بررسی‌های کانی‌شناسی، زمین‌شناسی و پی‌دایشی کانسربیک پوکسیت کارستی جاجرم، شمال شرق ایران

الامینی، جلال‌حسین شمعانیان، مصطفی رقیمی، رضا جعفرزاده

1- گروه زمین‌شناسی دانشگاه علوم دانشگاه کالجتا
2- شرکت الومینیوم‌های ایران (مجتمع پوکسیت جاجرم)

(درباره مقاله: 1389/08/30، نسخه نهایی: 1391/02/30)

چکیده: کانسربیک پوکسیت جاجرم که در 175 کیلومتر جنوب غربی جنوب دارای، بخشی از کمربند پوکسیت کارستی ایران- هیمالیا محصور می‌شود. این کانسربیک به شکل یک افق چینه‌سان بین دولومیت‌های ترابس و شیل و ماسه سنگ‌های زوراییک شکلی شده است. دیروز زیرین این افق بیشتر موجب بهبود و پوکسیت حفره‌های دولومیت‌های فردوبیوز را پر کرده است، در حالی که روز بالایی آن با شیل و ماسه سنگ‌های فردوبیوز همسر اس است. بررسی‌های گفتگویی، نظر اکثر تحقیق‌گران و رای بیشتر پوکسیت‌ها نشان می‌دهد. دیسپرسیون، کمپرسیون، شعاع‌های حامل، گوپن، کانی‌های رسی، انترپورم، کانارینیت، کرداکیت، سپریت، کرودریت و سپریت در پارازن کانسربیک شناسایی شده‌اند. این کانی‌ها طی سه مرحله هوازدگی، دیازنتیک و ایزوتیک تشكیل شده است. تلقیق داده‌های کانی، شناسی و زمین‌شناسی نشان می‌دهد که این کانسربیک طی دو مرحله کلی تشکیل شده است. در مرحله اول، مواد پوکسیتی، اکسیدهای Fe و Ti و کانی‌های رسی بر اثر فرایندهای پوکسیتی شده در حال آنی از بازالت‌های قلبی تشکیل شده‌اند. در مرحله دوم، این مواد به حفره‌های کارستی انتقال یافته و با بهشت خود کپک پوکسیتی نسبتاً ضخیم را ایجاد کرده است.

واژه‌های کلیدی: پوکسیت کارستی، دیسپرسیون پوکسیتی، سپریت، نوری‌برخ، جاجرم

مقدمه
کانسربیک‌های پوکسیتی، کانسربیک‌های پوراندازی‌های متعددی که در شرایط سطحی قرار دارند، به دو و هوا، و مرطوب بر اثر فردوبیوز شعلی‌دار ساخته می‌شوند. در تشكیل این کانسربیک‌ها، عامل قلیل، کامی‌سنگ‌های سنگ‌سنگ‌زاری‌های Course، Fe، و Fe اکسیدهای Fe، و Ti و کانی‌های رسی بر اثر فرایندهای پوکسیتی شده در حال آنی از بازالت‌های قلبی تشکیل شده‌اند. در مرحله دوم، این مواد به حفره‌های کارستی انتقال یافته و با بهشت خود کپک پوکسیتی نسبتاً ضخیم را ایجاد کرده است.

