بررسي خواص فيزيوكيميائي و كامپشنی کانولن معدن قازانداگی تاکستان در تولید کاشی و انواع دیگر سرامیک‌های صنعتی

بهن مهندسی
مهدی فرناصی

پیش‌نمایی علمی، دانشگاه تهران

(دریافت مقاله: 1398/12/10، نسخه نهایی: 1399/2/8)

چکیده: در این پژوهش ویژگی‌های کانولن معدن قازانداگی تاکستان، واقع در استان گزین جزء مورد بررسی قرار می‌گیرد. آنالیز فیزیکی، شیمیایی، فازی و ریز‌ساختاری این کانولن در حالت خام و پخته در دمای 1160 درجه سانتی‌گراد بررسی و با کانولن زنوز مزد در ایران و کانولن وارداتی از انگلستان و روسیه مقایسه شده. انالیزهای انجام شده با فلورسنس پروتو ایکس، میزان میانگین اکسید آلومینیوم موجود در این کانولن ۵۴ درصد، میزان متوسط اکسید سیلیسیم آن ۵۵.۶ درصد را نشان می‌دهد. این کانولن در حالت خام شامل فلزهای کانولنی، کوارتز و آبلین است و در حالت پخته شده شامل کرستالپیت و مولیت است. با توجه به ازامباتیه انجام شده در این پژوهش و نتایج حاصل از این کانولن برای ساخت انواع کاشی و حتی در پیاره‌های مورد برای ساخت و جهانت دیگر مورد استفاده قرار گیرد.

واژه‌های کلیدی: کانولن; قازانداگی; موارد اولیه سرامیک‌های; کاشی؛ سرامیک.

مقدمه
کانولن از نظر سننی به رسمهای گفته می‌شود که حاوی مقادیر زیادی کانولنی پاشید کانولن دارای ویژگی‌های خاص فیزیکوchemیایی است که یکی از این خواص مهم چسب‌گی آن است که با افزایش میزان خلود کاتیو بیشتر می‌شود. از دیگر خواص آن کانولنی بودن، نفوذ‌پذیری، قابلیت رساندنگی، کرمینوی و الکترسیته کم. جذب آب، کاهش و ... در صنعت‌های مختلف به‌طور کلی در کانولن همراه با کانولنیت، کوارتز، فلدسیت و کاتی‌های دیگری به وجود می‌آید که این ناخالصی‌ها و کانی‌های همراه رفتار فیزیکی فراوانی تولید را بهبود تهیه تأثیر قرار می‌دهد. این این ناخالصی‌ها باید با روش‌های مختلف تجزیه‌ای تعیین و در کاربرد این مواد در نظر گرفته شود [2.1].

mzarifnia@gmail.com

* بیوستان مسئول، تلفن: 09121176323، تلفن: 09121176323، 09121176323 (2013) 1447/01/01

پست الکترونیکی: mzarifnia@gmail.com

Sahand University of Technology, Iran
کانسی قارانداغی در 8 کیلومتری شمال غربی تبریز قرار دارد و در مختصات ۳۲° ۴۹' شرقی و ۵۶° ۳۰' شمالی قرار گرفته است. شکل ۱ نقشه زمین‌شناسی منطقه و موقعیت قرارگیری آن را نشان می‌دهد [۱۲]. این معدن به‌صورت روز بر روز به‌مروریه می‌شود و کالون استخراج شده به دو صورت کالون درجه یک و کالون درجه دو است. کالون بر اساس تغییر رنگ در معدن از یکدیگر متمایز می‌گردد.

در این پژوهش سعی بر این بوده است که با توجه به داده‌های زمین‌شناسی به بررسی خواص این دو نوع کالون برداشته شود تا با نتایج آن از این کالون‌ها در مصرف دیگر صنایع سرامیک غیر از کاشی‌سازی استفاده کرد یا نه؟ در نهایت مقایسه‌ای بین این نوع کالون با انواع دیگری (کالون‌های استخراج شده از معدن زئور مرند) و انواع وارداتی آن از انگلستان و روسیه انجام شد.

