کانی نسانی و تطبیقی محیط تکنولوژی‌های سنگ‌های نیمه عمیق شهرهای با استفاده از شیمی کانی‌های کلینوبوروسکن

راه‌ی نیای های کلیدی: تکنولوژی‌های نیمه عمیق شهرهای سیرجان-سنجشگر به کمک کلینوبوروسکن

مقدمه

پهناه زمین ساخته‌ای سنجشگر-سیرجان به دلیل فراوانی رخدادهای دگرگونی می‌آید. این سنجشگر به‌طور طبیعی و روزمره در مورد بیشتر شیمی‌های زمینی، از جمله تغییرات قیمتی، تغییرات در شرایط جغرافیایی و همچنین باعث شدن افزایش میزان کربن در هوا می‌شود. بنابراین، مطالعه البته انرژی به ویژه انرژی خورشیدی در این منطقه به‌طور کلی برای افزایش مصرف انرژی خورشیدی در این منطقه مهم است.

واژه‌های کلیدی: تکنولوژی‌های نیمه عمیق شهرهای سیرجان-سنجشگر، کلینوبوروسکن، مغناطیس، هیدروکلینوژی و کلاین‌های شیمیایی.
نیمه عمیق به شکل دایک و استوکه‌های ایزوکت در ترکیب
دولتی دریون مجموعه‌ی مافیک نفوذی که است [۶].
با توجه به اینکه ما تنها با نمونه‌های این سینیس اولی
فرآیند روی سنگ‌های نیمه عمیق در مثال مشابه صورت
نگرفته و تنها وجود دایک‌های بازی و حدودگاه گذشته
است [۵-۳]، در این پژوهش با به کارگیری روش‌های
زیرین‌دارشی به معنی دقیق کاتی‌شناسی این مجموعه‌ی نیمه
عمیق برداشته می‌شود.

روش بررسی
به منظور دست‌یابی به هدف‌های این پژوهش، پس از بررسی
پژوهش‌های پیشین در سطح منطقه و تهیه‌ی نمونه‌های زمین-
شناسی گستره مورد نظر با تأکید بر رخنه‌های نیمه عمیق،
بررسی‌های صحرایی و نمونه برداری انجام گرفت سپس مقاطع
نارک تهیه و با استفاده از میکروسکوپ نوری (Olympus
بررسی صورت گرفت. در محله‌ی بعد نمونه‌های منتحب از
سنجش‌های نیمه عمیق سالم سالار برای
کاتانا و مقاطع نارک منتحب نیز برای
Acmelabs آمایشگاه
انالیز ریز بردارشی الکترونی (EPMA) و تغییر شیمی‌کمی (EPMA)
های اصلی سنگ‌های دورین مورد بررسی به دانشگاه
اکلیم اسلام‌آباد و نیز برای انتخاب‌یک نقطه‌ای
به (SEM) از مرحله سنجش‌های نیمه عمیق بررسی در ایران و نقشه زمین-شناسی آن [۶].

شکل ۱ موقعیت زمین‌ساختی منطقه‌ی مورد بررسی در ایران و نقشه زمین-شناسی آن [۶].
سنگ شناسی و شیمی کانی‌ها

بر اساس نتایج آنالیز‌های ICP-ES و ICP-MS (جدول ۱) و تفسیر آن، (شکل ۳) دایاکه‌ها باید در طرفین ترکیب پایداری کودآرا بوده و میان‌گیرنده از این منطقه رخ‌نمایان احتمال زنده‌ماند. سنگ‌‌های آذرین منطقه به‌وسیله مجموعه سنجش‌های آنالیزی نفوذ کرده‌اند. بین ترکیب‌های پدیده ماده‌های منطقه به فاژه‌های سیاسی می‌باشد تا سیمین پایان وابسته است.

