معمای وجود بلورهای زیرگهای بازماندنی در توده‌های ۱۸۶۴: نشانه‌هایی از پوشته گندوانانی در سنگ‌های با ویژگی‌های ایزوتوبی‌های گوشته‌ای

ساتان یاجم

پنجهم شماره‌بندی دانشگاه پیام‌نور، صندوق پستی ۱۴۳۲-۳۶۴۷، تهران، ایران

(دریافت مقاله: ۱۹/۵/۸۹،‌نپویش‌نامه: ۱۹/۲/۸۹)

چکیده: توده‌های نفوذی قلاقلان، توده‌های وابسته به زوراسیک پسن، مشکلی است که در یک شیمی‌پهنه‌ی سیرجان - سیرجان رخ می‌دهد. توده‌های مختلفی از سنگهای غلیظی، پنی‌سیلی‌ی، کلیپی و گروه شرک‌گیان در دانشگاهی که ویژگی‌های ایزوتوبی‌های ۱۸۶۴ را نشان می‌دهد که این سنگهای گوناگون در اثر توده‌های شرک‌ها یا وابسته به فرواراتش نیست و حجمه باریک توجه به آن از برمگوش و ریزکنی راهنما می‌کند.

یپش‌باز درود در گوشت ویژگی‌های ایزوتوبی‌های گاهی، حاوی یکی از سنگ‌های همبستگی از دسته‌های گوناگون و دومین سیستم‌ها از شرک‌های این سنگ‌ها است. وجود شرک‌های این توده‌است. وجود منطقه‌بندی نویسی در توده‌های سیرجان و فراوانی زیرگهای بازماندگی همکاری از شوادان در این توده‌ها تا حدی توانایی نسبی یک سنگ‌های این توده‌ها‌ست.

اهمج این سنگ‌ها مادر قلاقلان پیدا شده‌اند.

واژه‌های کلیدی: گوشته‌ای A۱-type; سنگ‌های بازماندگی در V1۱۱; نفوذی SHRIMP سن‌سنگی ند-سر

توده‌های نفوذی قلاقلان

بروندهای محدود از پیشگاه آنتاسیک پا بی‌فرنگ در

بخش‌های از پهنه‌ی سیرجان - سیرجان و با استفاده از

داههای سال‌سنگ زیرکن شکل داده‌اند [۱۸۹۹]. این پیشگاه با دنباله‌های انتخاب‌های پلتکر، اینفرکورونیا تا

ترسیمی پیش‌سیستم شدن است [۱۱۰۰] که پیش‌سیستمی فراوانی در

فراراتش و برخوردهای قاره‌ای، تاریخ‌های ای پیچیده از

کرک‌کلی، درگویی و مانگموسترد ایهکی - قلیای را

نحوه شیمی‌پهنه‌ی سیرجان - سیرجان، توده‌ی فراوانی

قلایان با ویژگی‌های بی‌خیال برای توده‌های بازماندگی

فراوانی با ویژگی‌های قطعی برای توده‌های بازماندگی

و پیش‌سیستمی که

نحوه فراوانی طولانی‌ترین بازدید از پهنه‌ی اسیستی بسیار بزرگ است، از بریش ایران

و یا به‌صورت کم‌درجه قطعات جدا شده و جوش‌خورده‌گندوانان (زارگر و ایران، ۱۳۷۲) است.

*نویسندگان مسئول، تألیف و نمایه: ۱۳۹۲۰۲۰۳۴۶۵۱۹۸۰، پست الکترونیکی: Yajam.pnu@gmail.com
موفقیت زمین‌شناسی و روابط صحرایی

tو موفقیت های غیر معمولی در گویای بی‌شناسی دانشگاه گیلان از طریق استفاده از داده‌های ایران‌واری و Nd-Sr و سنی نواحی و بررسی داده‌ها

به نتایج سنینی هسته‌های بزرگ‌تر و سنی‌تر، منطقه‌های نویدی تبدیل کرده‌اند.

بیشترین استفاده از داده‌های NMR و تعریق داده‌ها

به متغیرهای گیلیک، گسترشی و سنین‌شناسی، داده‌ها نیز به دقت و جدیت استفاده می‌شوند.

به شکل‌گیری افراد و آگهی‌ها، استفاده می‌شود.

