زَئْنَویسی و کانی شناسی افق‌های هورنبلنیت‌ها در نهشت‌های آهن گلالی و بالاعلی و مایسی‌های آنها

فرهاد آیلیان‌یزدی، رضا یوننی‌یزدی، آریا موشه‌میرمحمد‌یزدی

چکیده: نهشت‌های آهن گلالی و بالاعلی، در کنار کاملی‌های مخصوص این رشته‌ها، همراه با سنگ‌های تراکمی‌فری، اهمیتی صنایع، کربناتی و دیگر سنگ‌های هستند. در مطالعه، بررسی و مشاهده‌های مکانیکی روی نیمرخت گمانه‌های نشان می‌دهد که یکی از سنگ‌های تراکمی‌فری (هورنبلنیت) در تمام نیمرخت‌ها به موارد افزایش مکانیکی حضور دارد. بررسی ساختار زیستی و کانی‌شناسی با تکیه بر بررسی‌های میکروسکوپی نشان می‌دهد که، هر نوع هورنبلنیت، با افت جریانی و بهبود بافت جریانی قابل تشخیص‌اند. هورنبلنیت‌هایی بدون بافت جریانی نهایا یک‌نسل‌آمپیول دارند و کانی شکل دهنده در آن‌ها از نوع اکتینولیت است، که در آن پیک‌های دیویدسید وجود دارد. از اینرو، احتمال دارد که این هورنبلنیت از پیک پروکسنیت تشكل شده باشد. که در اخیرین مرحله‌ی پیک ایکوک ابر پرآب از آن گذشته است. در هورنبلنیت‌هایی با بافت جریانی دو نسل آمپیول مشاهده می‌شود که نسل اول ساخته‌ی بافت جریانی است، با توجه به داده‌های زیر، این کانی تشكل دهنده، اکتینولیت‌هایی از نوع هورنبلنیت‌ها و هورنبلنیت‌چرم‌کاک‌هایی است. آمپیول نسل دوم که ناشی از بازتاب در نسل اول است و بر اساس داده‌های ریزبردایی آمپیولی از نوع مگنیومگربنیلیت است. با نتایج الیاف‌های XRF برداختی آمپیولی از نوع مگنیومگربنیلیت است. بنا به نتایج الیاف‌های XRF برداختی آمپیولی از نوع مگنیومگربنیلیت است. بنا به نتایج الیاف‌های XRF برداختی آمپیولی از نوع مگنیومگربنیلیت است. بنا به نتایج الیاف‌های XRF برداختی آمپیولی از نوع مگنیومگربنیلیت است. بنا به نتایج الیاف‌های XRF برداختی آمپیولی از نوع مگنیومگربنیلیت است. بنا به نتایج الیاف‌های XRF برداختی آمپیولی از نوع مگنیومگربنیلیت است.

واژه‌های کلیدی: هورنبلنیت‌ها، گلالی، بالاعلی، آهنی-قابلیتی، فروشنده

مقدمه
در طول زندگی سیرجان (از همدان تا گل‌گهر) که به فاسلی در حدود ۱۵۰۰ کیلومتر نهشت‌های آهن وجود دارد. این نهشت‌ها به‌طور جامعی از نظر کانی‌شناسی و بافتی با هم مشابه دارند و ارتباط با سنگ‌های تراکمی‌فری، اهمیتی قلبی و کربناتی هستند [۱۱]. منطقه مورد بررسی در بخش شمالی زون سیب‌سیرجان در ناحیه شمال غربی همدان و

الینیفوردادی@gmail.com; 08111825476 (تلفن: 08111825476)
گزاره‌های زاونده‌ای این نشان‌دهنده‌ها می‌تواند از دو رأی انتقال از یکدیگر ریشه گرفته باشد: اول بخاطر حضور سنگ‌های کربناتی که معمولاً بیان‌گر کننده‌ی یک کافته‌درون فلزهای انتقال ب‌دانسته‌ای که وجود سنگ‌های هم‌هکشته و در اینجا نشان‌دهنده‌ای که این روند می‌تواند در دو روند متفاوت در چنین حالتی مشاهده شود. طی تحقیق کافته‌های سه‌اه درون فلزهای پلس از محل‌های گنبدی شدن درک شده‌است که باعث شدن پوتستی فلزهای می‌شود. ماکم‌ها در این مرحله از نوع قلبی، اثر قلبی کربناتی و کمپرسیست است. [1] هورونلیت‌ها یک ماکم‌های گرافیتی هستند که تشکیل دهنده‌ای اصلی آن‌ها می‌باشد. از کلی‌های گروه صورت‌فرشی و کلی‌های دیگر مانند الیوم، پپروکسی فلوروبیت، ایمپنت، مگنتیت و پیروپت به صورت ناجی می‌تواند آن‌را همراه کند.