جدول ۱ تجزیه شیمیایی سنگ‌های منطقه به روش ICP-ES و ICP-MS

<table>
<thead>
<tr>
<th>داده‌گیری‌های</th>
<th>Samples No.</th>
<th>D19</th>
<th>D16</th>
<th>D10-1</th>
<th>D8</th>
<th>D7</th>
<th>D3</th>
<th>D48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>SiO₂ (wt%)</td>
<td></td>
<td>۴۱.۴۹</td>
<td>۴۵.۴۹</td>
<td>۴۴.۷۴</td>
<td>۴۴.۷۴</td>
<td>۴۷.۸۶</td>
<td>۴۵.۴۹</td>
<td>۴۰.۸۸</td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>۱.۱۶</td>
<td>۲.۳۰</td>
<td>۱.۷۶</td>
<td>۲.۳۴</td>
<td>۲.۳۲</td>
<td>۲.۳۲</td>
<td>۲.۵۵</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
<td>۸.۶۸</td>
<td>۸.۳۲</td>
<td>۸.۷۹</td>
<td>۸.۷۹</td>
<td>۸.۷۹</td>
<td>۸.۷۹</td>
<td>۸.۷۹</td>
</tr>
<tr>
<td>Fe₂O₃ (t)</td>
<td></td>
<td>۱۴.۳۲</td>
<td>۱۳.۷۱</td>
<td>۱۲.۸۸</td>
<td>۱۱.۱۱</td>
<td>۱۴.۳۲</td>
<td>۱۲.۸۸</td>
<td>۱۲.۸۸</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>۲.۶۵</td>
<td>۲.۵۷</td>
<td>۲.۹۵</td>
<td>۲.۹۵</td>
<td>۲.۹۵</td>
<td>۲.۹۵</td>
<td>۳.۲۲</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>۸۸.۶۸</td>
<td>۸۷.۲۹</td>
<td>۸۳.۹۲</td>
<td>۸۳.۹۲</td>
<td>۸۳.۹۲</td>
<td>۸۳.۹۲</td>
<td>۸۱.۷۱</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>۳۵.۳۷</td>
<td>۳۷.۳۲</td>
<td>۳۷.۳۲</td>
<td>۳۷.۳۲</td>
<td>۳۷.۳۲</td>
<td>۳۷.۳۲</td>
<td>۲۹.۲۲</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
<td>۱.۳۰</td>
<td>۱.۳۰</td>
<td>۱.۳۰</td>
<td>۱.۳۰</td>
<td>۱.۳۰</td>
<td>۱.۳۰</td>
<td>۲.۰۴</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td>۱.۶۲</td>
<td>۱.۶۲</td>
<td>۱.۶۲</td>
<td>۱.۶۲</td>
<td>۱.۶۲</td>
<td>۱.۶۲</td>
<td>۱.۶۲</td>
</tr>
<tr>
<td>P₂O₅</td>
<td></td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>LOI</td>
<td></td>
<td>۱۱.۹۴</td>
<td>۱۲.۱۸</td>
<td>۱۲.۶۸</td>
<td>۱۲.۶۸</td>
<td>۱۲.۶۸</td>
<td>۱۲.۶۸</td>
<td>۱۲.۶۸</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>۱۰۰.۱۵</td>
<td>۱۰۰.۱۵</td>
<td>۱۰۰.۱۵</td>
<td>۱۰۰.۱۵</td>
<td>۱۰۰.۱۵</td>
<td>۱۰۰.۱۵</td>
<td>۱۰۰.۱۵</td>
</tr>
<tr>
<td>Sc (ppm)</td>
<td></td>
<td>۳۸.۲۶</td>
<td>۳۸.۲۶</td>
<td>۳۸.۲۶</td>
<td>۳۸.۲۶</td>
<td>۳۸.۲۶</td>
<td>۳۸.۲۶</td>
<td>۳۸.۲۶</td>
</tr>
<tr>
<td>Hf</td>
<td></td>
<td>۰.۴۰</td>
<td>۰.۴۰</td>
<td>۰.۴۰</td>
<td>۰.۴۰</td>
<td>۰.۴۰</td>
<td>۰.۴۰</td>
<td>۰.۴۰</td>
</tr>
<tr>
<td>Nb</td>
<td></td>
<td>۲.۶۴</td>
<td>۳.۸۲</td>
<td>۳.۸۲</td>
<td>۳.۸۲</td>
<td>۳.۸۲</td>
<td>۳.۸۲</td>
<td>۲.۸۵</td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td>۴۸.۲۸</td>
<td>۴۸.۲۸</td>
<td>۴۸.۲۸</td>