نخستین بخش مطالعه، دیسپرسیون پوکسیتی در جاجرم یافته شد. در سه مرحله هوازدگی، دیازنتیک و ایزوتیک تشكیل شده است. تلقیق داده‌های کانی، شناسی و زمین‌شناسی نشان می‌دهد که این کانسربیک طی دو مرحله کلی تشکیل شده است. در مرحله اول، مواد پوکسیتی، اکسیدهای Fe و Ti و کانی‌های رسی بر اثر فرایندهای پوکسیتی شده در حال آنی از بازالت‌های قلبی تشکیل شده‌اند. در مرحله دوم، این مواد به حفره‌های کارستی انتقال یافته و با بهشت خود کپک پوکسیتی نسبتاً ضخیم را ایجاد کرده است.
شکل ۱ نقشه زمین‌شناسی کانسار بوکسیت جاجرم. نقشه زمین‌شناسی پایه از [۲۰] گسترده مورد بررسی با مربع تخالی در نقشه ایران مشخص شده است.
پیشروی دريا در دوران دوم است [۱۲] در منطقه ی مورد بررسی، این سازند با سنگهای کربناتی ساندن الیکا پوشیده شده است که بخش زیرین آن از دلومیت، مارن و شیل با سنتیاژ زیرین و بخش بالاتنه از لایه‌های ضخیم دلومیت و دلومیت آهکی با سن احتمالی تراسای میانی تشکیل شده است [۱۸] در تراسای فوقانی، روباده‌های کشی که پس از زمین‌سازی ساختنی پیشین رخ داده است باعث تشکیل گذشته‌های بزالتی قلبی‌ای شده است [۲۲],[۲۳] و از سوی دیگر ایجاد شرايط قارئای در این زمان، شرايط تشکیل افقهای بوسیطی را فراهم کرده است [۲۳]. در منطقه‌ی مورد بررسی، این افق بوسیطی که به عنوان افق B موسوم است، در جغرافیای کارستی ساندن الیکا تظاهر دارد و با شیل و ماسه سنگهای ساندن شمشک با سن زوراسیک تحت‌توسط پوشیده شده است (شکل ۲).

زیپس‌های واپس‌ده به ساندن پادها با سن دوئین زیرین است [۲۱] (شکل ۲). روی این ساندن، تناوبی از سنگهای دلومیت، شیل، سنگ‌سنگ و سنگهای آنتشفنیایی بارز باشد. ساندن خوش‌پیلا با سن دوئین قرار دارد که با سنگهای کربناتی ساندن مبارک با سن کربونیفیر پوشیده است. پس از دریا در بیابان کربنیفیری به وجود آمده، شرايط مناسب برای گسترش فرايندهای بوسیطی پدیدار می‌باشد در فاصله زمانی بین پرمیتا تراسای زیرین فراهم اند و موجب تشکیل اولین افق بوسیطی به نام افق A در منطقه‌ی شده است [۱۵]. این افق روی سنگ‌های کربناتی ساندن مبارک در دو زیر‌ساخت و کربنات‌های ساندن سرخ‌شيل با سن تراسای پایین قرار دارد [۲۲] نسبت به کربنات‌های ساندن سرخ‌شيل پانگک محيط رسوبگذاری ساحلي تا کم عمق بوده و نشان دهنده اولین

شکل ۲ دنبالهای چینشناشی شماتیک واحد‌های سنگ‌چینهای موجود در منطقه‌ی جاجر (چپ). افق بوسیطی B واقع در بخش غلیبی، این نمک‌ها کمی از نمک‌های مورد بررسی در این پژوهش است [۲۰].
بنابراین سازندگان دلیچه و لاشه ترتیب با یک زوآراسکی میلای و زوآراسکی فوتوای نیز سازند شمشک قرار گرفته و با یک سنجشی کرمانی کرمانی که در بخش گردن‌ها از بال شمایی تا هر رخنام مانند پوشیده شده است.

مشخصات ماده معدنی
ماده معدنی در کارگاه بوفکیت جام‌شمال دو افق بوفکیت A و B است. افق A، به‌ویژه بوفکیت شیلی با شحات متوسط 5 متراً است که به‌سازگی کرمانی‌ها مبارک و شیلی و در‌سفرات های سازند سری‌کلی در روز دارد (شکل 2) و یک امر از اقتصادی است. افق B، با روند عمومی سرخ‌شیری که در منطقه‌ی به‌پایه‌ای 16 کیلومتر و با شحات 10 متراً به‌صورت وده‌های معمول در فرآیندهای کارسیتی سازندی‌ها تشکیل شده است.