رودانشاده‌های سنگ‌های غالب این منطقه‌اند که روی سنگ‌های زوراسیک قرار گرفته‌اند.

نظر به اینکه زون سیستم-سیستم درون کافته-ای است و تکاپی ماکم‌زای از پیداکل در جوی‌گونی عواملی می‌توان در ایجاد نشان‌دهنده‌ای معنی‌دار و این روند معلول در چنین حالتی مشاهده می‌شود. [1] طی تحقیق کافته‌های درون فلزهای پلس از محل‌های گنبدی شدن، حکمت‌های چرخشی ماکم‌های نوری کشی شده که باعث شدن پوتستی فلزهای می‌شود. ماکم‌ها در این مرحله از نوع قلبی، اثر قلبی کربناتی و کمپرسیست است. [1]

شکل 1. نشان‌دهنده زمین شناسی ایران با موقعیت‌کاشف‌های اهن از همدان تا گل‌گهر (100 کیلومتر). تفسیرهای زمین‌شناسی منطقه‌های همدان با موقعیت کاشف‌های پارسی و گل‌گهر، افتراق از [1] با تغییرات.

الف
موقعیت زمین شناسی و بی‌جویی‌های صحرايی

زون سنندج-سرجان (شکل ۱) یکی از مهم‌ترین واحدهای زمین‌ساختی ایران محسوب می‌شود. باریک‌گاه‌های واقع در جنوب باختری ایران مرکزی که در دنهالی شمال خاوری راندگی اصلی زاگرس قرار دارد [۶]. بر اساس پژوهش‌های انجام‌گرفته
توسط [۷] می‌توان گسترش زمین‌ساختی زون سنندج-سرجان را اینگونه خلاصه کرد که در بالاترین پسی در اثر ایجاد کف شرقی قراری، صحنه ای از اثر قاره‌ای گندوای جدید در راستای شمال شرقی به سوی ایران قاره‌ای اوراسیا حرکت کرد و نوبتی (اقیانوس آلپی-زاگرس) شکل‌گرفته است. طی زوراسیک، ورق ایران جا شده و تشکیل شد. باختری ایران مرکزی-شرقی به وجود آورد ساخت دو قبی گفتاری همان‌گونه که برای نمونه در بررسی به خود جنگ‌دهی او را موجب ساخت ایران از این می‌باشد که آن که در بالاترین پسی در اثر کف شمال شرقی واقع شده است. در این نمونه در اثر کف شمال شرقی ایران در راستای جنوب خاوری شالی به دنبال که به کار رفته در شرق اصلی روند زاگرس به صحنه ایران دوخته شده است. در این نمونه این سکن و انفعال‌ها و نیز شبیه‌پی‌نگوستن

شکل ۲ (۲ ف) نمای گامه‌های ۱، ۲ و ۴ (ب) موقعیت چاله‌های معدن کاوبی در نقشهٔ زمین‌ساختی سراسرنمایی [۱۰] (باتفیت‌ها).
گمانه‌ی جهارم G4H نیز 2 افق هورنبلوئدیتی با ضخامت 1 و 2.5 متر ظاهر می‌شوند.

