سنگشناسی و جایگاه زمین‌ساختی سنگ‌های آذرین ترشيری در منطقه‌ی دوکوه (جنوب غرب بیرجند)

خاطره‌خانی* محمد هاشم امامی، سید سعید محمدی، علی‌خان نصرافشانی

1- گروه زمین‌شناسی، دانشکده ارдаة‌سالی واحده خواراسمان، اصفهان
2- سازمان زمین‌شناسی کشور/ ایران، تهران
3- گروه زمین‌شناسی، دانشگاه علوم دانشگاهی بیرجند، بیرجند

(دریافت مقاله: ۱۳۸۹/۸/۶، نسخه نهایی: ۱۳۸۹/۱۱/۱۵)

چکیده: سنگ‌های آذرین ترشيری در جنوب غربی بیرجند درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به سین پالتوژن، نتوانز و ترشری معرفی شده است. این نهشت‌ها درون کره‌ی شیمیایی غیر متناسب و درون نهشت‌های فیلیشی کرکاس برونزی دارند. این نهشت‌ها بر اساس بررسی‌های میدرودوریت و به س

* Khaterekhaki@yahoo.com

پیشنهاد مسئول تکمیل: نفين: ۰۹۱۵۶۱۱۱۶۱، تلفن: ۰۶۱۳۴۴۴۳۸۵۵، پست الکترونیکی: ۴۴۴۴۴۳۸۵۵
نتیجه‌گیری‌ها: بر اساس نتایج نشان می‌دادند که در مطالعه، از نظر ارزیابی امتیاز‌های نسبی محیط‌محیطی در شرکت ICP-Ms نشان می‌دادند که در ساختار مکانیکی قرار گرفته. نتایج داده‌های Chemex و GCDkit و Minpet تحلیل‌های زئوژئنیک با استفاده از نرم‌افزار ALS در شرکتی کانادا مورد آنالیز قرار گرفته تأثیر گرفته‌اند. (جدول ۱).

در شکل ۱ نشان داده شده که درون سه شرکتی مورد بررسی، نشان‌های از شکل زئوژئنیک شدید بوده و برگرفته از نشان‌های زئوژئنیک شدید، برابر با ۱۴۵۰۰۰ برحسب داده‌ها با تغییرات، [۴] محل نمونه‌ها با مثلث سیاه رنگ (●) مشخص شده است.
جدول 1 نتایج آنالیزهای شیمیایی سنگ‌های منطقه‌ی دوکوه به روش ICP-MS

<table>
<thead>
<tr>
<th>نام سنگ</th>
<th>شماره نمونه</th>
<th>KHB16</th>
<th>KHA31</th>
<th>KHD59</th>
<th>KHD60</th>
<th>KHU7</th>
<th>KHU10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (W%)</td>
<td>60.1</td>
<td>61</td>
<td>69.9</td>
<td>69.1</td>
<td>68.3</td>
<td>68.7</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.85</td>
<td>17.55</td>
<td>17.7</td>
<td>17</td>
<td>16.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>5.18</td>
<td>4.18</td>
<td>3.4</td>
<td>3.29</td>
<td>5.8</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>5.17</td>
<td>4.66</td>
<td>5.85</td>
<td>5.32</td>
<td>5.14</td>
<td>5.18</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.25</td>
<td>0.35</td>
<td>0.21</td>
<td>0.28</td>
<td>3.6</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.54</td>
<td>0.17</td>
<td>0.14</td>
<td>3.14</td>
<td>4</td>
<td>3.53</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.25</td>
<td>0.28</td>
<td>0.29</td>
<td>0.19</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.41</td>
<td>0.6</td>
<td>0.6</td>
<td>0.59</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.23</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr (ppm)</td>
<td>30</td>
<td>30</td>
<td>60</td>
<td>60</td>
<td>80</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>7.54</td>
<td>7.54</td>
<td>7.54</td>
<td>7.54</td>
<td>7.54</td>
<td>7.54</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>4.25</td>
<td>4.25</td>
<td>4.25</td>
<td>4.25</td>
<td>4.25</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عنصر</td>
<td>شماره نمونه</td>
<td>KHU54</td>
<td>KHU85</td>
<td>KHU91</td>
<td>KHU95</td>
<td>KHU107</td>
<td>KHU111</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>SiO2</td>
<td>(W%)</td>
<td>68.2</td>
<td>69.3</td>
<td>69.4</td>
<td>69.2</td>
<td>68.3</td>
<td>68.4</td>
</tr>
<tr>
<td>Al2O3</td>
<td></td>
<td>16.95</td>
<td>17.15</td>
<td>16.5</td>
<td>17.3</td>
<td>17.4</td>
<td>17.4</td>
</tr>
<tr>
<td>Fe2O3</td>
<td></td>
<td>2.55</td>
<td>2.58</td>
<td>2.95</td>
<td>2.94</td>
<td>2.89</td>
<td>2.87</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>3.3</td>
<td>3.23</td>
<td>3.26</td>
<td>3.24</td>
<td>3.22</td>
<td>3.21</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>0.28</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>P2O5</td>
<td></td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
</tr>
<tr>
<td>TiO2</td>
<td></td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>0.1</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>P2O5</td>
<td></td>
<td>0.1</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>LOI</td>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>ppm</td>
<td>99.1</td>
<td>99.5</td>
<td>99.4</td>
<td>99.4</td>
<td>99.4</td>
<td>99.4</td>
</tr>
<tr>
<td>Cr (ppm)</td>
<td></td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Nb</td>
<td></td>
<td>5.7</td>
<td>4.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Cs</td>
<td></td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>La</td>
<td></td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Ce</td>
<td></td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Pr</td>
<td></td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Nd</td>
<td></td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
</tr>
<tr>
<td>Sm</td>
<td></td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Eu</td>
<td></td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Gd</td>
<td></td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Tb</td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Dy</td>
<td></td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Ho</td>
<td></td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Er</td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Tm</td>
<td></td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Yb</td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Lu</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Hf</td>
<td></td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Ta</td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>