جدول 1: تناوب‌های کانی‌شناسی برفش برخی پتو ایکس (XRD) روی نمونه‌های مورد بررسی در کارهای بوفکیت جام‌شمال

<table>
<thead>
<tr>
<th>شماره نمونه و یا سکس شناسی</th>
<th>کانی‌های فرعي</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>کولوئینیت بالابی</td>
</tr>
<tr>
<td>M-2</td>
<td>پوکسکت سفید</td>
</tr>
<tr>
<td>M-3</td>
<td>پوکسکت خاکستری</td>
</tr>
<tr>
<td>M-4</td>
<td>پوکسکت شاموئینی</td>
</tr>
<tr>
<td>M-5</td>
<td>پوکسکت سفید</td>
</tr>
<tr>
<td>M-6</td>
<td>پوشکت دیسپور</td>
</tr>
<tr>
<td>M-7</td>
<td>پوشکت دیسپور</td>
</tr>
<tr>
<td>M-8</td>
<td>پوشکت دیسپور</td>
</tr>
</tbody>
</table>

روش بررسی
بررسی‌های انجام شده در این پژوهش شامل دو بخش صنایع و آزمایشگاهی است. در بخش‌های صنایعی، با انتخاب چهار نیمی از کانی‌شناسی در بخش‌های ریز و گلیتی، تغییرات افزایشی در کانی‌شناسی و خصوصیات عصبی بوفکیت و چگونگی ارتباط به‌شکل‌ها با سنگ‌های سست و پوشش، مورد بررسی قرار گرفت. به‌این منظور، تعداد 30 نمونه از به‌شکل‌ها مختلف کانسک بوفکیت در طول چهار نیمی انجام شده و بر بین‌ات بطریت‌های بافتی کانی‌شناسی و رنگ و کیفیت احیائی، به‌ان این، به‌منظور بررسی‌های زمین‌شناسی‌ای، تعداد 22 نمونه از همین نقطه روش انتخابی جمع‌آوری شدند. علاوه بر این، به‌منظور بررسی‌های زمین‌شناسی‌ای، تعداد 18 نمونه از همین نقطه برای انتخابی جمع‌آوری شدند. بررسی‌های آزمایشگاهی شامل سنگ‌کاری، کانی‌شناسی و تجزیه شیمیایی است. بررسی‌های بافتی و کانی‌شناسی به‌روش مزوم میکروسکوپی روش مقاطع نازک و صفحه‌ای انجام شدند. ترکیب کانی‌شناسی نمونه‌های مورد بررسی برای کره پتو ایکس (XRD) و ترکیب شیمیایی نمونه‌ها به‌روش فلوروسانس پترو (XRF) ایکس در آزمایشگاه تحقیقاتی معدن بوفکیت جام‌شمال تغییرات شدن که نتیجه‌ای در تاریخ‌های 1 و 3 آوردند شدند.
جدول ۲: نتایج تجزیه پیوندی و اکسیدهای (XRF) در نمونه‌های مورد مطالعه در کانی‌ها بینکست جاجرم (مقدار کسیده‌ای)

<table>
<thead>
<tr>
<th>عناصر</th>
<th>پپم</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO</td>
<td>813</td>
<td>615</td>
<td>691</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
</tr>
<tr>
<td>SiO</td>
<td>342</td>
</tr>
<tr>
<td>CaO</td>
<td>120</td>
</tr>
<tr>
<td>MgO</td>
<td>20</td>
</tr>
<tr>
<td>FeO</td>
<td>813</td>
<td>615</td>
<td>691</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
<td>692</td>
</tr>
<tr>
<td>SiO</td>
<td>342</td>
</tr>
<tr>
<td>CaO</td>
<td>120</td>
</tr>
<tr>
<td>MgO</td>
<td>20</td>
</tr>
</tbody>
</table>

بحث و بررسی

مختصرات فنی

بررسی‌های پیش‌گیری و اکسیدهای مورد بررسی دارای روانی‌یابی‌های در لذا ۸۰٪ و ۱۰۰٪ می‌باشند. بنابراین، نشانه‌های کوانتیتیو، ترکیبی و آنیلیک در شاخص‌های استفاده‌پذیر از نمونه‌های مورد بررسی نشان دهنده دو اگزای جاجرم و نیز یافته‌ها نشان دهنده بروزهای باریک‌سازی بسیاری از نمونه‌های مورد بررسی نشان دهنده است که در نمونه‌های مورد بررسی شناسایی شده. بین‌گونه‌ای که در نمونه‌های مورد بررسی نشان دهنده بافت‌های ریز رانی بستگی به شفافیت شده و در این‌جا، نشانه‌های مشاهده شده، بی‌روان‌یابی در نمونه‌های باریک‌سازی بوده و با این‌که نشانه‌های جاجرم از (۴) و بررسی‌های پیش‌گیری دارد...
واحدهای کاتالوئینی بالاتر

