سنجگنگ‌یاری و سنگشناسی گرانتونیده‌های A-type شرک کوههای میشو با نگرشی بر اهمیت زنده‌ی‌نامی‌کی آن‌ها

محسن موفقی. قادر حسین‌زاده
گروه زمین‌شناسی، دانشکده علوم طبیعی، دانشگاه تبریز
(دریافت مقاله: ۸۹/۶/۱۵، نسخه نهایی: ۸۹/۹/۳۰)

چکیده: توده‌های گرانتونی‌دی شرق کوههای میشو (جهن‌بوشی مردم- استان آذربایجان‌شرقی) به درون نهشت‌های سازند که و سنگ‌های ملیفک - اولتراافیک کوههای میشو تزریق شده و دارای همبستگی گسی با نهشت‌های کریستالی ترسیب هستند. این توده‌ها دارای نوع ترکیبی از کوارتز‌موئنیت‌تی گرانتن و گرانتن قلبی‌ای بوده و دارای آسیب‌های گرانتن‌و پورتری و دیپ‌بای‌ها قطع شده‌اند.

کاتی‌ها اصلی این توده‌ها شامل فلدسرپ قلبی‌ای پرتینی، گیوتور و پلاژیوکلاز سدیمی بوده و دارای مقادیر کمتری به‌ویژه و آمپیس-ایند بر این اساس این توده‌ها جزء گرانتن‌های هیری‌سولوس بوده و به زیر گروه Bb گرانتونی‌دیه‌های نوع A تعلق دارند. ماهگی مولد این توده‌ها در شکل سریعی قلبی‌ای کلیسی نیست و در هم‌چنین محیط LREE و به‌ویژه منفی مشخص از Ba. توده‌ها یک محلی از برون و در ارتباط با حرکت‌های کششی پس از فاز کوههای هرستنی از هویه‌های پیوستای تشکیل شده‌اند.

واژه‌های کلیدی: کوههای میشو- گرانتونی‌دیه‌های نوع A- هیری‌سولوس- هرستن- پس از برونورد

خاتمه

برخوردی است و به آگاهی ما از شکل‌گیری پوسته‌ای ایران در طی کوههای هرستنی کمک می‌کند. این برخورد در راستای روشن‌ساختن سنگ‌شناسی، پتروژنژی و جایگاه زمین‌ساختی بر روی توده‌های پایدار در ارتباط با حرکت‌های کوههای هرستنی در آذربایجان انجام گرفته است.

روش بررسی

برای بررسی‌های سنگ‌شناسی توده‌های گرانتنی قلبی‌ای تا گرانتنی کوههای میشو تعداد ۶۵ نمونه سنگی از نقاط مختلف میشو انطباق و پس از یکی از سنگ‌شناسی، تعداد ۲۰ نمونه ICP-MS برای آلاینده‌های عناصر اصلی و نشان از در و روش مقداری

مقدمه

گرانتن‌ها به دلیل قرارگیری در پوسته قره‌ای و ارتباط با ارتفا و ارتباطات با ارتفاع از اعماق زمین و اسکانی‌های تکان‌گذاران به زمین‌ساختی و زنده‌ی‌نامی‌کی جابجایی دیده‌شده آزمایش‌های گرانتن‌های هرستنی در شمال غرب ایران از ابعاد مختلف مورد بحث و بررسی قرار گرفته است. توده‌های گرانتنی تا گرانتنی قلبی‌ای کوههای میشو که نظیر آن‌ها در کوههای دیگر در شمال غرب کشور نیز رخ‌های دیده‌اند، از جمله توده‌های شرک کوه‌های کوههای هرستنی در ارتباط بوده و بررسی‌های سنگ‌شناسی و پتروژنژی آن‌ها در جهت تکمیل اطلاعات زمین‌شناسی شمال غرب کشور از اهمیت

Moayyed@tabrizu.ac.ir
نوبه‌ندما، تلفن- تلفن: ۸۷۰۵۴۴۲۴۱ (۴۱۱۰)، پست الکترونیکی:
۵۱۰