این داده‌گزاری نتایج آنالیزهای شیمیایی سنگ‌های منطقه‌ای دوکوهه به روش ترکیکی آنالیز از کلم‌های مختلف کامل که به‌طور خاص میکروکاوزمانوژندریت ترکیکی آنالیز را نشان می‌دهد.
زمین شناسی منطقه‌ای

گسترده‌تری مورد بررسی، را مویان در پیش خرچنگ، پلای‌کرون، یا یک دیگر، انجام‌داده و به‌طور کلی در درون‌کردن، وضع نمایی را نمایانجید که می‌تواند باعث و اثرگذاری نماینده صورت گذاری‌های آذری‌نژاد، نماید. همگام با الکتریکی نظر توقف و سرعت که وسعت چشم‌پر در منطقه‌هایی، وجود دارد [7,8]. قدرتی که جایی به این صورت، واحدهای مختلف دنباله‌ای، ایمنی و وابسته به
که تواناً فعالیت است. [7]. که از این عوامل کاربرد مزایای یاد شده
است [13] تناوب پژوهش‌های سن‌سنجی که به روش
در کانی بیوتیت، روی تو هیودگوهان انجام شده، ۷۲ ± ۳ میلیون سال و وابسته به واکنش انرژی است [8].

رخنمون سگ‌های مورد بررسی با ساختارهای گنبدی مانند و
ستونی به دیده می‌شود. گاهی نیز به صورت دایک، فیلیتی‌ها و
اسلیت‌ها را غیر ممکن. در پی سرمایه‌ای که به صورت نیمه‌های
پسی رخنمون دارند. از همیشه، در کوه‌های بزرگ
۱۵ کیلوپیتر گونمرب شرق خوزستان پروین دیوکوه در
کیلوپیتری گونمرب شرق خوزستان به صورت دو گنبدی به
هم دیده می‌شود. هنگامی که نوداً می‌توانه را رسوب‌هایی
آفرینی کوارتزی فرا گرفته است لیکن، در رخنمون واقع در
شمال دوکوه در بردخی دشت نمایش‌های کلرنسی با گنبدی
باد به دیده می‌شود.

سنگ تکان‌های
بر اساس نتایج حاصل از بررسی‌های میکروسکوپی، این می‌توان
مجموعه‌های سگ‌های آذری وجود در منطقه‌هایی به صورت زیر
رده‌بندی کرده. سنگ‌های آذری نه اشکالهای (میکرو‌کوارتززودوریت و سنگ‌های آشکار‌شانی که شامل
گداره‌های تراک اندزینی، آذری‌نژاد و داس‌تئن و سنگ‌های
آذرزواری (آگوارا، پرخ و تو) است.