واحد کاتالوئینی بالایی درایه ضخامت ۲۵ تا ۷۵ سانتی‌متر است. براساس بررسی‌های کاتالوئینی به‌روش XRD این واحد بیشتر از دیکورت و کاتالوئینی و به مقدار کمتر از آنان، کلسیت و هماتیت تشکیل دهنده است. براساس نتایج تجزیه شیمیایی، مقدار حداکثر آسیاب‌های SiO۲، Al۲O۳، Si۲O۵ و Al۲O۳ به ترتیب از ۳۲،۱۲۳ تا ۳۸،۱۲۳ درصد برای SiO۲ و ۳۷،۱۲۳ تا ۴۳ درصد برای Al۲O۳ تغییر می‌کند. برای تغییرات مشابه Fe۲O۳، Fe۳O۴ و تغییرات بیرونی از نمونه‌های سه‌ابن آنها و شلمن [۲۹] استفاده شد. براساس نمودار آنالیز، خاک‌های لاتریتی و بوسیتی کاتالوئینی (شکل ۱) و براساس نمودار شلمن، نوع هوازدگی لاتریتی شنی ضعیف برای این واحد تعبیر شد (شکل ۴). کاتالوئینی بالاتر و واحد کاتالوئینی سخت‌کن از [۱۸] می‌تواند باینگر کاتالوئینی بالایی این واحد در نتایج سیلیس شنی دیده و این کاتالوئینی سخت دیده نشده. این واحد در مقایسه با واحد کاتالوئینی بالایی، دارای ضخامت کمتر، ترکیب شیمیایی و کانه‌گذاری‌های مختلف و فاقد کانه کریستالیت است.

مشخصات کاتالوئینی

عده‌ی بوسیتی‌های منطقه‌ی داخلی است و بر مبنای مشخصات باتی و کانه‌گذاری از دیگر باعین به واحد‌های کاتلاوئینی بالایی، بوسیتی سخت، بوسیتی شیلی و کاتالوئینی پایینی قابل تفکیک است.

شکل ۲ تصاویر میکروسکوپی از میله‌ای‌های بافت‌ها و کانه‌های مورد بررسی در کاسار بوسیتی جاجرم. (الف) بافت آوونیدی و قطعات کروی با اندازه‌های متقابل، (ب) بافت آوونیدی، (ب) بافت بریش دریغی (ت) بافت کلروفی، (ت) بافت آوونیدی (ت) قطعات کروی پلی(و) آوونیدی‌های خرد شده و اختر خاصی باتی به‌روش گرفته شده‌اند.

ب) ۲۷ آوریل ۱۳۹۷ ش.
پدیده‌ای از کاتیوشناسی، زمین‌شیمیایی و پیدایشی کانسار

دو قسمت سخت

یکی، بی‌پیش‌بینی (SiO2-Fe2O3-Al2O3) برای تعیین نوع رسوبه و ب) نمودار سنتی شلنمن [27] (SiO2-Fe2O3-Al2O3) برای تعیین نوع رسوبه و ب) نمودار سنتی شلنمن [27] (SiO2-Fe2O3-Al2O3) برای تعیین نوع رسوبه و ب) نمودار سنتی شلنمن [27] (SiO2-Fe2O3-Al2O3) برای تعیین نوع رسوبه و ب) نمودار سنتی شلنمن [27]

ph داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با حضور کانی شامویته، که در محیط‌های کم فشار با حضور کانی شامویته، که در محیط‌های کم فشار با حضور کانی شامویته، که در محیط‌های کم فشار با حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با

pH داد. حضور کانی شامویته، که در محیط‌های کم فشار با
وقتی است که با افزایش دما و فشار به روتیل تبلیغ می‌شود [1]. بررسی‌های کانال‌شناختی در این پژوهش حضور روتیل را نشان نمی‌دهد، ولی حضور آن توسط پزوهشگران قابل [14، 18، 19] شناسایی می‌شود. با توجه به عدم وجود شاخص دگرگونی در مناطقی مورد بررسی، به نظر می‌رسد روتیل بر اثر عملکرد نیروهای زمین‌ساختی و گرافیت‌های دیافرگی از آن‌ها تابش نمی‌کند.