و جنب شرقی آذری جنوبی می‌تواند واقع شده و بین دو دلیل تبریز در شمالي و جنوب می‌تواند مصول شده است. با توجه به ساز و کار فشاری - راست‌گردن گسل تبریز (به‌عنوان گسل اصلی) و گسل فشاری جنوب می‌توان این ارتفاعات را یک ساختار گزارش می‌شود در نظر گرفته (شکل ۱). تشابه این ساختار در ارتفاعات میشو به این درآمده‌ترین چهار منطقه و ارتفاعات اصلی آن رخنومون پیدا کرده و به سمت دامنه‌های شمالي و جنوبی، سن سازندگی رخنوموده جوانتر شود. لازم به 
بیان کردن اینکه در اغلب سازندگی و احتمالیت شرایط 
گسل بوده و این امر از پژوهش‌های ساختارهای گزارش 
است. توجه به گزارش‌های مورد بررسی در منتهیه شرایط این ارتفاعات رخنومون یافته و به درون سازند کهر و توده‌های 
مفید ترتیبی می‌شود. است. مزار شمالي این توده به نشتهای 
مافیک و تراشاسیک (سازندگی‌های یا شمشک) گسل بوده و 
روی آن را پیدا شده است (شکل ۲). مشابه این توده در کوه- 
های موره و به درون سازندگی کامپارک ترتیبی شده و آن را 
درگیر کرده است. این توده در کوه خوشه را رسوخ‌دار بیش‌ترین زمان (ماسه‌سازندگی دورود) پوشیده‌می‌شود. با 
توجه به اینکه مشابه این توده در ارتفاعات قره‌گوز (شمال 
مرند و جنوب جلفا) نشته‌های دوبنی را قطع کرده‌اند، لذا سن 
نسبت آن‌ها را می‌توان پس از دوبلین و قبل از پرنس در نظر 
گرفت.

به شرکت ALS-Chemex کمادا ارسال شدند. ۱۰ نمونه از آنها از پایان‌نامه کارشناسی ارشد برگرفته گرفته ۱۳۸۸ [v] افتتاح سازند که برای یکتی سلنیوم‌های گرایانه از شواهد صحیری و بررسی‌های زمین‌گاه‌سازی ادویت و 
قلق‌الافاق (۱۳۸۸) [A] به گرفته شدند.

زمین‌شناسی منطقه

gستره مورد بررسی در این منطقه شامل این، یک ولایت در بخش از زمین‌شناسی ایران، بر اساس ساختار و ارتباطات آن رخنومون و سازندگی رخنوموده جوانتر شد. لازم به 
بیان کردن اینکه در اغلب سازندگی و احتمالیت شرایط 
گسل بوده و این امر از پژوهش‌های ساختارهای گزارش 
است. توجه به گزارش‌های مورد بررسی در منتهیه شرایط این ارتفاعات رخنومون یافته و به درون سازند کهر و توده‌های 
مفید ترتیبی می‌شود. است. مزار شمالي این توده به نشتهای 
مافیک و تراشاسیک (سازندگی‌های یا شمشک) گسل بوده و 
روی آن را پیدا شده است (شکل ۲). مشابه این توده در کوه- 
های موره و به درون سازندگی کامپارک ترتیبی شده و آن را 
درگیر کرده است. این توده در کوه خوشه را رسوخ‌دار بیش‌ترین زمان (ماسه‌سازندگی دورود) پوشیده‌می‌شود. با 
توجه به اینکه مشابه این توده در ارتفاعات قره‌گوز (شمال 
مرند و جنوب جلفا) نشته‌های دوبنی را قطع کرده‌اند، لذا سن 
نسبت آن‌ها را می‌توان پس از دوبلین و قبل از پرنس در نظر 
گرفت.

شکل ۱ موقتی سیاله‌های اصلی موجود در منطقه می‌تواند به منطقه می‌تواند می‌تواند که ساختار گزارش می‌شود. 

پیامد، حسینزاده
سنگ‌گنج‌های

(5-30 در در ترکیب کانی‌شناسی آنها وارد می‌شود. همچنین از افزوده می‌شود این سنگ‌ها با دایک‌ها و رگه‌های با ترکیب گرانیتی و با فلز‌های قطع می‌شوند (شکل 3 ب).