روش کار

در این کار پژوهشی نخود حدود ۲۰ کیلوگرم سنگ معدن کالون قارانداغی انتخاب و پس از خرد کردن و اسپا با دستگاه‌های سنج شکن فکی، آسیب سایشی و بال میل، با رعایت اصول نمونه‌برداری پودر شده و مقادیری از نمونه، پودر شده خام برای آنالیزهای رشته پترو ایکس (XRF)، فلورسنس پترو ایکس (XRF) و میکروسکوپ الکترونی روبشی (SEM) برای انتخاب شد. سپس بخشی از این نمونه‌ها با استفاده از کانسی‌ها قارانداغی

شکل ۱ نقشه زمین‌شناسی منطقه و موقعیت کانسی‌ها [۱۲].
جدول ۱

<table>
<thead>
<tr>
<th>آزمون‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>لعیب‌بندی</td>
</tr>
<tr>
<td>مقدار مکانیکی در (CRF)</td>
</tr>
<tr>
<td>بررسی خواص کاتانه‌های</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>کاتانول درجه یک</td>
</tr>
<tr>
<td>کاتانول درجه دو</td>
</tr>
<tr>
<td>محدود‌سنجش بارای کاتانه سفید</td>
</tr>
</tbody>
</table>

بحث و بررسی

بررسی خواص کاتانه‌شانسی

با بررسی پروتو ایکس روی این کاتانول‌ها مشخص دیک که آن‌ها از فază ای کالسیای چن کاتالوئنت و کوارتز و به مقدار کمی ایلیت تشکیل شده‌اند.

کاتالوئنت با فرمول شیمیایی $\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})^-$ غنی از Si, Al ایکسید در بهبود سرمایی است. حضور آلومینیوم به بیشتر شیمیایی $\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})^-$ موجب افزایش نسبت‌های کولورامیک و مقاومت پیچ و شکستگی خشپرا شد. می‌توان گفت که کاتانول‌ها از لحاظ شیمیایی متفاوت این کاتانه‌ها می‌باشد.

بررسی خواص کاتانه‌های

نتایج این آزمایش نشان داد که از لحاظ اکسید‌های سرمایی کاتانه‌ها را که به ویژه‌های خاصی کاتالوئنت‌ها در اثر بهبود در جدول ۱ مشاهده می‌کنید.

[۶]
تحضور ناخالصی ایلیت در کاولون باعث ایجاد انقباض پس از بخش در دنبال سرامیکی می‌شود و نیز به دلیل بخش در ناحیه اهی در شکن ساختاری آن رنگ پس از بخش دنبال سرامیک را فرمز می‌کند. [۲۳] حضور ایلیت در کاولون باعث افزایش میزان گدازه آن می‌شود. بر اساس ناخالصی‌ها در نمونه‌های درجه دو نسبت به نمونه درجه یک، رنگ پس از بخش نمونه صورتی است.

به‌طور کلی با مشاهده آلاینده شیمیایی کاولون‌ها و بالا بردن میزان Al2O₃ و پایین‌تر نسبت به نمونه‌های SiO2 دارایی بالا و SiO2 وارداتی هستند، [۱۸] و نسبت به نمونه‌های کاولون زنده میزان SiO2 و Al2O₃ کمتر و درازتر. با توجه به اینکه از ترکیب شیمیایی کاولون‌های ابتدایی آلیانس سیلیس ۴۷:۵۱ درصد، الومینیوم ۳۰:۳۷ درصد است، این بالا بردن میزان سیلیس و پایین‌تر نسبت به نمونه‌های XRD-QAQR اینکه با کوارتز آزاد در نیستند [۱۹]. نتایج کامی شناسی و شیمیایی به دست آمده از دو نمونه نشان می‌دهد که بهترین درصد کاولون موجود در این نمونه از خاک‌ها کاولون‌بست. [۲۰]