میکرو‌کوارتززودوریت‌ها
بررسی‌های میکروسکوپی نشان می‌دهد که این سنگ‌ها
تمایل دارند. ریز‌تراک و پلای‌کرون و به طور غالب دارای زمین‌های
میکرو‌کوارتززودوریت است. پلای‌کرون، بیوتیت و کوارتز از

تأثیر از اجزای فرعی این سنگ‌ها محصول می‌شوند (شکل
۲-۷). بلوخورهای بیوکلیس که به کلرید دیگری می‌روند. به‌طور
موارد سطوح رخ بیوتیت‌های نیز کاکی می‌توان به قرار گرفت است (شکل
۲-۴). بلوخورهای ریز بیوتیت در خمیره‌های ریز دانه‌های فلای‌دار
سنگ وجود دارد.

تراک‌اندزی‌ها
این سنگ‌های پایه از پرورفیزیا به زمین‌های تهیه‌سازی تا شیمیایی
سرایی می‌شود. پلای‌کرون، بیوتیتی فیتزیس و بیوتیت از سنگ
می‌باشد. یک تهم‌ساخته محل بیوکلیس و
پلی‌سنتریک به شکل گیاهی و منطقه‌های یافته می‌شود. گاه به
صورت دو نسل پلای‌کرون دیده می‌شود. نسل اول که در شدت
بلوخورهای سنگ را تشکیل می‌دهند، عملیات ساخت کم
در عمق زمین و نسل دوم بلوخورهای ریز که زمین‌های سنگ
را تشکیل می‌دهند و با سرعت بیشتری در نزدیکی سطح سرد
شدهاند [16] بعضی از پلای‌کرون‌ها پدیده داس‌تئن یا
شش‌درنده (شکل ۲-۷). به شکل‌بندی نیمه‌پدیده به
شکل‌ها شکل‌دار و راه‌پیدا، نسبتاً در مقاطع طولی، ستونی
و منشوری بیوتیت می‌شود (شکل ۲-۴). ایاپیتی‌شان اما این
و با بیوکلیسی را برخی از پژوهشگران به افت سریع فشار وابسته
می‌دانند [14] خلاصه بر آن است که افت فشار گستره‌ی
پارادیزی این کاکی‌ها را کاهش داده و آنها را دستخوش اوجی
کرده است. در نتیجه حانه‌های سه‌تایی رنگی در اطراف بلوخورهای
املای بیوکلیس (شکل ۲-۷) در این سنگ‌ها بلوخورهای
شکل‌دار بیوتیت، بلوخورهای ضمیمه دار کلیرید کلین بیوتیت.
گاهی
بلوخورهای ریز کوارتز، آپاتیت، اسفن‌نواره و کاکی‌ها کدر
شکل‌دار است و، به‌طور پراکنده در خمیره‌های ریز دانه‌های
غذاهای تراک اندزینی، آذری‌نژاد و داس‌تئن و سنگ‌های
آذرزواری (آگوارا، پرخ و تو) است.

سنگ‌های گونمرب
باقی‌اند. این فرآیند با خمیره‌های ریز‌های داده است. در شدت بلوخورهای
آن شکل پلای‌کرون، بیوتیت، و کلیرید بیوتیت‌ها
که در زمین‌های متشکل از بلوخورهای ریز تا شیمیایی قرار دارند
با فرآیند و بادام‌کی نیز از این سنگ‌ها دیده شده است.

سنگ‌های گونمرب
باقی‌اند. این فرآیند با خمیره‌های ریز‌های داده است. در شدت بلوخورهای
آن شکل پلای‌کرون، بیوتیت، و کلیرید بیوتیت‌ها
که در زمین‌های متشکل از بلوخورهای ریز تا شیمیایی قرار دارند
با فرآیند و بادام‌کی نیز از این سنگ‌ها دیده شده است.
بلورهای بلاژپوکلاژ، دارای ماکل کارلسپاد و نامنظم جند مرحله‌ای با منطقه‌بندی نوسانی و غربی‌هستند (شکل 2- ج). این بافت‌های غیر تعادلی بیانگر اختلافات ماکمانت، تأثیرهای انحلالی ناشی از کاهش فشار وارد بر ماکاکل طی صعود به سطح زمین و یا تغییرات ناگهانی دما، گرایش‌گذی اکسبیون، فشار بخار آب و هضم سنتن‌های درونگیر است [16، 17]. بلورهای