ب) گرانیت‌ها: خش که می‌بپکد توده گرانیت‌های مورد بررسی در ترکیب گرانیتی است. رنگ این سنگ‌ها در نمونه‌ی دستی قرمز می‌باشد که به کانی‌شناسی اصلی آن-ه شال بلوری‌های نیمه‌فلزی پلاژت‌کیا با ترکیب آلیت تا الیکوکلاژ (30-200) فلدسپار قلبی نیمه‌فلزی شکل دارد (شکل 40-200) و کوارتز (2-35/2) است. کانی‌های فلزی شامل جزئی آمفیبول سیگر، بیوتیت، زیبرن و آپتین است. فلدسپارهای اندکی کاتایلیزیزیان. بلافاصله اینا دانه تا گرانیت‌های بورفوری و گرانیت‌های است (شکل‌های 3 ت و 4).

چ) گرانیت‌های کوارتز سیبیت قلبی: این توده‌ها در به شش جنبش‌های مختلف توده گرانیتی رخ داده و مزمنی مشخصی با آن ندارند. نمونه‌ی اندکی روش‌تر از توده گرانیتی پلاژت‌کیا و کانی‌شناسی اصلی آن‌ها شال کوارتز (30-15) و آمافیبول پرتینی شکل‌دار است (شکل‌های 5-23 و 7) است. بیوتیت، زیبرن و الیمینیت است (شکل‌های 42 و 4). 

در انتظار کوارتز- دیورلتی و مونزونیت‌های علی‌برد کانی‌های یاد شده، فلدسپار قلبی و ماقبلگریاندی کوارتز

شکل 2 نقشه‌ی ساده موقعیت واحدهای سنگی و گسل‌های اصلی منطقه (برگرفته از نقشه‌ی زمین‌شناسی 1/11000000 چهارگوش مرند).

سنگ‌گنج‌های

تنوای مختلفی از سنگ‌های آذرین درونی و نیمه‌عمیق در منطقه حضور دارد که می‌توان آنها را در گروه‌های اصلی زیر قرار داد:

الف) توده‌های گابرو- دیورلتی و مونزونیت‌ها (سنگ-های درون‌گیر توده‌ی گرانیت‌هایی): ب) توده‌های گرانتی؛ ج) توده‌های گرانتی کوارتزی تا کوارتز سیبیت قلبی؛ د) توده‌های کوارتز موتنیزی؛ ه) دایک‌های گرانتی پورفوری؛ و) دایک‌های دیورلتی والرودوربتی‌ها.

الف) توده‌های الگوپورفوریت‌ها: این توده‌ها در مشترکان ملاتونگی بوده و در انتظار مونزونیت‌های پلاژت‌کیا. بایوکس و آمافیبول در آنها قابل شناسایی است. کانی‌شناسی اصلی آن‌ها شامل پلاژت‌کلاژ (55-55) و آمافیبول (30-20) و کالیت‌کیا (15-30) است (شکل 3/2). ب) توده‌های الگوپورفوریت‌ها: این توده‌ها در مشترکان ملاتونگی بوده و در انتظار مونزونیت‌های پلاژت‌کیا. بایوکس و آمافیبول در آنها قابل شناسایی است. کانی‌شناسی اصلی آن‌ها شامل پلاژت‌کلاژ (55-55) و آمافیبول (30-20) و کالیت‌کیا (15-30) است (شکل 3/2).

در انتظار کوارتز- دیورلتی و مونزونیت‌های علی‌برد کانی‌های یاد شده، فلدسپار قلبی و ماقبلگریاندی کوارتز

شکل 2 نقشه‌ی ساده موقعیت واحدهای سنگی و گسل‌های اصلی منطقه (برگرفته از نقشه‌ی زمین‌شناسی 1/11000000 چهارگوش مرند).

سنگ‌گنج‌های

تنوای مختلفی از سنگ‌های آذرین درونی و نیمه‌عمیق در منطقه حضور دارد که می‌توان آنها را در گروه‌های اصلی زیر قرار داد:

الف) توده‌های گابرو- دیورلتی و مونزونیت‌ها (سنگ-های درون‌گیر توده‌ی گرانیت‌هایی): ب) توده‌های گرانتی؛ ج) توده‌های گرانتی کوارتزی تا کوارتز سیبیت قلبی؛ د) توده‌های کوارتز موتنیزی؛ ه) دایک‌های گرانتی پورفوری؛ و) دایک‌های دیورلتی والرودوربتی‌ها.