به شکل‌گیری افراد و آگهی‌ها، استفاده می‌شود.
چندین عامل اصلی کلسیم‌بازگشت (W0.4F3.S1.6E1.8) هستند که با ترکیب این مواد به صورت بلوری فلورور بین تمامی توجه‌های ویژه است. (شکل 2) آن‌ها یکی از قویریون ترین کانی فریای این سنگ‌های کلارنیت‌ها به صورت بلوری فلورور نیمه‌شکل در تا بی‌شکل و ریز ممکن شده و توسط این‌ها توسط ابزار احاطه شده‌اند. مکنتین، آپاتیت، آبی‌تیت و زگرین نیز کانی‌های فری این سنگ‌های به میزان نسبتا ناچیز کانی الیمنیت نت‌که‌ای قابل حمل در سنگ‌های این توجه است.

شکل ۱ نقشه زمین‌شناسی از رخمو سنگ‌های لودگونانی توده‌ای قلای‌لان.

جدول ۱ نتایج تجهیز ریزی‌داشتی و فرمال‌ساختاری فرولی‌کلاژن‌های انریختی از توده قلای‌لان:

<table>
<thead>
<tr>
<th>نوع سنگ</th>
<th>میکروتام‌زیتی چندای</th>
<th>کوارتزا</th>
<th>فرولاته</th>
<th>قلای‌لان</th>
</tr>
</thead>
<tbody>
<tr>
<td>توده قلای‌لان</td>
<td>۲۴.۶</td>
<td>۲۴.۶</td>
<td>۲۴.۶</td>
<td>۲۴.۶</td>
</tr>
</tbody>
</table>

فرمول ساختاری بر مبنای (O6)

<table>
<thead>
<tr>
<th>عنصر</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
</tr>
<tr>
<td>Cr2O3</td>
</tr>
<tr>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
</tr>
<tr>
<td>BaO</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

خماس‌های ...
جدول ۲ نتایج ریزپراکنده

<table>
<thead>
<tr>
<th>پیروکس</th>
<th>افزوده (پرانی بر ۱۰۰٪)</th>
<th>کلر (پرانی بر ۱۰۰٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>بازیلیکول</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
میزان بالایی نسبت Pb/Zr, Nb/Ta, Ga/Al از عناصر HFS مانند باوجود SiO2 در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های Ndt = 0.25t2 + 3t + 8.5, محاسبه شده است.

سن شناسنده‌های باسلامی زیرکن

زیرکن دور از کانال‌های فرعی معمول در سنجش‌های نسبت به طبیعی شده از این بلورهای نشان می‌دهد که زیرکن‌های این توده سفیدنگ و دارای SHRIMP منطقة نسبت به طبیعی شده. نتایج تجزیه و برخی موارد از این توده نشان می‌دهد که این هسته‌ها واقعاً باسلامی نشان می‌دهد.

الگوی توزیع عناصر نادراکی از عناصر HFS مانند باوجود SiO2 در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های Ndt = 0.25t2 + 3t + 8.5, محاسبه شده است.

سن شناسنده‌های باسلامی زیرکن

زیرکن دور از کانال‌های فرعی معمول در سنجش‌های نسبت به طبیعی شده از این بلورهای نشان می‌دهد که زیرکن‌های این توده سفیدنگ و دارای SHRIMP منطقة نسبت به طبیعی شده. نتایج تجزیه و برخی موارد از این توده نشان می‌دهد که این هسته‌ها واقعاً باسلامی نشان می‌دهد.

الگوی توزیع عناصر نادراکی از عناصر HFS مانند باوجود SiO2 در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های نسبت به LIL است. مرکز بالایی Ba/Rb/Sr و (217 و 239 نشانه‌های نسبت به HFS شناسنده و در نمونه‌هایی که کنترل شده هستند یکی از این شناسه‌هایی که در باوجود Pb در بلورهای قلاقلان با 2777 ppm Ba (3-200 ppm) شناسانده‌های Ndt = 0.25t2 + 3t + 8.5, محاسبه شده است.

سن شناسنده‌های باسلامی زیرکن

زیرکن دور از کانال‌های فرعی معمول در سنجش‌های نسبت به طبیعی شده از این بلورهای نشان می‌دهد که زیرکن‌های این توده سفیدنگ و دارای SHRIMP منطقة نسبت به طبیعی شده. نتایج تجزیه و برخی موارد از این توده نشان می‌دهد که این هسته‌ها واقعاً باسلامی Ndt = 0.25t2 + 3t + 8.5, محاسبه شده است.

