‌های کم سیلیس گروه REE از دمای بالای تا را نسبت به آداتیکی‌های کم سیلیس نشان می‌دهد که یک بسط‌های به‌عهده سیلیس‌های مجزا یک دیگر آداتیکی‌های کم سیلیس نشان می‌دهد که یک بسط‌های با دیگر. به‌طور کلی آداتیکی‌ها به 4 گروه قابل تقسیم‌الاکتیکی‌های سیلیس (HSA)، آداتیکی‌های کم سیلیس (LSA)، آداتیکی‌های قاره‌ای پایانی و آداتیکی‌های آرکن. این این نشان دهنده که شیوه اداتیکی معروف نبوده و لیثیت‌های می‌باشد. اکتیکی‌های سیلیس (HSA) از لحاظ ویژگی‌های زئومنوتی‌های خاکی (56% Na2O، SiO2>3، MgO<3، SiO2>3، MgO<3，
پایینی دارند، البته با این حال نمک اکسیدی شده‌اند.

[۲] بردار و کریج (۱۹۷۲) مقدار دارد که بخش یکی از

ماکل‌های اکسیدی-کلیایی جدا شده بده گسترده‌ای اکسیدی‌ها وارد

می‌شود. زیرا یک‌تیکش اکسیدی و گرانی موجب کاهش Y و

Sr/Ce در ماکل‌های مواد و نمک‌توان به آن اکسیدی واقع

تیکش کرده‌اند. از مقایسه‌ای این اکسیدی‌ها واقع

در HREE می‌توان گفت که در این اکسیدی‌ها Y از

دو高价 بیشتر قرار گرفته است.

شکل (۲) و نمک

می‌توان آنها، به‌طور کلی به کاهش Sr/Y نسبت به نمک‌توان

LogLa/Yb از طرف دیگر اکسیدی گرانی که شیمی کاهشی

HREE و عمیق مانند می‌گذراند.

قابلیت شیمی‌ای ناکاربرد.

شکل (۱۲) گسترش‌های واسطه به نواحی فرورانش

Sr/Y به‌کنار آدامیتی بر سلیسیت (HSA)، آدامیتی کم

و (LSA) آدامیتی اکسیدی در می‌باشد. همچنین

این گسترش‌های کاهشی به HSA و La/ Yb نسبت به

می‌توان به ماکل‌های اکسیدی-کلیایی قابلیت جدایی

سازگاری ندارد.

نمودارهای تغییرات Y نسبت بهSr و

Sr/Y (شکل ۱۳) گسترش‌های واسطه به نواحی فرورانش

به‌کنار آدامیتی بر سلیسیت (HSA)، آدامیتی کم

و (LSA) آدامیتی اکسیدی در می‌باشد. همچنین

این گسترش‌های کاهشی به HSA و La/ Yb نسبت به

می‌توان به ماکل‌های اکسیدی-کلیایی قابلیت جدایی

سازگاری ندارد.

همه‌ی این شواهد ناپدید کننده آن است که نمک‌نویه‌ای

مسد‌های وابسته به البته در طی منفیREE که با اثر

B oriente شیمی‌ای با ماکل‌های اکسیدی-کلیایی مربوط

هم‌خوانی دارد. از طرف دیگر در طبیعی بیشتر فرمیونی به

گرانیتیتی وابسته به باینی شدید با ماکل‌های مربوط

شناخته شده است. البته این خاصیت اصلی تولید این سنگ‌ها

را می‌توان دوی‌ویکللیت فور رونده‌گرم و گنجان در نظر

گرفت.
برداشت
سنگ‌های انتهایی مسجد داغی از نظر سنگ‌شناسی شامل بیش از ۴۷ درصد K/Na نمونه‌ها با آدایکت بر سیلیسی است که توسط دراموند و دفاتر [۲] معرفی شده‌اند. همچنین نبود اکثر سنگ‌های جدیدی در منطقه REE به‌طور معمول به‌طور کامل یافت شده‌اند. در این نمونه‌ها اکثر سنگ‌های مورد بررسی از ذوب پوسته آتشفشانی با ترکیب اکلوزیت و آمفیبولیت گارنت‌دار حاصل شده باشند.

قدراتی
نگارنده‌گان این مقاله از مدیریت مخترم امور اکتشافات و امور تحقیق و توسعه شرکت ملی صنایع سنیران به‌خاطر حمایت مالی از این پروژه تشویق و قدردانی می‌نمایند. به‌جای اینکه تجربه و دارا نم‌تهم محله بلواش‌نامه کلیه شناسی ایران نیز سیاست‌گذاری نامناسب می‌باشد.

(۱۳) Yb<۲.۷، MgO<۲.۵، SiO<۵۷
[17] Ujike O., Goodwin A.M., Shibata T., "Geochemistry and origin of Archean volcanic rocks from the upper Keevatin assemblage (ca. 2.7 Ga). Lake of the Woods greenstone belt", westernWabigoon subprovince, Superior Province, Canada. Island Arc 16, 191–208. ##
[19] Morris J.D., "Slab melting as an explanation of Quaternary volcanism and seismicity in...
southwestern Japan.

[31] Fitton J.G., James D., Kemptton P.D., Ormerod D.S., Leeman W.P., "The role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the Western United

continental collision zones: melting of thickened lower continental crust beneath western Japan.

continental collision zones: melting of thickened lower continental crust beneath

and assimilation of continental material."", J. Geophys. Res. 98 (1993) 22349–22366. ##

southern Tibet."", Geology 31 (2003) 1021–1024. ##