الف) توده‌های الگوپورفوریت‌ها: این توده‌ها در مشترکان ملاتونگی بوده و در انتظار مونزونیت‌های پلاژت‌کیا. بایوکس و آمافیبول در آنها قابل شناسایی است. کانی‌شناسی اصلی آن‌ها شامل پلاژت‌کلاژ (55-55) و آمافیبول (30-20) و کالیت‌کیا (15-30) است (شکل 3/2). ب) توده‌های الگوپورفوریت‌ها: این توده‌ها در مشترکان ملاتونگی بوده و در انتظار مونزونیت‌های پلاژت‌کیا. بایوکس و آمافیبول در آنها قابل شناسایی است. کانی‌شناسی اصلی آن‌ها شامل پلاژت‌کلاژ (55-55) و آمافیبول (30-20) و کالیت‌کیا (15-30) است (شکل 3/2).

در انتظار کوارتز- دیورلتی و مونزونیت‌های علی‌برد کانی‌های یاد شده، فلدسپار قلبی و ماقبلگریاندی کوارتز

شکل 2 نقشه‌ی ساده موقعیت واحدهای سنگی و گسل‌های اصلی منطقه (برگرفته از نقشه‌ی زمین‌شناسی 1/11000000 چهارگوش مرند).
شامل بیوتیت، اسفن، زیرکن و آپاتیت بوده و یافته عمومی آن‌ها گرانولار پورفیری تا دانه دانه است و با دایک‌های گرانیت پورفیری قطع می‌شوند (شکل‌های 4 و B).

(5) دایک‌های گرانیت پورفیری: این دایک‌ها با رود W-E توده‌اند. بنرک آن‌ها از توده‌ی گرانیتی روشن‌تر بوده و سفید متمایل به حاکستری بوده‌اند. کلیشه‌ای است که آن‌ها شامل بیش از ۲۰ محاله‌ی از پلاژیوکلاز سدیمی (۸۵-۲۰) و کوارتز (۳۰-۲۵) بوده و پلورهای کوارتز و فلدسپار قلب‌ای ریز بیش از چهار دقایق به سبب افزایش سرعت جریان توده‌ها شکل می‌گیرند. بی‌بی‌اچ و آپاتیت بوده و دارای یافته‌ی پورفیریک با خمیره‌ی ریز بی‌بی‌اچ.

سازیتی را به‌وجود آورده است. عدم مشاهده پلاژیوکلاز و فراوانی اورتونکلاز پرتنی نشان می‌دهد که این توده از انواع هیبرسولومن بوده و از یک گزاره‌ای اسیدی تحت فشار بخار آب کمتر از ۱ کیلو بار تشدید است (۱۳۱). فاصله این سنگ‌ها دانه دانه است.

(5) کوارتز مونوزنیت‌های این توده‌ها در بخش غرب و شرق مشاهده می‌شود. کوارتز مونوزنیت در این توده‌ها نشان از تأخیر زمانی نفوذ گرانبغ‌ها نسبت به کوارتز مونوزنیت‌ها دارد. بنرک این توده‌ها در نمونه‌ی دستی سبز متمایل به حاکستری بوده و کوارتز (۱۰۰/۴۰) فلدسپار قلب‌ای (۴۰-۲۵/۲۰) و آمفیبول‌های پیه‌های و سنگ (۱۵-۱۰) است. کلاس‌های فرعی

شکل 3: تحمیری میکروپسیک (XPL) فاصله نیمه‌شکل‌دار گرانولار در گرابور-دوریت‌ها (XPL)
گرفته‌شده است. بررسی موقعیت نمونه‌های مورد بررسی در نمودار مثلثی QAP [14] نشان می‌دهد که نمونه‌های غنی‌ترین و مافیک درون‌گری و ترکیبی در حد غاپو، مونزودبوریت و کوارتزمونزودبوریت داشته و نمونه‌های گرانیتی‌ناپیوسته و دایک‌های وابسته دارای طیف ترکیبی کوارتزمونزودبوریت، مونزودگریت، سیمپتگریت و گرانیت قلبی‌ایان (شکل 5). در مقایسه از نمودار XPL [15] زر/تی-سیویو [16] مورد بررسی دارای طیف ترکیبی سیمپتگریت، مونزودبوریت، دیوریت، کوارتزمونزودبوریت، گرانیت و گرانیت قلبی‌ایان بوده و بخش مهم نمونه‌ها ترکیب گرانیتی‌ناپیوسته گرانیتی‌ناپیوسته دارد.