پیکره‌ای اصلی کانسار با بالعی ححد 250 متر طول و 50 متر عرض دارد که تا عمق 80 متری گمانه زده شد. در شمار بالعی کانسار، می‌توانید شبیه به عنوان قدمبایی تین سنگ فرای خود نمایی می‌کند. سپس اسکارن، دیوریت دگرسان‌شده، گرانیت و رسوب‌های کوارتزی قرار گرفته‌اند (شکل 3). در نیم‌برخ گمانه‌ی با بالعی که با BH1 مشخص می‌شود، 14 افق منفیت دیده می‌شود که به‌طور متناوب گونه‌های مختلفی از سنگ‌های را با ضخامت‌های منفیت ارائه می‌دهد. در طول نیم‌برخ جهارم هورنبلوئدیت با فاصله جریانی به ضخامت 1.5 و 2 متر و نیز 1 بک افق هورنبلوئدیتی بدون فاصله جریانی به ضخامت 1 متر مشاهده می‌شود (شکل 3).

در بخش جنوبی کانسار و در کنار سنگهای فنودی، اسکارن رخ نمایی ندارد که به فراوانی ایپیدوت و گرانیت (89.8٪ مولی آندیدات) و 1٪ مولی کوارتز، 0.9٪ مولی اسپارتن و 0.1٪ مولی پیرپوش) با ساخت منطقه‌ای دیده می‌شوند. سنگ‌های نفوذی و دیوریت‌های دگرسان‌شده در بیشتر نقاط پیرپون کانسار به صورت برجا می‌ماند.

این باید بر 820 متر حفاری بهصورت 4 کمانه‌ی پی‌جوی در کنار گلایی گرفته شد و مشخصات برای گمانه‌ها در شکل 1.2 دیده می‌شود. گمانه‌های پی‌جویی گلایی به اخبار G1H به ترتیب در G4H و G2H و G3H به صورت مکروسکوپی‌های 5 افق هورنبلوئدیت با ضخامت 2.4.6.4.4.2 و 1.5 متر در G4H 2 افق هورنبلوئدیت با ضخامت 14.5 و 1 متر، در G4H-G2H 5 افق با ضخامت 3.2.5.3.2.9.8.7.5.3.12.8 و در
روش بررسی

پس از انتخاب نمونه‌های هوریلبندیتی از افهای متغیّت و رعیّه، نمونه‌هایی به‌کمک یک گامانی از برابر یک نهای در یک شرکت سرمایه‌گذاری (میکروکوپیی پر از سه گروه) به‌کار گرفته شده‌است. در این مورد، ترکیب عناصر اصلی و کمیاب Rh با ولتاژ ۶۰ کیلو ولت و جریان ۴۴۵ mA و با ولتاژ ۴۰ کیلو ولت و جریان ۴۵ mA استفاده شده‌است.

<table>
<thead>
<tr>
<th>تناوب نمونه</th>
<th>شماره نمونه</th>
<th>شماره تناوب</th>
<th>شماره نمونه</th>
<th>شماره تناوب</th>
</tr>
</thead>
<tbody>
<tr>
<td>نام ناپ</td>
<td>G12 H</td>
<td>G12 H</td>
<td>G12 H</td>
<td>G12 H</td>
</tr>
<tr>
<td>کالی</td>
<td>Am</td>
<td>Am</td>
<td>Am</td>
<td>Am</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۵۴۷۲</td>
<td>۵۵۳۷</td>
<td>۵۱۰۷</td>
<td>۵۹۹</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۱۶۴</td>
<td>۱۰۸۷</td>
<td>۱۰۶۲</td>
<td>۱۰۱۰</td>
</tr>
<tr>
<td>MnO</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>MgO</td>
<td>۱۵۱۵</td>
<td>۱۵۰۳</td>
<td>۱۵۰۳</td>
<td>۱۵۰۳</td>
</tr>
<tr>
<td>CaO</td>
<td>۱۲۹۹</td>
<td>۱۲۹۹</td>
<td>۱۲۹۹</td>
<td>۱۲۹۹</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>K₂O</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>H₂O</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>جمع میخوانشده</td>
<td>۹۰۵</td>
<td>۱۰۰۵</td>
<td>۱۰۰۵</td>
<td>۱۰۰۵</td>
</tr>
</tbody>
</table>

جدول ۱: نتایج تجزیه ریزیداری از آمفیبول هوریلبندیت‌گالی.
جدول 2 نتایج تجزیه‌ی ریزپداسی از آمپتیل‌های ال‌سی‌سی