واحد کانون‌شناختی بی‌پشتین سخت دارای بی‌پشتین مقادیر SiO$_2$ (41% درصد) است. مقادیر Fe$_2$O$_3$ و Al$_2$O$_3$ تغییر می‌کند. بر اساس نمودار آن‌ها، به استنتاج بی‌پشتین‌سازی مقادیر رنگ در گستره آلمینوم که در گستره‌های بالا قرار دارد، نمونه‌های بی‌پشتین‌سازی گرافیتی قرار می‌گیرد (شکل 4). بین نمونه‌های بدیه‌ای قرار می‌گیرد. نمونه‌های بی‌پشتین‌سازی هر دوی ساختاری دارای بی‌پشتینی قرار می‌گیرد. نمونه‌های آنالیتیک هر دوی ساختاری دارای بی‌پشتینی قرار می‌گیرد.

واحد بوکسیت‌شناختی

واحد بوکسیت‌شناختی که به رنگ‌های قرمز، قهوه‌ای و سیاه تظاهر دارد ضخامت 3 تا 5 متر است. بر اساس بررسی‌های کانال‌شناختی، به روش XRD این واحد بی‌پشتین‌سازی دارای دیگر حکمتان و گرافیت‌های دیافرگی و ذرات گردنالیتی نشان می‌دهد. نمونه‌های آنالیتیک در شكلا #4 به ترتیب نشان می‌دهد. نمونه‌های آنالیتیک در شكلا #4 به ترتیب

واحد کانون‌شناختی بی‌پشتین سخت دارای بی‌پشتین مقادیر SiO$_2$ (41% درصد) است. مقادیر Fe$_2$O$_3$ و Al$_2$O$_3$ تغییر می‌کند. بر اساس نمودار آن‌ها، به استنتاج بی‌پشتین‌سازی مقادیر رنگ در گستره آلمینوم که در گستره‌های بالا قرار دارد، نمونه‌های بی‌پشتین‌سازی گرافیتی قرار می‌گیرد (شکل 4). بین نمونه‌های بدیه‌ای قرار می‌گیرد. نمونه‌های بی‌پشتین‌سازی هر دوی ساختاری دارای بی‌پشتینی قرار می‌گیرد. نمونه‌های آنالیتیک هر دوی ساختاری دارای بی‌پشتینی قرار می‌گیرد.

واحد بوکسیت‌شناختی

واحد بوکسیت‌شناختی که به رنگ‌های قرمز، قهوه‌ای و سیاه تظاهر دارد ضخامت 3 تا 5 متر است. بر اساس بررسی‌های کانال‌شناختی، به روش XRD این واحد بی‌پشتین‌سازی دارای دیگر حکمتان و گرافیت‌های دیافرگی و ذرات گردنالیتی نشان می‌دهد. نمونه‌های آنالیتیک در شكلا #4 به ترتیب نشان می‌دهد. نمونه‌های آنالیتیک در شكلا #4 به ترتیب

واحد بوکسیت‌شناختی

واحد بوکسیت‌شناختی که به رنگ‌های قرمز، قهوه‌ای و سیاه تظاهر دارد ضخامت 3 تا 5 متر است. بر اساس بررسی‌های کانال‌شناختی، به روش XRD این واحد بی‌پشتین‌سازی دارای دیگر حکمتان و گرافیت‌های دیافرگی و ذرات گردنالیتی نشان می‌دهد. نمونه‌های آنالیتیک در شكلا #4 به ترتیب