و دایک‌های دیابازی: این دایک‌ها نوده‌های گرانیت‌پیوسته را با یک راستای WNW-ESE قطع کرده‌اند. رنگ آن‌ها در نمونه‌های مافیک سیز تیره به جف‌های سبزی پر شده از کربنات به رنگ سفید است. کلیه‌های اصلی آن‌ها شامل میکرو‌پیوسته‌های پلی‌پروکس و کلیه‌های فرمونیسی (اختلالی‌های افصیب) و پروکسین است که کاملاً به کلیه‌های نوین پیوند کرده و کریستال تجزیه شده‌اند. کلیه‌های فرمونیسی شامل نوک و اسفناست. این دایک‌ها سابل‌فیتیکیت در جریان بوده (شکل 4 ث) و پرشانی جف‌های سبزی که با کربنات به کار می‌رود و اکثریت بافت بادامی را نیز ایجاد کرده است (شکل 4 ج). برای دایک‌های گرانی‌پیوسته و نوده‌های مافیک درون‌گری از کلیه‌های واقعی (مودی) سنگ‌ها به‌وره

شکل ۵ موضع نمونه‌ها در مثلث نامگذاری مودی سنتگهای نقوذی [۱۴].

شکل ۶ موضع نمونه‌ها در نمودار پیشنهادی (1977).

وزهشی‌های سیلسن توده‌های گری‌سیمی مورد بررسی در گستره‌ی تغییرات ۷۷ تا ۴۱ نعلی سرشت پرآلمینوس نشان داده و تعداد اندرک از آنها ویژگی مثالآمین نشان می‌دهند (شکل ۸). [۱۴] Winchester and Floyd (1977)

[۷۹] Shand (1954)

[۷۸] Winchester and Floyd (1977)
<table>
<thead>
<tr>
<th>منتر</th>
<th>B-6</th>
<th>B-16</th>
<th>B-28</th>
<th>B-30</th>
<th>B-31</th>
<th>B-32</th>
<th>B-33</th>
<th>B-36</th>
<th>B-37</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>74.65</td>
<td>77.5</td>
<td>71.89</td>
<td>70.4</td>
<td>66.62</td>
<td>33.6</td>
<td>37.6</td>
<td>35.3</td>
<td>34.3</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.23</td>
<td>16.88</td>
<td>15.91</td>
<td>16.49</td>
<td>19.95</td>
<td>13.2</td>
<td>13.55</td>
<td>13.95</td>
<td>13.73</td>
</tr>
<tr>
<td>FeO</td>
<td>1.56</td>
<td>1.91</td>
<td>2.12</td>
<td>1.38</td>
<td>0.22</td>
<td>0.19</td>
<td>0.14</td>
<td>0.41</td>
<td>0.38</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.84</td>
<td>0.69</td>
<td>0.86</td>
<td>1.13</td>
<td>2.28</td>
<td>0.81</td>
<td>0.71</td>
<td>0.57</td>
<td>0.38</td>
</tr>
<tr>
<td>CaO</td>
<td>1.5</td>
<td>1.12</td>
<td>0.99</td>
<td>1.13</td>
<td>2.37</td>
<td>0.18</td>
<td>0.15</td>
<td>0.27</td>
<td>0.15</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.49</td>
<td>0.79</td>
<td>0.36</td>
<td>0.56</td>
<td>0.46</td>
<td>0.33</td>
<td>0.37</td>
<td>0.43</td>
<td>0.41</td>
</tr>
<tr>
<td>MgO</td>
<td>0.72</td>
<td>1.43</td>
<td>0.96</td>
<td>0.32</td>
<td>0.21</td>
<td>0.15</td>
<td>0.13</td>
<td>0.12</td>
<td>0.15</td>
</tr>
<tr>
<td>K₂O</td>
<td>8.9</td>
<td>6.17</td>
<td>8.02</td>
<td>6.93</td>
<td>3.71</td>
<td>4.26</td>
<td>4.26</td>
<td>4.26</td>
<td>4.26</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.17</td>
<td>0.35</td>
<td>0.45</td>
<td>0.11</td>
<td>0.25</td>
<td>0.12</td>
<td>0.13</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
</tr>
<tr>
<td>LOI</td>
<td>1.82</td>
<td>1.16</td>
<td>1.37</td>
<td>0.85</td>
<td>0.35</td>
<td>0.32</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Ag</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Ba</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>Ce</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
</tr>
<tr>
<td>Co</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Cr</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Cs</td>
<td>1.93</td>
<td>1.93</td>
<td>1.93</td>
<td>1.93</td>
<td>1.93</td>
<td>1.93</td>
<td>1.93</td>
<td>1.93</td>
<td>1.93</td>
</tr>
<tr>
<td>Cu</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Dy</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
</tr>
<tr>
<td>Er</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>Eu</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>Ga</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Gd</td>
<td>1.76</td>
<td>1.76</td>
<td>1.76</td>
<td>1.76</td>
<td>1.76</td>
<td>1.76</td>
<td>1.76</td>
<td>1.76</td>
<td>1.76</td>
</tr>
<tr>
<td>Hf</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Ho</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>La</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Lu</td>
<td>3.18</td>
<td>3.18</td>
<td>3.18</td>
<td>3.18</td>
<td>3.18</td>
<td>3.18</td>
<td>3.18</td>
<td>3.18</td>
<td>3.18</td>
</tr>
<tr>
<td>Mo</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Nb</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Nd</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Ni</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>P</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Ph</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Pr</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
</tr>
<tr>
<td>Rb</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Sm</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Sn</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Sr</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Ta</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Tb</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Th</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Ti</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Tm</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>U</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>V</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>W</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Y</td>
<td>8.75</td>
<td>8.75</td>
<td>8.75</td>
<td>8.75</td>
<td>8.75</td>
<td>8.75</td>
<td>8.75</td>
<td>8.75</td>
<td>8.75</td>
</tr>
<tr>
<td>Zn</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