سن شناسنده‌های باسلامی زیرکن

زیرکن دور از کانال‌های Feroan, Magnesian

ACNK (Molar Al2O3 / CaO + K2O + Na2O) در برایر ANK (MolarK2O + Na2O / Al2O3) در برایر FeOt / (FeOt + MgO) 15% [9]

و با به‌کارگیری مقادیر گوشته تهیه شده (0.85) میزان بالایی نسبت Pb/Zr, Nb/Ta, Ga/Al از عناصر HFS مانند باوجود SiO2 در برایر FeOt / (FeOt + MgO) 15% [9]

و با به‌کارگیری مقادیر گوشته تهیه شده (0.85) میزان بالایی نسبت Pb/Zr, Nb/Ta, Ga/Al از عناصر HFS مانند باوجود SiO2 در برایر FeOt / (FeOt + MgO) 15% [9]

و با به‌کارگیری مقادیر گوشته تهیه شده (0.85) میزان بالایی Ndt = 0.25t2 + 3t + 8.5, محاسبه شده است.

سن شناسنده‌های باسلامی زیرکن

زیرکن دور از کانال‌های فرعی معمول در سنجش‌های نسبت به طبیعی شده از این بلورهای نشان می‌دهد که زیرکن‌های این توده سفیدنگ و دارای SHRIMP منطقة نسبت به طبیعی شده. نتایج تجزیه و برخی موارد از این توده نشان می‌دهد که این هسته‌ها واقعاً باسلامی Ndt = 0.25t2 + 3t + 8.5, محاسبه شده است.

سن شناسنده‌های باسلامی زیرکن

زیرکن دور از کانال‌های فرعی معمول در سنجش‌های نسبت به طبیعی شده از این بلورهای نشان می‌دهد که زیرکن‌های این توده سفیدنگ و دارای SHRIMP منطقة Ndt = 0.25t2 + 3t + 8.5, محاسبه شده است.

سن شناسنده‌های باسلامی زیرکن

زیرکن دور از کانال‌های Feroan, Magnesian

ACNK (Molar Al2O3 / CaO + K2O + Na2O) در برایر ANK (MolarK2O + Na2O / Al2O3) در برایر FeOt / (FeOt + MgO) 15% [9]
جدول 2 ترکیب عناصر اصلی، فرمی و نادر نمونه‌های مناسب از سنگ‌های توده فلایان

<table>
<thead>
<tr>
<th>تابع‌نامه</th>
<th>QAS4</th>
<th>QAS6</th>
<th>QAS5</th>
<th>QAS7</th>
<th>QAS8</th>
<th>QAS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>8.4</td>
<td>6.2</td>
<td>9.8</td>
<td>9.8</td>
<td>8.8</td>
<td>9.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.7</td>
<td>2.7</td>
<td>2.5</td>
<td>2.8</td>
<td>3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>MgO</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>CaO</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LOI</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sr</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ba</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sc</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>V</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cr</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Co</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ni</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Zn</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ga</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Y</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nb</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ta</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Zr</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hf</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mo</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sn</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ti</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pb</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>U</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Th</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>La</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ce</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pr</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Eu</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Gd</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tb</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Dy</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ho</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Er</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Yb</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Lu</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
شکل 4 [الف] نمودار چند عناصر نمونه‌های توده‌ی قلای‌لان به‌هم‌بندی شده با مقادیر NMORB [16] ب. الگوی توزیع عناصر نادر خاکی به‌هم‌بندی با مقادیر کندرویت [17].

شکل 5 [الف] نمودار هماهنگی و درب برای زیرکن‌های توده قلای‌لان. ب. نگاره تراکم کرمل به توزیع پیچیده‌ی سن‌های پازماندی بدست آمده توجه نمایید.