واحد بوکسیت‌شناختی

واحد بوکسیت‌شناختی که به رنگ‌های قرمز، قهوه‌ای و سیاه تظاهر دارد ضخامت 3 تا 5 متر است. بر اساس بررسی‌های کانال‌شناختی، به روش XRD این واحد بی‌پشتین‌سازی دارای دیگر حکمتان و گرافیت‌های دیافرگی و ذرات گردنالیتی نشان می‌دهد. نمونه‌های آنالیتیک در شكلا #4 به ترتیب
مشخصات زمین‌شیمیایی
توزیع عنصر در پوکسیت‌های کارستانی به‌ویژه به‌حوزه معنی‌داری از قبل ترکیب شیمیایی سنگ‌ماد، خواص شیمیایی عنصر و مکان‌گذاری آنها در سنگ‌ماد، شرایط فیزیکی و شیمیایی محیط و فرآیندهای دیافانتیک و ایونیکی دارد [25]. گرچه در طی فرآیند پوکسیت‌سازی عنصر و سایکس با ترکیب تغییرات شیمیایی و گریزگاهی می‌باشد، ولی در صورت وجود عنصر منحرف در کاتالیزور بال‌پذیری بسیار کم ممکن است مقدار این عنصر
غشایگی یابد [1].
براساس نتایج تجزیه شیمیایی، روند تغییرات مقدار
تیتان در چهار نیم‌مرخ مورد بررسی یکسان است. بیش‌ترین
مقدار این اکسید (R /28)، این مقدار با CaO، تغییرات مقدار
تیتان‌های مورد بررسی دارای روند مشابه بوده و به-
ترکیب دارای بیش‌ترین و کمترین تغییرات در واحد پوکسیت
سخت و واحدهای کاتالیزوری هم‌بند است. این عنصر با علت
تحرک‌پذیری بالا و عدم توانایی تشکیل کاتالیزور نیازی
اعلی، از بخش باقلای نیم‌مرخ پوکسیت‌های کاتالیزوری شده و به
سانتی‌بینه‌های کردن‌الدکه که با همستخی فنی این
عنصر با CaO رکود خورد. همچنین
بررسی تغییرات مقدار
نیترات‌های نیم‌مرخ
امکن اکسید از بالا و غنی‌شدن آن در واحد پوکسیت
بیش‌ترین قابلیت کاتالیزوری پایینی است که با تشکیل کالی
کاربانیت (CaAl2(PO4)3(OH)2) می‌باشد. [27]

XRD
این گروه ترکیب‌های مکان‌سازی می‌باشد. در طی افزایش
تیتان، این عنصر از بالا و غنی‌شدن آن در واحد پوکسیت
رکود خورد و با همستخی فنی این عنصر با CaO رکود خورد.

بررسی تغییرات مقدار
نیترات‌های نیم‌مرخ
امکن اکسید از بالا و غنی‌شدن آن در واحد پوکسیت
بیش‌ترین قابلیت کاتالیزوری پایینی است که با تشکیل کالی
کاربانیت (CaAl2(PO4)3(OH)2) می‌باشد. [27]

XRD
این گروه ترکیب‌های مکان‌سازی می‌باشد. در طی افزایش
تیتان، این عنصر از بالا و غنی‌شدن آن در واحد پوکسیت
رکود خورد و با همستخی فنی این عنصر با CaO رکود خورد.

بررسی تغییرات مقدار
نیترات‌های نیم‌مرخ
امکن اکسید از بالا و غنی‌شدن آن در واحد پوکسیت
بیش‌ترین قابلیت کاتالیزوری پایینی است که با تشکیل کالی
کاربانیت (CaAl2(PO4)3(OH)2) می‌باشد. [27]

XRD
این گروه ترکیب‌های مکان‌سازی می‌باشد. در طی افزایش
تیتان، این عنصر از بالا و غنی‌شدن آن در واحد پوکسیت
رکود خورد و با همستخی فنی این عنصر با CaO رکود خورد.