شکل ۲ تصاویر میکروسکوپی: (الف) بلورهای بلاژپوکلاژ و آمفیبول، در نمونه میکروکوارتزموندورپیت (۴×). (ب) فلارگیری کانی تیره در سطوح رخ بیوتیت، در نمونه میکروکوارتزموندورپیت (۱۰×). (پ) پلاژپوکلاژ در دارای منطقه‌بندی، در نمونه تراکی آندریت (۴×). (ت) پلاژپوکلاژ در انتهای تراکی آندریت (۱۰×) (ج) کانی‌های آمپتیل به صورت لوزی شکل، مالک‌در در نمونه تراکی آندریت (۱۰×) (ت) پلاژپوکلاژ در نمونه تراکی آندریت (۴×) (ج) میکروپیلیئه‌های بازی در نمونه داسیت (۲×) (پ) بلوژور شکسته شده بلازپوکلاژ، بی‌پکسن و کلسیت در نمونه بلوژور توی (۱۰×).
دانسته‌ها
با توجه به نمونه‌های محلی، باید از نظر میکروبیتی جریان است
کاتیهای اصلی و عادی شامل پلاژیوکلز، بیوتین، هورنبلندس
و کوارتز هستند. درشت بلوهای شکل‌دار پلاژیوکلز، دارای
منطقه‌ای با ماهیت و آبی‌ماهی با کارسیامه، و به‌صورت بلوهای ریز
میکروبیتی، در خمیر وجود دارد. بعضی از پلاژیوکلز‌ها دارای
حواشی گرد شده‌اند که می‌تواند اثر جذب دوبایری‌های
قدم تعادل شیمیایی، بالا اندی، تریک داکه‌های ناگهانی
فشار و نقص آنالیز باشند [19]. تعداد رژی‌لون‌های
پاژیکی وجود دارند که تنها دهنده‌ای احتمال می‌گیرد است
[16] (شکل-۲-ج). بلوهای کلینوبوروسی به مقدار کمتر و
دانه‌های کدر ریز در زمینه حضور دارند

توفه‌ها
توفه‌های منطقه، بر اساس نوع اندوه و ترکیب شیمیایی موارد
تشکیل دهنده آن‌ها [20-۲۲]، به دو نوع نتف سنگی و نتف
بلوری رده‌بندی می‌شود. نتفهای سنگی در دارای تکه‌های

شکل ۲(الف) رده‌بندی زئونتیپیایی و نامگذاری سنگ‌های خورشی منطقه بر اساس مجموع قلبیایی نسبت به سیلیس [۲۲]؛ (ب) رده‌بندی
زنونتیپیایی و نامگذاری سنگ‌های نیمه‌قزلی منطقه بر اساس مجموع قلبیایی نسبت به سیلیس [۲۵].

دانسته، تراک آندروز، بای‌پایه، کوارتزموتزودوریت است.

بلوری رده‌بندی می‌شود. نتفهای سنگی دارای تکه‌های

شکل ۲(الف) رده‌بندی زئونتیپیایی و نامگذاری سنگ‌های خورشی منطقه بر اساس مجموع قلبیایی نسبت به سیلیس [۲۲]؛ (ب) رده‌بندی
زنونتیپیایی و نامگذاری سنگ‌های نیمه‌قزلی منطقه بر اساس مجموع قلبیایی نسبت به سیلیس [۲۵].