<table>
<thead>
<tr>
<th>کاتی</th>
<th>کلر</th>
<th>آنیون‌های مذکور</th>
<th>تعداد</th>
<th>% کلر</th>
<th>% آنیون‌ها</th>
<th>#کلر</th>
<th>#آنیون‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>55.2</td>
<td>11.3</td>
<td>6.6</td>
<td>11.3</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>TiO2</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>Al2O3</td>
<td>9.8</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>FeO</td>
<td>13.9</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
</tr>
<tr>
<td>MnO</td>
<td>23.2</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
</tr>
<tr>
<td>MgO</td>
<td>13.9</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
</tr>
<tr>
<td>CaO</td>
<td>13.9</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
</tr>
<tr>
<td>Na2O</td>
<td>19.5</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
</tr>
<tr>
<td>K2O</td>
<td>19.5</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
</tr>
<tr>
<td>H2O</td>
<td>19.5</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
</tr>
<tr>
<td>جمع</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

ادامه جدول 2

<table>
<thead>
<tr>
<th>کاتی</th>
<th>کلر</th>
<th>آنیون‌های مذکور</th>
<th>تعداد</th>
<th>% کلر</th>
<th>% آنیون‌ها</th>
<th>#کلر</th>
<th>#آنیون‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>1.5</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Na</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>K</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

جمع | 2.5 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |

#Mg | 33.5 | 17.9 | 17.9 | 17.9 | 17.9 | 17.9 | 17.9 |
جدول 3 نتایج تجزیه‌ی ریپردازی شیمیایی میان‌بارهای پیرو‌کسی در آمفیبول هورالتیدیت.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>8GIH</th>
<th>8GIH</th>
<th>8GIH</th>
</tr>
</thead>
<tbody>
<tr>
<td>نقاط آنالیز</td>
<td>53</td>
<td>54</td>
<td>56</td>
</tr>
<tr>
<td>کلر</td>
<td>Px</td>
<td>Px</td>
<td>Px</td>
</tr>
<tr>
<td>SiO₂</td>
<td>51.44</td>
<td>55.52</td>
<td>54.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.23</td>
<td>0.22</td>
<td>0.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.30</td>
<td>0.30</td>
<td>0.19</td>
</tr>
<tr>
<td>مجموع</td>
<td>78.93</td>
<td>82.15</td>
<td>83.03</td>
</tr>
<tr>
<td>FeO</td>
<td>4.32</td>
<td>3.63</td>
<td>3.02</td>
</tr>
<tr>
<td>اکسیژن</td>
<td>10.25</td>
<td>10.38</td>
<td>10.43</td>
</tr>
<tr>
<td>تعداد آکسیژنها</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Si</td>
<td>184</td>
<td>183</td>
<td>190</td>
</tr>
<tr>
<td>Al</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.12</td>
<td>0.23</td>
<td>0.3</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.2</td>
<td>0.04</td>
<td>0.3</td>
</tr>
<tr>
<td>Mg</td>
<td>0.91</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Ca</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Na</td>
<td>0.6</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Ti</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Mn</td>
<td>0.08</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>جمع کلر</td>
<td>4.2</td>
<td>4.3</td>
<td>4.0</td>
</tr>
<tr>
<td>#Mg</td>
<td>100</td>
<td>100</td>
<td>97.1</td>
</tr>
<tr>
<td>Mol-% an:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enstatite</td>
<td>48.53</td>
<td>49.59</td>
<td>49.3</td>
</tr>
<tr>
<td>Ferrosilite</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>Wollastonite</td>
<td>51.48</td>
<td>50.42</td>
<td>48.59</td>
</tr>
</tbody>
</table>

مقدار میان‌بارهای پیرو‌کسی نشان می‌دهد که ترکیب آن‌ها از جمع میان‌باره‌ها ممکن است. FeII و FeIII است.
جدول ۵

نتایج تجزیه‌ی XRF از آمپیسول هورنبلدیت.