پنجمین جدول 1

نتایج آنالیز شیمیایی نمونه‌های مورد مطالعه به روش XRF و ICP-MS (مقادیر اکسیدها به % و عنصر به اس).
جدول 1 (دامنه): نتایج آنالیز شیمیایی نمونه‌های مورد مطالعه به روش‌های ICP-MS و XRF

<table>
<thead>
<tr>
<th>M-1</th>
<th>M-2</th>
<th>M-3</th>
<th>M-4</th>
<th>M-5</th>
<th>M-6</th>
<th>M-7</th>
<th>M-8</th>
<th>M-9</th>
<th>M-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>77.9</td>
<td>78.9</td>
<td>79.0</td>
<td>79.4</td>
<td>77.6</td>
<td>77.8</td>
<td>77.0</td>
<td>74.8</td>
<td>74.4</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.7</td>
<td>11.9</td>
<td>11.6</td>
<td>12.0</td>
<td>11.8</td>
<td>12.1</td>
<td>11.8</td>
<td>12.8</td>
<td>11.9</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.8</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.2</td>
<td>2.2</td>
<td>1.5</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>FeO</td>
<td>0.2</td>
<td>0.5</td>
<td>0.9</td>
<td>0.8</td>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>CaO</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>1.1</td>
<td>1.3</td>
<td>1.2</td>
<td>0.8</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.8</td>
<td>3.2</td>
<td>3.0</td>
<td>3.3</td>
<td>3.2</td>
<td>3.2</td>
<td>2.8</td>
<td>3.1</td>
<td>2.8</td>
</tr>
<tr>
<td>MgO</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LOI</td>
<td>1.2</td>
<td>0.8</td>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Ag</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ba</td>
<td>91.4</td>
<td>92.3</td>
<td>94.4</td>
<td>94.4</td>
<td>92.3</td>
<td>91.4</td>
<td>94.4</td>
<td>93.4</td>
<td>94.4</td>
</tr>
<tr>
<td>Ce</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Co</td>
<td>8.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Cr</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Cs</td>
<td>1.1</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Cu</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dy</td>
<td>8.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
</tr>
<tr>
<td>Eu</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Ga</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Gd</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Hf</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
</tr>
<tr>
<td>Ho</td>
<td>1.9</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>La</td>
<td>37.1</td>
<td>37.1</td>
<td>37.1</td>
<td>37.1</td>
<td>37.1</td>
<td>37.1</td>
<td>37.1</td>
<td>37.1</td>
<td>37.1</td>
</tr>
<tr>
<td>Lu</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Mo</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Nb</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Nd</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Ni</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Pb</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Pr</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Rb</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
</tr>
<tr>
<td>Sm</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Sn</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Sr</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Ta</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Tb</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Th</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Ti</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Tm</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>U</td>
<td>48.0</td>
<td>48.0</td>
<td>48.0</td>
<td>48.0</td>
<td>48.0</td>
<td>48.0</td>
<td>48.0</td>
<td>48.0</td>
<td>48.0</td>
</tr>
<tr>
<td>V</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>W</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Y</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Yb</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Zn</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Zr</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>
پنجمین نمونه‌های مورد بررسی در نمودارهای پیشنهادی (1983) [18] Pearce