دانسته، تراک آندروز، بای‌پایه، کوارتزموتزودوریت است.
بررسی توزیعی و تعیین مکانیزم ساخته سنگهای آذرین منطقه

سری سنگهای سنگهای مورد بررسی بر اساس نمودار قلیایی نسبت به سیلیس [26]. شبه قلیایی بوده (شکل 4-اف)، و بر اساس نمودار مثلثی AFM [26] و نمودار ANK و نسبت به ANK [27]. سنگهای منطقه با ماهیت آهکی و منالومین سختند (شکل 4-B). برای تعیین مکانیزم زمین-ساختی سنگهای خروجی از نمودار جدا کننده بارزت‌ها (HF-TH-Ta) [28] استفاده شده است. این نمودار می‌تواند برای گزارش‌های حذفی و سیلیسی نیز کاربرد داشته باشد [29]. جناح‌های بدست آمده در شکل (5-ال) دیده می‌شود. هم‌های نمودارها در گستره‌ای (D) کمکی مناسبانی واقع می‌شوند. از آنجاکه نمودار نزدیکی (D) یک به رأس و بر طبق جدا کننده 3 قرار می‌گرفته‌اند. هم‌های آن با ماهیت آهکی-قلیایی شناخته شده‌اند. هم‌های نمودارهای Al2O3 - TiO2 و Zr-Y می‌شود. هم‌های نمودار حداقل گستره‌های مناطق قوس آتش‌نشانی قرار (20) نشان می‌دهد. نمودارهای که با دسته‌بندی انتخابی شده‌اند.

شکل (5-ال) نمودار عکس‌بینی پهن‌سایه شده با ترتیب مورب نرمال [21]. این نمودارهای مورد بررسی را نشان می‌دهد. در نمونه‌ها، از عناصر LILE و غیرشگی نشان می‌دهد که بیانگر بستگی آنها به فرورانش است [22]. این سنگها، از عناصر لیتوفلیت برگ، بیانگر نشانه‌های بر کیفیت بودن نمودارهای LILE موجود در صفحه فورورونده بوده و در LILE بالای آن به وجود می‌آید. همچنین، به نظر [30]، در مناطق فرورانش، شاهدِ شکل ذرات شده از بخش فوقانی لیتوفل لیتوفرورونده که از نظر ویژه غنی نشده، به‌طور گسترده‌ای می‌شود و این دلیل بر ریشه و گردنگی ماکمی به وجود آورده‌ای ساخته‌گری گوشته‌های غنی‌سازه‌ای در بالای یک زون فرورانش است.

![شکل 4](شکل 4-ال) نمودار مجموعه SiO2 - Na2O + K2O نسبت به LILE [26] (B) نمودار مثلثی ANK [27] نشانه‌های برساس شکل (3) است. (B) نمودار ANK نسبت به SiO2 - Na2O + K2O (26) Nمحل بلوشنشی و کالیشنایی کرد.
جلد 19، شماره 4، زمستان 1390

سیگنشناسی و جایگاه زمین‌ساختی سنگ‌های آذرین ترنشی... ۷۴۳

۱۳۷۰ [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

ثبات E-MORB برای Zr/Nb = ۳۳ و N-MORB نسبت Brای Zr/Nb = ۹ و ۵ [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

الگو توزیع عنصر نادر سنگ‌های منطقه نسبت بهوسهت [۲۳] بهره‌ی جزایر این (شکل ۶) بر اساس این نمودار زنده نمونه‌ها در حدود ۴ تا ۲ برای نسبت بهوسهت [۲۳] از عناصر نادر خاکی این نتیجه‌برده در این میان عناصر نادر خاکی سیکل غنی شدگی پیشتری نسبت به عناصر نادر خاکی سیگنشناسی و جایگاه زمین‌ساختی سنگ‌های آذرین ترنشی... ۷۴۳

سازگار محسوس می‌شود. با توجه به حضور فراوان یالیوکلاز در Ba و Sr نسبت به طور قابل ملاحظه‌ای بیشتر رابودهای طبیعی به نظر میرسد و چون شواهد می‌توان با وجود زنولیت اکلوژیتی در منطقه تداریم. بنابراین نسبت به Ba و Sr نسبت به اکلوژیت‌های پوسته وفسیر دانست. سپس، نسبت به طور قابل ملاحظه‌ای متغیر باشد و جدی‌تر بودن به تنهایی نمی‌توان دلیل بر توزیع این سنگ‌ها باشد. چنانچه در شکل [۲۳] نشان داده می‌شود، مقدار بسیار کمی پراکندگی در نمونه دیده می‌شود و می‌توان چنین نتیجه گرفت که مگرکه همزمان با توزیع چندی‌ای، در یک سیستم برای حرکت یک آبده کندنی پوسته‌ای است، نسبت E-MORB = ۳۳ و N-MORB نسبت Brای Zr/Nb = ۹ و ۵ [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