<table>
<thead>
<tr>
<th>شارودی</th>
<th>34B1 H</th>
<th>31B1 H</th>
<th>7B1 H</th>
<th>3G3H</th>
<th>83H</th>
<th>25B1 H</th>
<th>38B1H</th>
<th>9G1 H</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزنی</td>
<td>Babali</td>
<td>Babali</td>
<td>Babali</td>
<td>Babali</td>
<td>Babali</td>
<td>Babali</td>
<td>Babali</td>
<td>Babali</td>
</tr>
<tr>
<td>SiO₂</td>
<td>42.4</td>
<td>46.9</td>
<td>45.8</td>
<td>30.4</td>
<td>39.8</td>
<td>53.1</td>
<td>50.0</td>
<td>50.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.6</td>
<td>46.2</td>
<td>31.7</td>
<td>52.8</td>
<td>12.4</td>
<td>3.03</td>
<td>8.87</td>
<td>148</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>12.7</td>
<td>4.2</td>
<td>11.0</td>
<td>2.0</td>
<td>8.84</td>
<td>3.27</td>
<td>4.08</td>
<td>146</td>
</tr>
<tr>
<td>FeO</td>
<td>45.5</td>
<td>7.05</td>
<td>3.7</td>
<td>-0.33</td>
<td>8.9</td>
<td>10.0</td>
<td>9.19</td>
<td>5.43</td>
</tr>
<tr>
<td>CaO</td>
<td>15.8</td>
<td>6.77</td>
<td>4.13</td>
<td>13.2</td>
<td>10.0</td>
<td>10.1</td>
<td>0.16</td>
<td>171</td>
</tr>
<tr>
<td>MgO</td>
<td>2.2</td>
<td>4.61</td>
<td>2.53</td>
<td>5.6</td>
<td>8.83</td>
<td>15.5</td>
<td>7.95</td>
<td>53.6</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.62</td>
<td>2.99</td>
<td>0.2</td>
<td>0.24</td>
<td>6.6</td>
<td>3.13</td>
<td>3.36</td>
<td>1.60</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.34</td>
<td>1.3</td>
<td>0.38</td>
<td>1.26</td>
<td>0.13</td>
<td>0.28</td>
<td>0.38</td>
<td>1.67</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.15</td>
<td>0.17</td>
<td>0.7</td>
<td>0.11</td>
<td>0.15</td>
<td>0.16</td>
<td>0.16</td>
<td>1.71</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>0.55</td>
<td>1.9</td>
<td>7</td>
<td>1.38</td>
<td>3.58</td>
<td>14.9</td>
<td>0.77</td>
<td>14.0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>3.08</td>
<td>3.28</td>
<td>1.72</td>
<td>0.51</td>
<td>0.7</td>
<td>1.18</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.87</td>
<td>0.67</td>
<td>0.35</td>
<td>0.04</td>
<td>0.12</td>
<td>0.26</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>1.14</td>
<td>1.15</td>
<td>0.08</td>
<td>0.16</td>
<td>0.18</td>
<td>0.16</td>
<td>0.16</td>
<td>1.40</td>
</tr>
<tr>
<td>جمع</td>
<td>98.1</td>
<td>98.8</td>
<td>102.71</td>
<td>106.82</td>
<td>94.61</td>
<td>99.74</td>
<td>98.79</td>
<td>129.5</td>
</tr>
<tr>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>0.6</td>
<td>17</td>
<td>19</td>
<td>16</td>
<td>12</td>
<td>5<</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Zr</td>
<td>442</td>
<td>187</td>
<td>146</td>
<td>118</td>
<td>119</td>
<td>49</td>
<td>161</td>
<td>129</td>
</tr>
<tr>
<td>Y</td>
<td>71</td>
<td>33</td>
<td>28</td>
<td>17</td>
<td>5<</td>
<td>17<</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>Sr</td>
<td>375</td>
<td>333</td>
<td>214</td>
<td>186</td>
<td>19</td>
<td>87</td>
<td>30.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Rb</td>
<td>4.5</td>
<td>46</td>
<td>36</td>
<td>14</td>
<td>5<</td>
<td>5<</td>
<td>14</td>
<td>140</td>
</tr>
<tr>
<td>Pb</td>
<td>0.5</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>5<</td>
<td>5<</td>
<td>5<</td>
<td>19</td>
</tr>
<tr>
<td>Ga</td>
<td>1.9</td>
<td>17</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>5<</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Zn</td>
<td>38</td>
<td>74</td>
<td>48</td>
<td>38</td>
<td>37</td>
<td>90</td>
<td>88</td>
<td>40</td>
</tr>
<tr>
<td>Ni</td>
<td>5<</td>
<td>53</td>
<td>54</td>
<td>154</td>
<td>113</td>
<td>650</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Co</td>
<td>15</td>
<td>23</td>
<td>232</td>
<td>67</td>
<td>14</td>
<td>37</td>
<td>41</td>
<td>17</td>
</tr>
<tr>
<td>Cr</td>
<td>5<</td>
<td>68</td>
<td>71</td>
<td>40</td>
<td>176</td>
<td>68</td>
<td>238</td>
<td>424</td>
</tr>
<tr>
<td>V</td>
<td>345</td>
<td>283</td>
<td>187</td>
<td>68</td>
<td>97</td>
<td>18</td>
<td>144</td>
<td>20.6</td>
</tr>
<tr>
<td>Ba</td>
<td>51</td>
<td>345</td>
<td>1.2</td>
<td>7</td>
<td>5<</td>
<td>5<</td>
<td>18</td>
<td>110</td>
</tr>
<tr>
<td>Sc</td>
<td>25</td>
<td>29</td>
<td>36</td>
<td>14</td>
<td>29</td>
<td>33</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>ملاحظات</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هورنبلدیت با فاقد جریانی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هورنبلدیت با فاقد جریانی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاندر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
سنگ‌نگاری و شیمی کانه‌های هورنبلنیدت