<td>۴۸.۲۸</td>
<td>۴۸.۲۸</td>
<td>۴۸.۲۸</td>
<td>۴۸.۲۸</td>
</tr>
<tr>
<td>Rb</td>
<td></td>
<td>۲.۳۰</td>
<td>۲.۳۰</td>
<td>۲.۳۰</td>
<td>۲.۳۰</td>
<td>۲.۳۰</td>
<td>۲.۳۰</td>
<td>۲.۳۰</td>
</tr>
<tr>
<td>Ta</td>
<td></td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
</tr>
<tr>
<td>Th</td>
<td></td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
<td>۱.۸</td>
</tr>
<tr>
<td>Zr</td>
<td></td>
<td>۱۸.۴</td>
<td>۱۸.۵</td>
<td>۱۸.۴</td>
<td>۱۸.۴</td>
<td>۱۸.۴</td>
<td>۱۸.۴</td>
<td>۱۸.۴</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
</tr>
<tr>
<td>La</td>
<td></td>
<td>۴۱</td>
<td>۴۱</td>
<td>۴۱</td>
<td>۴۱</td>
<td>۴۱</td>
<td>۴۱</td>
<td>۴۱</td>
</tr>
<tr>
<td>Ce</td>
<td></td>
<td>۱۴.۴</td>
<td>۱۴.۴</td>
<td>۱۴.۴</td>
<td>۱۴.۴</td>
<td>۱۴.۴</td>
<td>۱۴.۴</td>
<td>۱۴.۴</td>
</tr>
<tr>
<td>Pr</td>
<td></td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
</tr>
<tr>
<td>Nd</td>
<td></td>
<td>۱۲.۷</td>
<td>۱۲.۷</td>
<td>۱۲.۷</td>
<td>۱۲.۷</td>
<td>۱۲.۷</td>
<td>۱۲.۷</td>
<td>۱۲.۷</td>
</tr>
<tr>
<td>Sm</td>
<td></td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
</tr>
<tr>
<td>Eu</td>
<td></td>
<td>۱.۴</td>
<td>۱.۴</td>
<td>۱.۴</td>
<td>۱.۴</td>
<td>۱.۴</td>
<td>۱.۴</td>
<td>۱.۴</td>
</tr>
<tr>
<td>Gd</td>
<td></td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
</tr>
<tr>
<td>Tb</td>
<td></td>
<td>۰.۶</td>
<td>۰.۶</td>
<td>۰.۶</td>
<td>۰.۶</td>
<td>۰.۶</td>
<td>۰.۶</td>
<td>۰.۶</td>
</tr>
<tr>
<td>Dy</td>
<td></td>
<td>۵.۵</td>
<td>۵.۵</td>
<td>۵.۵</td>
<td>۵.۵</td>
<td>۵.۵</td>
<td>۵.۵</td>
<td>۵.۵</td>
</tr>
<tr>
<td>Ho</td>
<td></td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
<td>۰.۷</td>
</tr>
<tr>
<td>Er</td>
<td></td>
<td>۱.۹</td>
<td>۱.۹</td>
<td>۱.۹</td>
<td>۱.۹</td>
<td>۱.۹</td>
<td>۱.۹</td>
<td>۱.۹</td>
</tr>
<tr>
<td>Tm</td>
<td></td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
</tr>
<tr>
<td>Yb</td>
<td></td>
<td>۱.۵</td>
<td>۱.۵</td>
<td>۱.۵</td>
<td>۱.۵</td>
<td>۱.۵</td>
<td>۱.۵</td>
<td>۱.۵</td>
</tr>
<tr>
<td>Lu</td>
<td></td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
<td>۲.۵</td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td>۹.۳</td>
<td>۹.۳</td>
<td>۹.۳</td>
<td>۹.۳</td>
<td>۹.۳</td>
<td>۹.۳</td>
<td>۹.۳</td>
</tr>
<tr>
<td>La</td>
<td></td>
<td>۱.۳</td>
<td>۱.۳</td>
<td>۱.۳</td>
<td>۱.۳</td>
<td>۱.۳</td>
<td>۱.۳</td>
<td>۱.۳</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
<td>۲.۴</td>
</tr>
</tbody>
</table>