شکل ۵ (الف) نمونه‌های زنولیت‌های خودرویی و موجب افزایش جریان در Hf-Th/Ta بالاتر از ۲ زنولیت جراید فوسی، کوچکتر از ۲ عمیق‌تر. (الف) فیزیکی. (ب) نمونه‌های Nb-Y نسبت به TiO۲ [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

شکل ۶ (الف) نمونه‌های پوسته‌ی پیشتری شده با مورب پریا بر اساس [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

کندرایت [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

هنگامی باشد این میان عناصر می‌تواند در نظر خاکی سیگنشناسی و جایگاه زمین‌ساختی... ۷۴۳

زمان‌های باز که حاوی یک آبده کندنی پوسته‌ای است، نسبت E-MORB = ۳۳ و N-MORB نسبت Brای Zr/Nb = ۹ و ۵ [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

هنگامی باشد این میان عناصر می‌تواند در نظر خاکی سیگنشناسی و جایگاه زمین‌ساختی... ۷۴۳

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]

قندهای دگرگرده، استخوان‌فرآیند تبلور بخشی و باقی مانند عنصر نادر خاکی و بی‌شک می‌تواند. باشد [۲۳] [۲۳] [۲۳] [۲۳] [۲۳] [۲۳]}
این نسبت ۲۰ است [۶۸] هر چه این نسبت کمتر یابد، خاصیت‌گویشته‌ای کمتر نمی‌شده و با درجه‌ ذوب، نسبت کمتری را نشان خواهد داد. در نمونه‌های مورد بررسی این نسبت از نرم‌افزار کمتر است (حدود ۲/۱۷) و درجات ذوب‌پذیری کمتری را نشان می‌دهد [۶۸] (شکل ۲/ب) پیش‌تر سیگه‌های حذف‌شده با افزایش RREE/MREE روی‌دهی کننده را نفع می‌کند، ولی در MREE/HREE اینجا برخی از سیگه‌ها به سمت کمتر منحرف می‌شوند.

که اندازه یا سیگه‌های پاک‌سازی نوام با جدایی فازهای کالیفرنیا (ACF) را پیشنهاد می‌نماید. [۶۸] مقادیر نسبتاً کم در حدود ۲/۱۷ است (شکل ۲/ب) در مطالعه ماهاتمه اسید و حدود را به تریفیک کینولوپ و کایلیوپ و کسی از ماهاتمه در اعمال نسبتاً کم‌پذیره، دیه گزارتن باقی مانده، ولی می‌کند [۶۸].

به نظر می‌رسد این شکرده سیگه‌های مورد بررسی در ارتباط با محیط‌های زمین ساختمانی از نظر Y/Rb است. می‌تواند در سنگ-۲ [۶۸] نسبت Na/Nb از اندازه منطقه‌ای غنی‌شکنی در سنگ‌فروروناخی با الایش پوسته‌ای را نشان می‌دهد (شکل ۲/ث). در محیط‌های درون صحافه روده غنی‌شکنی از روند خط ۱ پس‌روی Rb/Nb = می‌کند.

برای تشخیص تأثیر رسوب بر شاره‌ها ناشی از ورقه، معمولاً ۲ مقایسه می‌گاهند و یا یکی نمونه‌ای نیم‌قطعه دووکره با ادکیت ۵۰][.}

جدول ۲ مقایسه میانگین و یا یکی نمونه‌ای نیم‌قطعه دووکره با ادکیت ۵۰]

<table>
<thead>
<tr>
<th>میانگین نمونه‌ای نیم‌قطعه دووکره</th>
<th>میانگین ادکیت‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SiO}_2) (\text{درصد وزنی}=6.88)</td>
<td>(\text{SiO}_2) (\text{درصد وزنی}=6)</td>
</tr>
<tr>
<td>(\text{Al}_2\text{O}_3=17)</td>
<td>(\text{Al}_2\text{O}_3=15)</td>
</tr>
<tr>
<td>(\text{Na}_2\text{O}=3.13)</td>
<td>(\text{Na}_2\text{O}=3.5)</td>
</tr>
<tr>
<td>(\text{K}_2\text{O}/\text{Na}_2\text{O}=0.61)</td>
<td>(\text{K}_2\text{O}/\text{Na}_2\text{O}=0.32)</td>
</tr>
<tr>
<td>(\text{Sr}=738) ppm</td>
<td>(\text{Sr}=400) ppm</td>
</tr>
<tr>
<td>(\text{Y}=138) ppm</td>
<td>(\text{Y}=18) ppm</td>
</tr>
<tr>
<td>(\text{Sr/Y}=4.24)</td>
<td>(\text{Sr/Y}=2.0)</td>
</tr>
<tr>
<td>(\text{Yb}=1.88) ppm</td>
<td>(\text{Yb}=1.8) ppm</td>
</tr>
</tbody>
</table>