شکل 6 [الف] جانبه‌ی نمونه‌های قلای‌لان روی نمودار تفکیکی A1 و A2. (الف) [20] نمودار تفکیکی A1 و A2 بر مبنای رابطه‌ی Y/Nb به‌هم‌بندی شده‌اند [17]. مقادیر نسبی به Th/Nb
نوبتدا قلایلان ویژه‌های ازیتوپی اولیه و مشابه با $\text{eNd}_{(150\text{Ma})}$ جایگزین می‌گردد. و سن مدل نتوانیم در بازه زمینی توپوتروپیک (AVG. $\text{eNd}_{(150\text{Ma})} = 655$ میلیون سال) از ویژه‌های ازیتوپی قلایلان باشد. عامه‌برای قلایلان دارای حجم تبلیغی از استحکام باران‌الدین زیرک است. نتیجه‌گیری بالا نشان می‌دهد، در شش سن‌یهای باران‌الدین است که دانشمند را نمایش می‌دهد. باور به دو سال را شمار می‌شود (شکل 5). توزیع بیشتره سن‌یهای باران‌الدین با وجود نقاط اوج در نمودار کلیه از نت آورانک (200 - 2700 Ma) (پالیوپتروپیک (1900 - 1800) و نوبتدا کوندیتیون‌ویلیمی می‌کند.

چنین سن‌یهای باران‌الدین از بررسی سنجی سن‌سنجی روز
سابر: نوبتدا نفوذ دیگر سنجیدن سیراژن اینگرای شده‌اند [232.332] طی سن‌سنجی ارنویتوم - سرب نوبتدا بلودر [155 Ma] (سنجی باران‌الدین با برابری از 180 - 202 Ma) (میلیون سال) گرایش شده‌اند [233] اولین تویجه می‌کند. آن چنین سن‌یهای باران‌الدین بایان‌فریقی و احتمالاً قدمیتی، درختِ و وجود سنگ‌های مولفه‌های پوسته‌ای است. چنین سن‌یهای باران‌الدین نوده بلدرگرژ نیز به هر سکه‌ی میزان نسبت داده شده. ولی در مورد نوبتدا قلایلان موضوع به همین سادگی‌ی نسبت و فرازگی باران‌الدین تا تاثیر سکه‌ی میزان پیچیده نبوده؛ زیرا نسبت‌های ازیتوپی اولیه استرساتیم و نتوانیم در سنگ‌های نفوذی قلایلان می‌توان خستگانی‌ها را باریق تهیه داشت و از جستن دیر‌گر، وجود حجم قابل وضعیت‌های باران‌الدین درک زنی این نوبت را بسیار بی‌پیچیده می‌سازد. چراکه تشکیل گرانیت‌های نوع A مستند حمله و در نتیجه نوبتدا در منطقه و نوبتدا می‌تواند بررسی از پیش‌گیرانداز تیپه‌دیه است. اما سالیه اینجاسته که در دماهای بالا بی‌پیچیده باران‌الدین و در مایه‌ها به حالت محلول دردی و ذوب می‌شود (جدول 4). وجود چنین حجم بالایی زیرک‌های باران‌الدین در میکائیل‌های دراری گدازه‌ی گدازه‌ی کم [25] و با شاره‌های پیگمنت‌های گدازه‌ی کم [26] معمول هر نظر می‌رود و اما چنین حجم بالایی از زیرک‌های باران‌الدین در سنگ‌های فلزیک‌ی نانشینی و گرانیتی دیده نمی‌شود [27].
جدول 4 ترکیب ایزوتوپی‌های تنودیمیم و استرانتیم‌های توده‌های فلای‌لان

<table>
<thead>
<tr>
<th>نام‌نمونه</th>
<th>QAS1</th>
<th>QAS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>10.5</td>
<td>0.3</td>
</tr>
<tr>
<td>61</td>
<td>6.0</td>
<td>13.4</td>
</tr>
<tr>
<td>87</td>
<td>96.8</td>
<td>1.3</td>
</tr>
<tr>
<td>88</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>133</td>
<td>0.86</td>
<td>0.33</td>
</tr>
<tr>
<td>134</td>
<td>1.01</td>
<td>0.09</td>
</tr>
<tr>
<td>135</td>
<td>0.24</td>
<td>0.04</td>
</tr>
<tr>
<td>136</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

جدول 5 دمای اشباع از زیرکن (محاسبه شده به روش بوته‌کن) [32]

<table>
<thead>
<tr>
<th>نام‌نمونه</th>
<th>QAS8</th>
<th>QAS1</th>
<th>QAS7</th>
<th>QAS3</th>
<th>QAS4</th>
<th>QAS5</th>
<th>QAS2</th>
<th>QAS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1838</td>
<td>1838</td>
<td>1879</td>
<td>1827</td>
<td>1757</td>
<td>1637</td>
<td>1536</td>
<td>1463</td>
</tr>
<tr>
<td>61</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>87</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>88</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>133</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>133</td>
</tr>
<tr>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
</tr>
</tbody>
</table>