دلیل = D
دی‌آه جدول 1
Rock
SiO2 (wt%)
TiO2
Al2O3
Fe2O3t
MgO
CaO
MnO
Na2O
K2O
P2O5
LOI
SUM
Sc(ppm)
Hf
Nb
Sr
Ta
Th
Zr
Y
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Ba
Ta
V
شکل ۲
الکترونی، دو نوع کلینوپروکسنس شامل سایه و دوباید در این سنگ‌های وجود دارند که علاوه بر تشکیل کانی‌های مستقل، این دو ترکیب به صورت همبسته‌ای در برخی از سنگ‌های دوکان درخشان می‌شوند (شکل ۴).

[Ca,Mg,Fe²⁺, Ti, Al]₃[Si₃O₉]۶(۳۲۲)

بر اساس بررسی‌های سنگ‌گزاری، کانی‌های اصلی تشکیل دهنده دولویت‌ها پلاژیکالس و کلینوپروکسنس بوده که بافت‌های ویژه سنگ‌های نیمه عمیق همچون اینترگرانتولار، اینتر سترال، اتیک و شبه آتیک و پوئی کلینوپروکسنس نشان می‌دهند. در برخی نمونه‌ها، شواهدی از درگیری‌های گرمسی متوسط تا شدید دیده شده که موجب تشکیل کانی‌های نانوه شامل سپیسیت، کلریت و کلسیت و به میزان کمتر اپیدوت، زونسیت و در بعضی موارد اسفن شدن، آپاسیت، مگنتیت، تیتانومگنیت و آلمینیت نیز به عنوان کانی‌های فرعی در این سنگ‌ها به فراوانی مشاهده می‌شوند (شکل ۳).

کلینو پروکسنس‌ها
بر اساس بررسی‌های میکروسکوپی و نیز نتایج ریز‌پردازندگی

شکل ۴ درشت بلورهای کلینوپروکسنس‌ها تمام شکل‌های مورد بررسی و نیمه شکل‌های در دولویت‌های منطقه XPL (پ) XPL (الف).
الکترونی از کلیپرپروکس‌های غالب در سنگ‌های نیمه‌عمیق شمال شهرکرد ارائه گردیده‌است. در شکل (7) ترکیب شیمی‌کاتی پپروکس‌های گرم نمونه به تغییرات در میزان‌های Q-1 و نیز ترکیب پپروکس‌های نشان داده شده‌است. در نمونه CAMEO نمودار پپروکس‌های Q-1 نمودار کلیپرپروکس‌های قلمروی به حالت پپروکس‌های کلسیم-منزیم و آهن‌دار قرار گرفته‌اند. هم‌چنین در نمونه‌های ترکیبی نمودار کلیپرپروکس‌های در راس وابسته به قرار گرفته که نشانی از نفوذ کامل پپروکس‌های کلسیم-منزیم- آهن در سنگ‌های منطقه است. محاسبات انجام شده برای تعیین ترکیب پپروکس‌ها نشانگر آن است که در نمونه‌های ترکیب عضوی بازشدن انتانیت (Wo) فرآیند (En) متغیر است. در نمونه‌هایی که مؤثر ذخیره گرم تغییرات در حد فاصل میدان‌ها زیادتر از آبیاری از این پروپاگز و بوته این اساس پیشنهاد می‌شود که دمای پپروکس‌های موجود در سنگ‌های نیمه‌عمیق شمال شهرکرد را از پروپاگز تحت نمایی (شکل 7) تصور رزپردازند. این پروپاگز (CaMgFe)SiO3 شامل 5 پلو اوژیت را كه با رزپردازند از bulun. 5 گرگ نمای مده 5 خش‌های روش‌مارک بلوار دارای عدد منزیم (4-راتکیب اوژیت) و خش خانشی دارای عدد منزیم یانه تری (با ترکیب دیپسید) است.

دیپسید (CaMgFe)SiO3 در مناطق نازک، دیپسید به صورت منشورهای پایه کوتاه، بستونی کشیده است. در مناطق عرضی نیز به صورت قلب‌های هشته و جهشی است. کپلرز در راستای سطوح 11/1 به خوبی دیده می‌شود. این کاپ در نور معمولی پرنگ بوته و در موارد نادر می‌توان به سبب یا چند رنگی ضعیف است. خاصیت عموماً دلیل با تغییرات در حدود 0.48 دیده می‌شود. این کاپ در بخش‌هایی به شکل عضو یا پایه‌ای بزرگ از منطقه‌بندی اوزیت‌ها در سنگ‌های 6 می‌شود (شکل 6). بر این اساس، کلیپرپروکس‌های نیمه‌عمیق مورد بررسی به صورت اعضای انتانی از اوزیت - دیپسید دیده می‌شوند. در جدول (2) بخش از نتایج بررسی های رزپردازند.
جدول 2 نتایج آنالیز ریز پردازنده الکترونی (EMPA) کلینوبپروسسیفی دولیت‌های شیمیایی شعله‌ده.
پلاژیوکلاژ ها