جدول ۲: ترکیب کاتیون‌های شیمیایی کاولون‌های مورد بررسی

<table>
<thead>
<tr>
<th>نام‌های کاولون</th>
<th>عنصر اصلی</th>
<th>عنصر فرعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاولون درجه یک</td>
<td>کاتلونیت- کوارتز</td>
<td>-</td>
</tr>
<tr>
<td>کاولون درجه دو</td>
<td>کاتلونیت- کوارتز - ایلیت - مونت موریلونین</td>
<td>-</td>
</tr>
<tr>
<td>کاولون درجه یک</td>
<td>کاتلونیت- کوارتز</td>
<td>-</td>
</tr>
<tr>
<td>کاولون درجه دو</td>
<td>کاتلونیت- کوارتز - ایلیت - مونت موریلونین</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول ۳: مقایسه ترکیب شیمیایی کاولون‌های مورد نظر از نمونه‌های واردا و زنوز [۱۷]

<table>
<thead>
<tr>
<th>نمونه‌ها</th>
<th>SiO2 (%)</th>
<th>Al2O3 (%)</th>
<th>Fe2O3 (%)</th>
<th>CaO (%)</th>
<th>Na2O (%)</th>
<th>K2O (%)</th>
<th>MgO (%)</th>
<th>TiO2 (%)</th>
<th>L.O.I (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاولون درجه یک</td>
<td>۵۹.۱۴</td>
<td>۲۵.۴۲</td>
<td>۱.۰۱</td>
<td>۰.۳۳</td>
<td>۱۱.۱۹</td>
<td>۱.۹</td>
<td>۰.۳۶</td>
<td>۰.۸۰</td>
<td>۱.۰۸</td>
</tr>
<tr>
<td>کاولون درجه دو</td>
<td>۴۸.۰۲</td>
<td>۳۷.۶۰</td>
<td>۲.۵۰</td>
<td>۱.۴۰</td>
<td>۱۱.۲</td>
<td>۱.۹</td>
<td>۰.۳۶</td>
<td>۰.۸۰</td>
<td>۱.۰۸</td>
</tr>
</tbody>
</table>

بررسی خواص شیمیایی و کاولون‌ها

ترکیب کاتیون‌های شیمیایی ماده‌های معدنی XRD و XRF، [۲۱] و شناسی نمونه‌های مورد بررسی در جدول ۲ دیده می‌شود که نشان می‌دهد علاوه بر کاولون‌های ناخالصی‌های با ترکیب کاتیون‌های شناسی ایلیت، لیسبریت و مونت موریلونین در این نمونه وجود دارد.
نتایج طریقی نتایج کاتانونی (CEC)، رساندگی الکتریکی نمونه‌های کاتانون مورد آزمایش در جدول ۴ ارائه می‌شود. با توجه به اینکه CEC کاتولینت بین ۳ تا ۱۵ است، نتایج به‌دست آمده از دو نمونه نیز نشان می‌دهد که بیشترین درصد کالی موجود در این نمونه کاتولینت است. نمونه‌ها بسیار باریک است که حاکی از یافتن میزان نمک‌های محلول در نمونه‌هاست. وجود سولفات‌های محلول در سطحی و یا به معنای دیگر بالا بودن EC، و سخت شدن پوششی خارجی فراورده‌های سرمایی پس از شکن شدن و یا پس از خیت می‌شود. این نمونه‌ها باقی است چنین مشکلی در تولید کاشی و سرامیک با این کاتولینها رخ نمی‌دهد [۴].

<table>
<thead>
<tr>
<th>نمونه‌ی کاتانون درجه بک</th>
<th>pH</th>
<th>EC μS / cm</th>
<th>CEC (meq⁺ / 100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه‌ی کاتانون درجه دو</td>
<td>۵.۸۳</td>
<td>۴.۹۸</td>
<td>۱۴</td>
</tr>
</tbody>
</table>

جدول ۴: تغییراتی از خواص شیمیایی کاتانون‌ها.