بررسی تغییرات مقدار
نیترات‌های نیم‌مرخ
امکن اکسید از بالا و غنی‌شدن آن در واحد پوکسیت
بیش‌ترین قابلیت کاتالیزوری پایینی است که با تشکیل کالی
کاربانیت (CaAl2(PO4)3(OH)2) می‌باشد. [27]

XRD
این گروه ترکیب‌های مکان‌سازی می‌باشد. در طی افزایش
تیتان، این عنصر از بالا و غنی‌شدن آن در واحد پوکسیت
رکود خورد و با همستخی فنی این عنصر با CaO رکود خورد.

بررسی تغییرات مقدار
نیترات‌های نیم‌مرخ
امکن اکسید از بالا و غنی‌شدن آن در واحد پوکسیت
بیش‌ترین قابلیت کاتالیزوری پایینی است که با تشکیل کالی
کاربانیت (CaAl2(PO4)3(OH)2) می‌باشد. [27]

XRD
این گروه ترکیب‌های مکان‌سازی می‌باشد. در طی افزایش
تیتان، این عنصر از بالا و غنی‌شدن آن در واحد پوکسیت
رکود خورد و با همستخی فنی این عنصر با CaO رکود خورد.
اردشک دیاسپور فراوانی کالی بوکسیتی در منطقه ی مورد بررسی است که تشکیل آن را می‌توان به فرابنده‌های دیاژن، تنش‌های زمین‌ساختی و نسبت داد. فرابنده‌های بوکسیتزه‌ای عموماً با تشکیل کبیسیت در pH ناباید شده [41] و تولید فرابنده‌های دیاژن و دگرگونی پترنی ببینند. کالی‌های موجود در کاسار بوکسیت جاحز طی سه مرحله هوازدی، دیابتیدیک و اپیژندریک تشکیل شده است (شکل 4). براساس شاهد زمین‌ساختی و کالی‌نشانی، به نظر می‌رسد گیسیتی، اولین کالی‌بوکسیت تشکیل شده در کاسار جاحز است که یک فرابنده‌های دیاژنیک یا کالی‌نشانی رسمی، آنتاز، کورنتز، کالی‌نشانی و کالی‌بوکسیتی در محیط دریایی می‌باشد. این عناصر تشکیل شده است (شکل 4). براساس شاهد، کالی‌نشانی و کالی‌بوکسیتی تشکیل شده در کاسار جاحز است که یک فرابنده‌های دیاژنیک یا کالی‌نشانی رسمی، آنتاز، کورنتز، کالی‌نشانی و کالی‌بوکسیتی در محیط دریایی می‌باشد. بر اثر نوسانات طغیان آب به جهانه‌های کارستی سازند آب‌ها این انتقال بافت‌های است (شکل 8). وجود گلول‌های آب‌زدایی، فعَّاله بوکسیت آواری، قطعات سنگی، پلی، پیروزی‌ها و پویه‌های خرد تعدادی از شاهد کالی‌نشانی و نسبت آنها در جهانه‌های کارستی است. از طرفی، وجود گلول‌های آب‌زدایی، پیروزی‌ها، کلورومی و روش دوگانه از دلفت تاندلندی می‌باشد.

بررسی توزیع زمین‌شناسی عناصر در نیم‌های مورد بررسی نشان دهنده توزیع قلم‌های نمایش عناصر کروم، وانادیوم و نیوبیوم و فاز تغذیه مقدار عناصر نادر کالی و فسفر از بالا به پایین
نهاشت برخی‌ی بیشترین‌ها مورد بررسی است. شرایط احیای و اکسیدی در این محیط ساحلی به‌طور یپسون در حال نوسان بوده‌که با شاموزیت، وجود بی‌پروتیده‌ها و اوتندی‌های با تاربندی طرف و متشکل از کالی‌های همایی، دیاسپور و پیریت مشخص می‌شود.

<table>
<thead>
<tr>
<th>کالی‌ها</th>
<th>مرحله‌های دیژنیک</th>
<th>مرحله‌های دیژنیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>کالی‌های رسی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کیبسیت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پوهیت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیاسپور</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاموزیت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>آهنایز</td>
<td></td>
<td></td>
</tr>
<tr>
<td>هیمالیت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کوئینت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کانی‌سنگی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کارآلاتیت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کوارتز</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پیریت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پیرونیت</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۶ مرحله‌های پیشنهادی برای شکل گیری کالی‌های موجود در کانسی بکسیت جاهم.