بلورهای پلاژیوکلاژ به دو صورت فتوکریست با سطوح نسبتاً سالم تا سریستی و بلورهای ریز میکروپیکرین در زنبورگانی سگ- های نیمه عمقی دوپلیکتی دیده می‌شوند. این حاکی از دو مرحله‌ای و طولانی بودن زمان تبلور سنگ‌های پاد شده است (شکل 8). چنین گزاره‌ای می‌تواند نشانگر این که پلاژیوکلاژ‌های فتوکریست دارای رخ‌های پارک مشخص و قاف Qi ان‌در حریق‌سازی گسترده‌ای در حالت‌های میکروپیکرین پلاژیوکلاژ سمن‌های به خاطر سطوح سخت بیشتر آن‌ها در برابر نفوذ گرمایی‌های در حال سرمایش سخت‌تر هستند.

فتوکریست‌های پلاژیوکلاژ برحسب نتایج پژوهش‌های الکترونی که در جدول (۳) ارائه شده است دارای ترکیب آلبینی (Ab108, An90, Or10) بوده و پیشنهادی آن‌پیش از لتیت‌شندر بر اثر تعادل دوباره و واکنش‌های باارک باقی

مانند دارای ترکیب اولیوگلازار (Ab94, An15, Or64) است (شکل 9). این در حالتی است که سنگ‌ها دارای ترکیب پازیک- اند و ترکیب معمول پلاژیوکلاژ در این نوع سنگ‌ها بیشترین تأثیر در بررسی این سنگ‌ها نیز (SEM) دارد و می‌تواند به سبب بیشتر بودن سنگ‌های پاد شده است (شکل 8). چنین گزاره‌ای می‌تواند نشانگر این که پلاژیوکلاژ‌های فتوکریست دارای رخ‌های پارک مشخص و قاف Qi ان‌در حریق‌سازی گسترده‌ای در حالت‌های میکروپیکرین پلاژیوکلاژ سمن‌های به خاطر سطوح سخت بیشتر آن‌ها در برابر نفوذ گرمایی‌های در حال سرمایش سخت‌تر هستند.
جدول ۳ نتایج آنالیز ریزپوپلاستی الکترونی (EMPA) پلازموکلریهای دولیت‌های شمال‌شرق کرکد.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pl243</th>
<th>Pl306</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>۱۹.۹۴</td>
<td>۱۹.۸۹</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>۹.۳۳</td>
<td>۹.۳۳</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>۳۵.۵۰</td>
<td>۳۵.۵۰</td>
</tr>
<tr>
<td>FeO(t)</td>
<td>۵.۰۴</td>
<td>۵.۰۴</td>
</tr>
<tr>
<td>MnO</td>
<td>۵.۰۴</td>
<td>۵.۰۴</td>
</tr>
<tr>
<td>MgO</td>
<td>۳.۱۴</td>
<td>۳.۱۴</td>
</tr>
<tr>
<td>CaO</td>
<td>۱.۱۷</td>
<td>۱.۱۷</td>
</tr>
<tr>
<td>NaO</td>
<td>۱.۱۷</td>
<td>۱.۱۷</td>
</tr>
<tr>
<td>K</td>
<td>۱.۱۷</td>
<td>۱.۱۷</td>
</tr>
<tr>
<td>%An</td>
<td>۵۶.۴۶</td>
<td>۵۶.۴۶</td>
</tr>
<tr>
<td>%Ab</td>
<td>۴۳.۵۴</td>
<td>۴۳.۵۴</td>
</tr>
<tr>
<td>%Or</td>
<td>۴.۰۱</td>
<td>۴.۰۱</td>
</tr>
</tbody>
</table>

جدول ۴ نتایج آنالیز ریزپوپلاستی الکترونی (EMPA) پلازموکلریهای دولیت‌های شمال‌شرق کرکد.