EU نسبت، میزان نسبت Pb/Ce را می‌تواند به ویژه در نواحی قطعه رنگ‌دانه مناسب است.
شاخص‌های مورد بررسی در نمودارهای [50] (الف، ب، پ، ت) در گستره‌ای آداکیتهای سیلیسی بالا قرار می‌گیرند. نشان‌ها بر اساس شکل 7 تخمین تأثیر رسوب‌های [29] نشان‌ها بر اساس شکل (3) است.

شاخص‌های مورد بررسی در نمودارهای [50] (الف، ب، پ، ت) در گستره‌ای آداکیتهای سیلیسی بالا قرار می‌گیرند. نشان‌ها بر اساس شکل 7 تخمین تأثیر رسوب‌های [29] نشان‌ها بر اساس شکل (3) است.
برداشت
سنگهای آدرازین منطقه در کوهدشت
خروجی از نوع اندریز تراکن‌نشین و داسیت و سنگ‌های
نیمه‌فندی از نوع میکرو‌روکوئیت‌زیستوبوریت است؛ که با در نظر
گرفتن ویژگی‌های زئوپیتی‌زی باراملت دانه‌ای - قلبی و
متالومنی بوده و فاصله زئوپیتی‌زی شاهبی با آدرازینی را نشان
می‌دهد. بافت‌های غیر تعریف‌دار (غیرزیستی و منطقه‌نام توسانی)
بیانگر تأثیر دیگر انحلالی ناشی از کاهش فشار وارد بر باک‌ها طی
سعود به سطح زمین یا تغییرات ناپیمان خاک، گریزندگی
اکسیژن، فشار بخار آب و هضم سنگ‌های درون‌کنی است.

در نتیجه، نشانه‌هایی از عناصر LILE و LREE و تهیه
شگذگی سنگ‌های منطقه با عناصر HFS و Ba و Sr
کم‌تعدادی است، به توجه به هنگامی که در سنگ‌ها، می‌توان آن را ناشی از آلودگی با سنگ‌های
پس‌گذران در منطقه با تهیه شگذگی، عناصر HFS و Ba و Sr
ماکم‌سوم در منطقه می‌توان نتیجه گرفت که در مراحل
بندی سنگ‌نامه‌ای اقیانوسی، شاره‌سازی یا شاره‌سازی
حالت از ایران‌زیستیچه اقیانوسی فرورونده (درگاه شدن تا
بین ریشه‌های آشفتگی)، بیشتر نهایی گشته شده
است. ماگمای حاصل از ذوب ورق‌های اقیانوسی ورود به شکل
ی گوشه‌ای درون نهایی شده به وجود آمده‌اند. در نتیجه
عنصر HFSE در محل بالا مانده و عناصر دیگر به همراه با
شکل‌ها بالا آمد. این ماگمای طی مسوم به ترازی‌های بالاتر
بعروز از جریان دست‌خوش جدایی ماکم‌سوم، اختلال و آب‌سخت
پوسته شده است. در نهایت در یک کمان ماکم‌سوم شکسیدی
قرار گرفته، نشانه‌ها در کم‌تعدادی آداپتی شده‌اند.

مراجع
[1] Berberian F., "Against the rigidity of the Lut

Zemineshassi va Jajaga Zemineshassi Sneghehae Ashtin Tersheeri 747

Zemineshassi va Jajaga Zemineshassi Sneghehae Ashtin Tersheeri 1390

Jolda, Shemar 4, Zemstan

from the Southernmost Cascades, California", Con Min. 35 (1997) 425-452.
[50] Martin H., Smithies R.H., Rapp R., Moyen J.F., Champion D., "An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and