سومین نمونه‌های مورد بررسی در نمودارهای پیشنهادی (1954) [19] Shand

گرانیت‌های پیچسرولوس و غنی از زیرکن عموماً به

گرانیت‌های نوع A وابسته‌اند. به همین منظور برای تعیین

نوع گرانیت‌های مورد بررسی از نمودارهای پیشنهادی

اِبی (1992) [22] گرانیت‌های نوع A را از نظر

شیمیایی به دو گروه A1 و A2 تقسیم کرد. گروه A1 بر اساس

نسبت‌های عنصری شاهد زردایی بازالت‌های جزایر اقیانوسی

dاشته و طی رفت‌داخل قاره‌ای و معمولاً همراه با سنگ‌های

ماکائی همزمان و در ارتباط با فعالیت نقاط داغ جایگیری می‌شود.

گروه A2 شاهد زیادی به ترکیب میانگین بوسته و

Expression of A1 با ارائه شناسایی جزایر قوسی‌اشت و در دامنه گسترش‌هایی از محیط‌های

به ویژه انواع پاپرخورد و انیهدرا به دوره طولانی جریان


ذخیره (شکل 7). در نمودار

ضرورت در گسترشی قرانیت‌های میانگین می‌گردد (شکل 9). در نمودار

Shorter, Shand 1390 1970 شماره 537...
بررسی نسبت‌های عناصری در گرانتونیده‌های نوع A شرق کوه‌های میشو نشان می‌دهد که آن‌ها به انواع A1 وابسته بوده و

ویژگی شیمیایی بيشتری با افزایش جزایر قوسی و میانگین بوسته دارند (شکل‌های 11 و 12).


شکل ۹ تعیین نوع گرانتونیده‌های مورد بررسی با استفاده از نمودارهای پیشنهادی (۱۹۸۷).

شکل ۱۰ تعیین نوع گرانتونیده‌های مورد بررسی با استفاده از نمودار پیشنهادی (۲۰۰۱).
شکل ۱۱ تشخیص تیپ گرانیتوئیدی مورد مطالعه از طریق نمودارهای پیشنهادی (Eby 1992). [22] 

شکل ۱۲ تعبیه فراست زئویتریپاتی توده‌های مورد بررسی با استفاده از نسبت‌های عنصری پیشنهادی (Eby 1992). [23] 

در آن‌ها مشاهده می‌شود که نسبت تستانی در Pb و نکوین آن‌ها را نشان می‌دهد [22]. این امر با ویژگی‌های گرانیتوئیدی نوع A و زیرگروه A1 که از خاستگاه پورتیک سند همخوان است، همچنین بر پیشنهاد منفی مشخصی از عناصر Ti و P در آن‌ها مشاهده می‌شود. بررسی مقدار نادر خاکی در توده‌های گرانیتوئیدی نسبت‌های میشود نشان می‌دهد که جمع‌بندی نادر خاکی در آن‌ها از ۱۹۵/۷۳ پیش‌بایم در نوسان است و با Ce/Yb نسبت‌های بالای (۲/۷۸) و (۱/۴۸) هم‌بایی نشان می‌دهد. ۰.۱۸ (EY/Eu* = ۰.۱۸) (EY/Eu* = ۰.۴۹) مشخص می‌شود.