![تصویر ۱](https://example.com/image1.png)

![تصویر ۲](https://example.com/image2.png)

شکل ۲: تصویر میکروسکوپ الکترونی روبشی و آنالایز SEM بیسکویت به‌هم شده از نمونه‌های درجه یک.
کریستال‌پیچ و مولیت

(1) $Q = \frac{\text{کریستال‌پیچ}}{\text{مولیت}}$

(2) $M = \frac{\text{مولیت}}{\text{کریستال‌پیچ}}$

شکل ۳: تصویر میکروسکوپ الکترونی روبشی SEM و آنالیز EDS بیسکویت تهیه شده از نمونه درجه دو.

برداشت

نتایج بدست آمده از آزمون‌های سرامیکی روی نمونه‌های قزازداری و مقاومت آن با انواع مختلف کاهی و سرامیک تعداد ۵ عدد، به نظر رسید که از این نوع کاهولن‌ها می‌توان در انواع کاشی دیوار و کف استفاده کرد.

چنینکه در شکل ۴ دیده می‌شود میزان شاخه خمیری این نمونه‌ها در گستره کاهولن و کاهولن‌های پلاستیک قرار می‌گیرند. کاهولن‌ها برای ساخت سرامیک مناسب‌اند. در شکل ۵ میزان جذب آب نسبت به درصد انقباض نشان داده شد. بنابراین این روش با دقت عالی دارد و با افزایش یکی دیگری نیز افزایش می‌یابد. در این شکل گستره انقباض
جدول ۵ مقایسه ویژگی‌های مختلف انواع کاوشی و کاوشی معدن قازانداغی [۱۴].

<table>
<thead>
<tr>
<th>انواع</th>
<th>شیشه‌ای</th>
<th>استون ور</th>
<th>کامپوزیت</th>
<th>هایکاکی</th>
<th>Q۱۵۰۰</th>
<th>Q۲۵۰۰</th>
<th>Q۵۰۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۱۶</td>
<td>۱۰۰۰</td>
<td>۱۰۵۰۰</td>
<td>۱۰۰۰</td>
<td>۱۱۱۶</td>
<td>۱۰۰۰</td>
<td>۱۱۱۶</td>
<td>۱۱۱۶</td>
</tr>
<tr>
<td>۱۲-۱۶</td>
<td>۷</td>
<td>۱۹-۱۴</td>
<td>۱۹-۱۸</td>
<td>۱۲-۱۶</td>
<td>۷</td>
<td>۱۹-۱۸</td>
<td>۱۲-۱۶</td>
</tr>
<tr>
<td>۲۳-۵۰</td>
<td>۸-۵</td>
<td>۴-۵۰</td>
<td>۴-۵۰۰</td>
<td>۲۳-۵۰</td>
<td>۸-۵</td>
<td>۴-۵۰</td>
<td>۲۳-۵۰</td>
</tr>
<tr>
<td>رنگ بعد از پخت</td>
<td>سفید</td>
<td>صورتی-قرمز</td>
<td>صورتی-قرمز</td>
<td>سفید-صریحی</td>
<td>کاوشی دیواری</td>
<td>کاوشی دیواری</td>
<td>کاوشی کف</td>
</tr>
</tbody>
</table>

شکل ۴ نمودار شاخص خمیرایی استاندارد برای انواع رس. [۸].

شکل ۵ نمودار میزان درصد انقباض به‌همپیونوی جذب آب. [۹].

[7] ابراهيمي خ., صنایع سرامیک ایران (گونه‌های بر‌مشکلات و تکنیک‌های مواد اولیه معدنی، دهمین همایش انجمن بلورشناسی و کانی‌شناسی ایران، زاهدان: انتشارات دانشگاه شیراز، (1379), 206 ص.