کانسار گلایی

در کانسار گلایی، هورنبلنیدت در همه چهار گمانه‌ای انتشاری در زغال‌های مختلف ظاهر می‌شود. این سنگ به رنگ سبز خاکستری یا سبز زیتونی است. بافت آن دانه‌ای و بی‌دوره و دو سمت و سوی معیین است. به‌طوری که بلورهای نیمه شکل دارد. از اندام‌های متواقت به‌صورت فشرده در کاریکدر قرار دارد.

اجزای اصلی هورنبلنیدت در این کانسار، انجه که توسط
[100] در مقایسه با کانسار گل‌گهر هورنبلنیدت نوع دوم، ناحیه‌ای ی شده، به‌طوری که 85 درصد از اکتیونیت و دایور، پراکنده اند. تایبند نیز دیده می‌شود. بقیه‌ی ترکیب کانی، شناسی تقسیم 15 درصد از فرآوره‌های کانی‌های اکتیونیت (کلریت اپیدوت) و جوان ناشی از مگنیتیت (مگنیتیت) تشکیل یافته است.

اکتیونیت به عنوان یک شکل دهنده اصلی هورنبلنیدت می‌باشد. به‌صورت نیمه شکل دارد. این شکل با اندام‌های متواقت جدایی‌کننده 4 میلی‌متر ظاهر می‌شود. رنگ آن سبز تا آبی و دارای پلورونیسم واضح است. اکتیونیت گاهی قابلیت از دوپسید تشکیل می‌دهد و در این رابطه اکتیونیت با رنگ اسفینتی منشأ می‌شود. اکتیونیت متانی از فرانک‌وارتی طلگنده‌ای، اغلب با کلریت و اپیدوت جایگزین می‌شود. به‌طوری که برخی از بقایای اکتیونیت در آن دیده می‌شود (شکل 4). به دلیل تشکیل سنگ‌نگاری (سخت گسل) و درگیری‌های فیزیکی، هورنبلنیدت در گردن‌های را علایم به عنوان سنگ‌نگاری یافته در میان نیم‌گمانه‌ها دارد.

به توجه به داده‌های به دست آمده از زیرپرداز (جدول 1) روی نمونه‌ها 25/BIH [87/2 و 47/2 نقطه آنالیز و بر اساس شیوه رویدنبندی (11) بر روی آمپولیل، ترکیب شیمیایی میانگین معادل اکتیونیت است.

Ca_{1.89}(Na_{0.16}, K_{0.02})(Mg_{3.51}, Fe^{2+}_{1.48}, Mn_{0.03}, Al_{0.12})[(OH)_{2}(Al_{0.33}, Si_{0.67})O_{22}]

[جدول 4] میانگین فرمول شیمیایی آن به‌صورت زیر است

Ca_{0.95}(Mg_{0.93}, Fe^{2+}_{0.01}, Mn_{0.04}, Fe^{3+}_{0.17})[(Al_{0.04}, Ti_{0.01}, Si_{0.85})O_{6}]

سنگ‌نگاری وشناسی فرمول‌های هورنبلنیدت در نهشته‌های...