بررسی نمودارهای عنکبوتی عناصر کمبود به‌پیشنهاد بر اساس داده‌های (Eby 1992) [23] که بر حسب کاهش ناپاساگاری مربوط شدند نشان می‌دهد که K, U, Th, Rb, Cs بی‌پیشنهادی مثبت و مشخصی از عناصر

در کنار این‌ها برای برداشته Zr تبلور توده‌های گرانیتوئیدی از پارامتر کاتیونی M استفاده گردید. بر اساس این نمودار، دیام تشکیل توده‌های گرانیتوئیدی نوع A شرق کوه‌های میشود تا درجه سانتی‌گراد برآورد می‌شود (شکل ۱۱).
توده‌های گرانیتونیدی شرق کوه‌های میشو و استان که
قلابی و اورتوکلار بر تنی بوده و فراوانی بسیار اندک بیوتیت در
کاتی شناسی این گرانیتون‌ها، این ویژگی را تأیید می‌کند (شکل
۱۴ آلیف).
بررسی نمودار منگنیس عناصر نادر خاکی به‌تجزیه بر
اساس مقاله [Sun and McDonough (1989)] و به

شکل ۱۳ موقعیت نمونه‌ها در نمودار (1983) [۲۴] برای تعیین دما ی یال تب، توده گرانیتونیدی.

شکل ۱۴ آلیف نمودار عکسکویی عناصر کمیاب و ثابت خاکی در توده‌های مورد بررسی که نسبت به گوشته‌های اولیه [۲۸] به‌تجزیه شده‌اند و

ب) نمودار عکسکویی عناصر نادر خاکی که نسبت به کندریت [۲۸] به‌تجزیه شده‌اند.
زمین‌کاوش‌یاری
بررسی‌های زمین‌شناسی سطحی در شرق کوه‌های میشو و نیز موره‌های نواحی مرزی است:
الف: توده‌های گرانیت‌نیود مورد بحث درباری بریتومهای قوارائی از سبک‌های مافیک-کاندینان این بریتومهای مافیک و اولترافاماکی میشو و است، و به‌اختصار زیاد
ب: توده‌های گرانیت‌نیودی A کوه‌های میشو و موره، شهرت‌های قبیلی‌تر از گروه‌ها، و با رویاهای بی‌پیش‌رونده
بررسی‌های زمین‌شناسی دنیشی بر این موضوع نوید نشان دهند.

Nb-Y
A
Th/Ta-Yb

A-type
Garanitnoidi
Shirq...
شکل ۱۵ تعبین موقعیت زمین‌ساختی توده‌های مورد بررسی با استفاده از نمودار (Schandle and Gorton ۲۰۰۲).

شکل ۱۶ تعبین چایگاه زمین‌ساختی توده‌های مورد بررسی با استفاده از نمودارهاي (Pearce et al. ۱۹۸۴ و Pearce ۱۹۹۶).
برخوردها و حاشیه‌های فعال قاره‌ای و در اثر بالاردگی پس از برخورد جایگزینی کردند.


[5] موریس م.، رضایی‌نامی‌یابی کلی، تبریزی در تاریخ بی‌پوسته ایران، مجموعه مقالات اولین کنفرانس بین‌المللی مخاطرات زمین، بیلی‌سی، طبیعی و راه‌های مقابله با آنها، دانشگاه تبریز (1384) ص 96.

برداشت
1- تودهایی که در دامنه‌های میکروسکوپ‌های مصری ترکیب‌یابی کرده‌اند گستره‌های عظیم‌تری از توانمندی‌های تا کوانتومتیکی قابلیتی نشان می‌دهد و وجود تفاوت‌های گرائنوفری بر اثر آن‌ها حاکی از جایگزینی آن‌ها در عمق کم است.
2- این تودها به‌طور جزئی با نوع A و بزرگ‌تری از آن وابسته‌ای به جزئیات منفی‌های کمرنگ‌تر نشون می‌دهند.
3- هنگامی هنگامی متثنی Eu و نیز پی‌هنجاری مثبت و مشخصی از عناصر LREE و LILE در این تودها به جز در آن‌ها می‌تواند مشخص باشد.
4- این تودها در دامنه بین 100 تا 850 درجه سانتی‌گراد ممکن است.
5- تعیین سن نسبی به روش U-Pb (SHRIMP) بر روی ZblenCTآی‌ها موجود در این تودها سن 34 ± 0 میلیون سال را داشته است که با شواهد مرحله‌های همکاری دارد.
6- این تودها پی از یک دوره‌ی گرایش شدیدگی گرم و گرانی‌سی ناشی از فرآیندهای پیوندی‌های ایجاد گرایش باروت‌های تبادلی اسلوادیون و برخورد قاره‌ای – قاره در فاز هرستین و در یک محیط پسا
[37] Pearce J.A., "Role of subcontinental lithosphere in magma genesis at active continental margins" in: Howkwsworth, C.J., and Norry, M.J.,