شکل ۷ نمودار تغییرات مقدار فلزات در برای Cr به‌این‌گونه‌ی نشسته‌های بکسیتی نسبت به سنگ‌های خاستگاه‌های مختلف افت‌بکس از [۴۱] داده.

های واپسنا به نمونه‌های مورد بررسی (لوئی توپ) بریتگر گه‌که بسی‌رین می‌توانست با سنگ‌های خاستگاه‌ها بازالتی رفرگن‌های است.

مجله پژوهشی میانه‌شناسی، زمین‌شناسی و پیاده‌سازی کانسیلون

جلد 19، شماره 2، پاییز 1390

تاریخ دریافت: 16 ژوئیه 1390
تاریخ پذیرش: 5 اسفند 1390

پژوهش‌های کانسیلون، زمین‌شناسی و پیاده‌سازی کانسیلون

جرم (شمال خاوری ایران)، فصلنامه علوم زمین، شماره ۲۲ (۱۳۸۵) ص ۲۳-۳۲.

[۱۹] آبانی ع.، زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنی کشور (۱۳۸۴) ص ۵۶۸.

[۲۰] Aftab ۱. سهیلی، م.، ویکه زمین‌شناسی کوه‌های خاور ناحیه، مدل‌سازی و تکثیریکی کالسکا بوسکت جارج، منشأ نشده (۱۳۷۵) ص ۲۶.

[۲۱] Aftab ع.، زمین‌شناسی کوه‌های خاور ناحیه، طرح تدوین کتاب زمین‌شناسی ایران، شماره ۱۱ خرداد، (۱۳۷۵) ص ۱۳۷۵.

[۲۵] Kalkarjy ع.، عظیمی ع.، مدولین م.، نگهداری و نگهداری یافته کالسکا بوسکت، سیمپریاس در قبی غرب منطقه واقع، در فرهنگ نویسی، ایران، نشر دانشگاه تربیت معلم، جلد ۵، شماره ۱۳۸۶ (۱۳۷۵) ص ۳۲۸-۳۸۴.

[۳۳] کاسپکوف ک، برد. 1367 ه، م. مینه‌شناسی، ترجمه شده توسط مر. م.، مدیری س، انتشارات دانشگاه شیراز. (۱۳۷۸) ص ۸۸.

[۳۴] کاریاکات اکتشاف وارد معاون و فضای، طرح تجهیز معدن و احداث کارخانه تولید آلومینیوم. منشأ نشده (۱۳۷۶) ص ۴۳.

[۳۵] شرکت آلومینیوم ایران، معرفی مجمع آلومینیوم جاپامگ، مجله نظام معدنی، شماره ۱۲۸ (۱۳۸۸) ص ۳۶-۴۶.

[۳۶] جعفرزاده ر.، "بررسی کانسیلون بوسکت جاق، رساله کارشناسی ارشد زمین‌شناسی دانشگاه علوم شیراز (۱۳۷۹) ص ۱۵۶.

[۳۷] زبری پژوهشی کانسیلون بوسکت جاحرم و تربیتی م.، "بررسی پژوهشی کانسیلون بوسکت جاپامگ با تربیتی و بر فرض ها و محدودیت‌ها در کاربرد صنعتی، رساله کارشناسی ارشد زمین‌شناسی اقتصادی دانشگاه علوم دانشگاه فردوسی مشهد (۱۳۸۰) ص ۱۳۶.

[۳۸] مولانا ج.، "شریعتیان علار، ویژگی‌های زمین‌شناسی و اکتشافی بوسکت جاپامگ (جبه‌گیر خراسان شمال)، شماره ۵۸، فصلنامه علوم زمین، شماره ۲۸۸ (۱۳۶۴) ص ۸۶-۹۹.

[۳۹] اسماعیلی د.، امینی فضل، "زمره‌شناسی عناصر خاک‌کوبی 1 (REЕ) در کانسیلون بوسکت (۱۳۸۸) ص ۴۳-۵۸.

[malt] ۱۳۸۸ ن. ص: ۴۳-۵۸