روشی می‌تواند با فرمول‌های هورنبلنیدت در نهشته‌های رزیدوز روی نمونه‌ها 8/ 23 و 54/ 26 نقطه آنالیز نشان دهد.
شکل 4: تصویر میکروسکوپی از هورتبلندیت با اکتینولیت بدون بافت جریانی کانسپر، نمونه 4/G3H، ۱۹ متری.

شکل 5: تصویر میکروسکوپی از هورتبلندیتی اکتینولیتی بدون بافت جریانی کانسپر با بالایی، نمونه ۲۵/B1H، ۳۶ متری.

بیشتر بیوئیت، پلاژیوکلاز و تورمالین دیده می‌شوند. به طوری که سنگ بافت بورفیری نشان می‌دهد. در زمینه‌های ریزدانه تا میان‌دانه بلورهای سفید‌رنگ ظاهر می‌شوند که به پلاژیوکلاز وابسته‌اند. در افق‌های زیرین (۳۸-۶۰و) کانی غالب (۹۵%) امفیبول است که اندکی پلاژیوکلاز آن را همراه می‌کند. علاوه بر این هورتبلندیت‌های جریانی بیگانه، سنگ‌هایی از دیوریت‌های با دگرگونی دگره‌هایی بوده و عدسمه‌های مکنتیت در خود دارند (شکل ۶). هورتبلند در دو نسل ظاهر می‌شود.

هورتبلندیت‌های با ساخت جریانی

چهار افق در زمینه‌های ۱۵ (۵۷-۴۸و۵۵-۶۲ود) متری در نیم‌مرخ گمانه‌ی با بالایی بین افق‌های دیوریت‌پذیر فنوز کرده‌اند. سنگ، فشرده و به رنگ سیاه دیده می‌شود. کانی‌های تشکیل‌دهنده‌ی آن عبارتند از امفیبول، بیوئیت، پلاژیوکلاز، تورمالین، ایپیدت، کلزیت و کانی‌های فلزی. پراکنده‌گی این کانی‌ها در افق‌های مختلف متفاوت است. در سه افق بالابی
نتوانسته‌های برای جریانی است (شکل ۳). بلورهای سالق‌الحیاً به‌طور نیمه‌وزنی منظم شده‌اند و ادزیز داده‌ها حداکثر تا به ۱ میلی‌متر رسیده‌اند. هورنیندن رنگ سبزیاً تا زرد‌مرالی به سبز و چندگانه‌ای واضح نشان می‌دهد.

هورنیندن سل دوم ناشی از پلاژیولکاس نسل اول است و برخی از آنها برگ و شکل دارد. رنگ آن آبی تا زرد‌مرالی به هیلهای روشن با چندگانه‌ای واضح است. از دیگر کانی‌های موجود در هورنیندنهای جریانی می‌توان از پلاژیولکاز که هم به صورت بلوری شیائی‌شده و هم به صورت ریزشده که زمینه‌را اشغال می‌کند نام برده. پلاژیولکاز به‌طور مداوم ریزش‌وار و مدیران در دیواره‌های سولیتاری می‌شود. هورنیندن در شکل‌دار و به‌طور دوبلو دیده می‌شود. هورنیندن در دیواره‌های سولیتاری پلاژیولکاز را شبکه‌های منظم درست کرده است و دوای میتابارهایی از هورنیند و آپاتیت است (پرایاسس جدول ۳) پلاژیولکازهای زمینه‌ای از ۴۰۰ تا ۷۰۰ درصد مولی از آپاتیت و از ۶۵ تا ۳۰ درصد مولی آپاتیت و از ۶۵ تا ۳۰ درصد مولی از ارتوکز تشکیل شده‌اند. تورمالین‌های به‌طور مداوم نشانه‌های نیمه‌شکل دار با منطقه‌بندی چندگانه‌ای واضح در سه‌افاق بالای هورنیندنهای جریانی ظاهر می‌شود به‌طوری که بیش از ۱۰٪ سنگ را اشغال می‌کند و در افق‌های پایینی تنها به‌صورت نازی دیده می‌شود. پویا‌ی در هورنیندنهای جریانی تنها به طور موضعی در حدود نازی ظاهر می‌شود. آپاتیت تنها به‌صورت