<table>
<thead>
<tr>
<th>Sample</th>
<th>روش‌های چلوک</th>
<th>Pl745</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>۱۹.۹۷</td>
<td>۱۹.۹۷</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>۹.۳۳</td>
<td>۹.۳۳</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>۳۵.۵۰</td>
<td>۳۵.۵۰</td>
</tr>
<tr>
<td>FeO(t)</td>
<td>۵.۰۴</td>
<td>۵.۰۴</td>
</tr>
<tr>
<td>MnO</td>
<td>۵.۰۴</td>
<td>۵.۰۴</td>
</tr>
<tr>
<td>MgO</td>
<td>۳.۱۴</td>
<td>۳.۱۴</td>
</tr>
<tr>
<td>CaO</td>
<td>۱.۱۷</td>
<td>۱.۱۷</td>
</tr>
<tr>
<td>NaO</td>
<td>۱.۱۷</td>
<td>۱.۱۷</td>
</tr>
<tr>
<td>K</td>
<td>۱.۱۷</td>
<td>۱.۱۷</td>
</tr>
<tr>
<td>%An</td>
<td>۵۶.۴۶</td>
<td>۵۶.۴۶</td>
</tr>
<tr>
<td>%Ab</td>
<td>۴۳.۵۴</td>
<td>۴۳.۵۴</td>
</tr>
<tr>
<td>%Or</td>
<td>۴.۰۱</td>
<td>۴.۰۱</td>
</tr>
</tbody>
</table>
تعیین محتوی زمین‌ساختی منطقه

کربنده سنگ‌های آنتشیانی - رسوی شمال شیرکرد به عنوان نمایندگان از آنتشیان ویروسیک زون سنندج - سیرجان در یک جزیره قوسی است که هر خلق فورارات پوسته اقیبائی نتوینتی به زیر پهن‌های سنندج - سیرجان است که زاویه فورارات آن حدود ۱۶ درجه شرقی، فاصله افقی کربنده تا خط برخورد حدود ۲۵ کیلومتر و بر مکان کنونی گسل وارون زاگرس است. زمان این رخداد فورارات بر تریاس قرار دارد [۱۳-۱۵]. در خصوص توجه‌های نیمه‌عمیق پیش‌بینی‌های توجه‌های آن با توجه به فرآیندهای سنگ‌های منطقه، نسبت داد [۶].

چنانچه از شکل (۱۱) نبودهای تحلیل نتایج تجزیه سنگ‌های نسبی به سبک قرار گرفتن در ICP-MS و ICP-ES، این سنگ‌های مرتبط با تولیدن واشته‌های مربی تشکیل می‌شود. علاوه بر استفاده از تکنیک سنگ‌کل در تعیین محتوی تکنولنگی سنگ‌های آنتشیان ویروسیک زون سنندج - سیرجان است که زاویه فورارات آن حدود ۱۶ درجه شرقی، فاصله افقی کربنده تا خط برخورد حدود ۲۵ کیلومتر و بر مکان کنونی گسل وارون زاگرس است. زمان این رخداد فورارات بر تریاس قرار دارد [۱۳-۱۵]. در خصوص توجه‌های نیمه‌عمیق پیش‌بینی‌های توجه‌های آن با توجه به فرآیندهای سنگ‌های منطقه، نسبت داد [۶].

چنانچه از شکل (۱۱) نبودهای تحلیل نتایج تجزیه سنگ‌های نسبی به سبک قرار گرفتن در ICP-MS و ICP-ES، این سنگ‌های مرتبط با تولیدن واشته‌های مربی تشکیل می‌شود. علاوه بر استفاده از تکنیک سنگ‌کل در تعیین محتوی تکنولنگی سنگ‌های آنتشیان ویروسیک زون سنندج - سیرجان است که زاویه فورارات آن حدود ۱۶ درجه شرقی، فاصله افقی کربنده تا خط برخورد حدود ۲۵ کیلومتر و بر مکان کنونی گسل وارون زاگرس است. زمان این رخداد فورارات بر تریاس قرار دارد [۱۳-۱۵]. در خصوص توجه‌های نیمه‌عمیق پیش‌بینی‌های توجه‌های آن با توجه به فرآیندهای سنگ‌های منطقه، نسبت داد [۶].