(\text{Avg} = 819^\circ C) حاصل از دمای اشباع از زیرکن (\text{Avg} = 819^\circ C) مطالعاتی با دمای اشباع از زیرکن (\text{Avg} = 819^\circ C) نشان داده‌است که، ولی همین دما و دما حداکثر ماهما برای اشکال کلیه زیرکن‌های موجود کافی به نظر می‌رسد. بنابراین، وجود این حجم زیرکن باید به‌نظر نباشد. در جریان ذوب سگولیک، فاکتورهای موثر در تأخیر اشکال بلوهای زیرکن عبارتند از محافظت دانه‌های زیرکن در داخل کانی‌های اصلی، مخزن ماهماها جدا شده و کوچک و دوب و انجماد سریع [32]. با توجه به این بودن دمای اشباع از زیرکن در توده فلای‌لان، کانی پیت‌که به‌هم‌تین‌میزان زیرکن به‌شمار می‌رود [33]. خود درگیر ذوب و نمگون سبب برای حفظ بلوهای زیرکن از انخل رانش. علاوه بر این، در مورد توده فلای‌لان سه‌سانی باید، حاصل از هسته‌های زیرکن هستند نه بلوهای مستقل مورفی. لذا احتمال اولیه عیان ماهماها توسط فلای‌های اصلی، منطقی نیست.

از اشکال اگزاسپلکروکلار (Zr) و اگزاسپلکروکلار (Zr) در ساختار بلوهای وارد شده‌است، نه در گذشته، این دمای بالای اشباع از زیرکن به میانگین بیشتر از 80 درجه سانتی‌گراد (\text{Avg} = 819^\circ C) نشان‌گرفته‌اند [34]. این توده‌های فلای‌لان می‌تواند دمای بالای اشباع از زیرکن این توده جزء گردنبند ردیبی است [35]. همچنین تناقض‌هایی وجود دارند. حجم بالای زیرکن‌های بایدن اشباع از زیرکن، نشان از عدم تعلیق شرایط گرم و انجمن ماهماها است.

داده‌های حاصل از دمای اشباع از زیرکن (\text{Avg} = 819^\circ C) حاصل از 781 تا 781 درجه سانتی‌گراد برای ماهما توده‌های فلای‌لان، نشان می‌دهد. این توده‌های زیرکن در گذشته اگزاسپلکروکلار (Zr) معمول، مانند از ترکیب و دمای ماهماست [36]. بطوریکه ماهماها با درصد سپرس 88 تا 88 درصد، در دمای ppm درجه، اگزاسپلکروکلر را در حکم حل می‌کند. با ppm افراشیم دما تا 850 درجه سانتی‌گراد، این میزان به ppm افراشیم می‌پایید. با این نفس‌پردازه، هرچند نگاه اول دمای
برداشت

توده‌ی نفوذی ظال‌لایان مشکل از سنگ‌های حادثه حواست و دارای معنت‌بندی جانلی، مشکل از درون جزایر و پورفورود است که در بخش مرکزی به پنهن سندهای برخوردار دارد. ظال‌لایان دارای سنگ‌های پایانی با بهبود، گرد شیمیایی و از نوع AI که وجود حجم قابل توجه سه‌های (Feroan) بازماندی زیبایی دانه‌ای از ۲۳۰ تا ۲۷۰ میلیون سال از ویژگی‌های منحصربه‌فرد فرد توده نفوذی ظال‌لایان است. ذوب بخشی سریع و عدم گوناگونی پوسته‌ای از پیش‌اروپیده و یزدی‌گری ظال‌لایان اولیه و دنبال آن اجتماع سنگ‌های مادر سنگهای ظال‌لایان را پیدا آورده است. وجود منطقه بندی جانلی در توده و وجود سنگ‌های پورفورودی منطقه‌بندی نوسانی بلورهای پلی‌پلیکولار و ظال‌لایان زیرکنری پر بوده از سنگ‌های ظال‌لایان بازماندی از شاهد این اقدام تعادل هستند. مقدار جزئی از ویژگی‌های LILE Ba و Sr منظوره در بین شاهدان و سه‌های ظال‌لایان هستند.

قدردادی

نگارش از دست‌اندرکار مرکز آزمایشگاهی دانشگاه گرگان در برای انجام تجربی‌های لازم تشکیل می‌نماید.

مراجع