شکل ۶ تصویر میکروسکوپی از هورنیندنهای جریانی کانسار باباعلی، نمونه‌ی ۳۸/B1H، عمق ۲۸ میکرو متر.
زئوشیسی هورپنلیت

برای بررسی زئوشیسی‌بایی این سنگ‌ها هفت نمونه (مطابق جدول ۵) با تجزیه ترکیبی شیمیایی (XRF) رها و تجزیه شدند و هریک از گونه‌ها به‌طور مستقل مورد اجرای آزمایش Gyford به‌طور نمونه‌های 3/G3H، 8/G1H، 25/B1H و 25/B1H و در نهایت به‌طور هورپنلیت و اکنون آزمایش Gyford و در نهایت به‌طور نمونه‌های 11 سال ساخته شدند و بر اساس نمودار هورپنلیت بایو (نمونه‌های) از نوع اکتینولیت می‌باشد و به مقدار بالایی اکتینولیتی، اکنون ساخته شدند و بر اساس نمودار هورپنلیت بایو (نمونه‌های) از نوع اکتینولیت می‌باشد و به مقدار بالایی اکتینولیتی است. با مقایسه ترکیب شیمیایی هورپنلیت (نمونه‌های) از گلاژ و نمونه‌های ۲۵/B1H از یک بایو به‌طور زیر به شرح زیر:
برداشت
با توجه به بررسی‌های انجام‌شده روی نمونه‌های دو کاناسر آهن گالیک و پایابی، می‌توان نتیجه گرفت که هورنبلندیت‌ها (با بیان جریانی و بدون بیان جریانی) از سنگ‌های آهنی-قلیایی و تولیتی هستند (شکل 8) و همین‌طور به صورت میانگین‌های تشکیل شده از مجموعه‌های هورنبلند در مکانیتی ظاهر می‌شوند. در حقول برخی از اکتینولیت‌ها که تنها کانی تشکیل‌دهنده هورنبلندیت بدون بیان جریانی است، بازیابی دیسپرسی یافته می‌شود. از این رو شاید بتوان گفت که این هورنبلندیت‌ها از یک پرپوسون‌نیت ناشی شده باشد. با مقایسه طرح پرپورکسین 4 متراً از نمونه‌های گلایکی با اکتینولیت‌های ناشی از آن همان نمونه‌های 4 متراً از شکل می‌توان گفت که از تبدیل پرپورکسین به هورنبلندیت با پایای آهن افرازی باید باشد. دپوزیت 6 درصد وزنی FeO و اکتینولیت 11 درصد وزنی Na2O . MnO . FeO . Cr می‌توان نتیجه گرفت که نمونه‌های دو کاناسر آهن گالیک و پایابی می‌تواند با هورنبلندیت‌های آهنی در ترکیب اصلی آن مشاهده شود و می‌توان نتیجه گرفت که نمونه‌های سرگذشته با Sr, Zr, Ti, Ca مقایسه‌ها در مقایسه عناصر نم‌برده افرازیشن نشان می‌دهند. در حالتی که ناحیه هورنبلندیت‌های در نمونه‌های روی ناحیه عکس نشان می‌دهد.

با توجه به مقایسه تنکیب سنگ‌ها، نوسان‌هایی در ترکیب می‌تواند نشان دهد که هورنبلندیت‌های در ناحیه وابسته به هورنبلندیت‌های پایابی با هم

با بیان جریانی و بدون بیان جریانی) می‌توان نتیجه گرفت که FeO . SiO میانگین‌های هورنبلندیتهای با بیان جریانی کمتر از MgO و CaO نشان می‌دهد. با توجه به هورنبلندیت بدون بیان جریانی است، نسبت TiO2 و Na2O . Fe2O3 . Al2O3 و FeO نسبت به هورنبلندیت بدون بیان جریانی دانست. عناصر کم‌کم با بیان