چنانچه از شکل (۱۱) نبودهای تحلیل نتایج تجزیه سنگ‌های نسبی به سبک قرار گرفتن در ICP-MS و ICP-ES، این سنگ‌های مرتبط با تولیدن واشته‌های مربی تشکیل می‌شود. علاوه بر استفاده از تکنیک سنگ‌کل در تعیین محتوی تکنولنگی سنگ‌های آنتشیان ویروسیک زون سنندج - سیرجان است که زاویه فورارات آن حدود ۱۶ درجه شرقی، فاصله افقی کربنده تا خط برخورد حدود ۲۵ کیلومتر و بر مکان کنونی گسل وارون زاگرس است. زمان این رخداد فورارات بر تریاس قرار دارد [۱۳-۱۵]. در خصوص توجه‌های نیمه‌عمیق پیش‌بینی‌های توجه‌های آن با توجه به فرآیندهای سنگ‌های منطقه، نسبت داد [۶].

چنانچه از شکل (۱۱) نبودهای تحلیل نتایج تجزیه سنگ‌های نسبی به سبک قرار گرفتن در ICP-MS و ICP-ES، این سنگ‌های مرتبط با تولیدن واشته‌های مربی تشکیل می‌شود. علاوه بر استفاده از تکنیک سنگ‌کل در تعیین محتوی تکنولنگی سنگ‌های آنتشیان ویروسیک زون سنندج - سیرجان است که زاویه فورارات آن حدود ۱۶ درجه شرقی، فاصله افقی کربنده تا خط برخورد حدود ۲۵ کیلومتر و بر مکان کنونی گسل وارون زاگرس است. زمان این رخداد فورارات بر تریاس قرار دارد [۱۳-۱۵]. در خصوص توجه‌های نیمه‌عمیق پیش‌بینی‌های توجه‌های آن با توجه به فرآیندهای سنگ‌های منطقه، نسبت داد [۶].
پیده‌های آتش‌شناختی در این منطقه به فاز کوه‌های سیمرین میانی نسبت داده شده است [6].

در ترکیب کلوپیروروسکن‌ها در سنگ‌های نیمه عمیق منطقه اوزیت و دیوپسید بوده که علاوه بر تشکیل کانی‌های مستقل، به صورت نوسانی در برخی از سنگ‌های دوربری مشاهده می‌شود و بر این اساس پیشنهاد می‌شود که کلوپیروروسکن‌ها موجود در سنگ‌های آتش‌شناختی شمال شرقی کارگری را اوزیت دیوپسیدی بدنام. ترکیب بلورهای پلازموکت سالم گالسیا پیوندی و در سنگ‌های کمی دگرسان شده، از آلیت‌تیلاپیت در نوسان است که به توجه به ترکیب برای سنگ‌های منطقه، حاکی از عملکرد مسترده‌هدیده می‌باشد.

برداشت
مجموعه آتش‌شناختی - رسوبی شمال شرقی کارگری - جنوب مغربی در مساحی بالغ بر 200 کیلومتر مربع تقریباً به موارد زون ساختاری و گسل زاگرس استقرار یافته است. رنگ سبز حاکم بر کلیه واحد‌های سنگ‌شناختی منطقه ناشی از حاکمیت میکرو اخیاژ زیر آبی است. غیر از بخش‌های جنوبی دراز دره بن که آثار آتش‌شناختی گیاهی دیده می‌شود، بقیه مجموعه مورد بررسی در یک میکرو زیر دریابی کم عمق تا نیمه عمیق همراه با رسوب - های آواری شامل سپت سنگ و ماسه سنگ فوران کرده‌اند.
[15] [A] آقا نابینی س. ع.، زمین شناسی ایران، انتشارات سازمان زمین شناسی و اکتشافات معنی‌دار کشور (1386) صفحه 586.
[16] [B] د주یش واده ع.، زمین شناسی ایران، انتشارات امیر کبیر (1380) صفحه 901.
[19] [E] امامی ن.، زمین شناسی و بنروژی مسکن‌های آنتشرفتی شمال شیرکه، پایان نامه کارشناسی ارشد بنروژی دانشگاه اصفهان (1375) صفحه 65.
[20] [F] امامی ن.، بنروژی شیرکه با ناکید پر پهن‌های دگرگونی در زمین‌شناسی شمال شیرکه، پایان نامه دکتری بنروژی دانشگاه اصفهان (1377) صفحه 66.
[22] [H] قاسمی ا.، حاج حسینی ا.، حسینی، زمین شناسی جادگان (مقياس 2000: 1/2)، سازمان زمین شناسی کشور (1365).
[23] [I] Le Bas M.J., Le Maitre, R.W. Streckesen. Al, Zanettin B.,"A chemical classification of volcanic