بررسی تغییرات عنصرهای اصلی، جزئی و خاکی کمیاب در زونهای دگرسانی در کانی‌سازی
مس پورفیری منطقه‌های همدان (خراسان جنوبی، ایران)

محمد حسن کرمی‌پور، آزاده ملکزاده شفرودی

مدیریت پژوهش اکتشافات ذخایر معدنی شرکت مادر نفت‌و-گاز فناوری کهکشان

چکیده: منطقه‌های پیچونده مس-طلای پورفیری همدان در جنوب غربی بیرجند واقع شده است. توده‌های نیمه عمیق پورفیری با ترکیب مواد الکسیکال در منطقه به شدت دگرسان شده‌اند. مهم‌ترین دگرسانی‌ها شامل زونهای کوارتز-سایرتم-کریتیت-وریت، پرپولیتیک و کرینت‌های است. همچنین عنصر اصلی فرعی و خاکی کمیاب یا فرابندی دگرسانی دسته‌گیری‌های شش‌شانه‌ای دامنه‌ای می‌باشند.

مگنیاتی، MgO، Al2O3، K2O، SiO2 و در برخی عنصر (مثل Eu، Y، Nb، P2O5، MnO، TiO2) و اغلب عنصرREE و کاهیدگی(MgO، K2O، SiO2) تغییر اندازه‌ای را کنترل می‌کند. دگرسانی‌های کوارتز-سایرتیم-کریتیت-وریت به شدت در نوسازی توده‌ای همدان می‌باشند. عنصر Rf رفته شده یک عنصر جدید در شرایط مختلف دگرسانی نشان می‌دهد. عنصر REE توده‌ای که به شدت در نوسازی توده‌ای همدان می‌باشند. عنصر Rf رفته شده یک عنصر جدید در شرایط مختلف دگرسانی نشان می‌دهد. عنصر REE توده‌ای که به شدت در نوسازی توده‌ای همدان می‌باشند. عنصر Rf رفته شده یک عنصر جدید در شرایط مختلف دگرسانی نشان می‌دهد. عنصر REE توده‌ای که به شدت در نوسازی توده‌ای همدان می‌باشند. عنصر Rf رفته شده یک عنصر جدید در شرایط مختلف دگرسانی نشان می‌دهد.
و کلیه شناسی زونهای دگرگان مشخص شده است. مورد توجه قرار گرفته و روند تغییرات عناصر با تغییرات شدت دگرگان نیز بررسی شد.

روش بررسی

به منظور رسیدن به اهداف مورد نظر، بررسی‌هایی صحرایی و آزمایشگاهی انجام شده در این تحقیق شامل مرحله زیرند:

- تهیه نقص زمین شناسی به مقدار 1000/1
- تهیه نقص دگرگان به مقدار 1000/1

برای شده است. در تجربه 15 نمونه به روش XRF برای XRF اصیل در آزمایشگاه گروه زمین‌شناسی دانشگاه فردوسی مشهد و اسکبیه‌های فری و خاکی کمپار به روش ICP-MS انتخاب شده و 2 نمونه نقیع معمق مانند که این نقص اساسی در تشکیل کانال سازی - طلا پوتوبری همدان داشته. این توده‌ها به بخش مختلف منطقه تحت تاثیر دگرگانی به مختلف و به شدت های مختلف قرار گرفته‌اند. در این تجربه نمونه نسبتاً نازه این توده‌ها و نیز همان توده با دگرگانی به داشت که شدت های مختلف به منظور مقایسه

به وسیله X Unique II فردوسی مشهد، فیلیپس مدل XRF فیشر، دو مدل XRF مشده دردیده شده است. بررسی‌های زتون‌شیمیایی نیز بالا بودن مس (تا 0/5 درصد) و طلا (تا 1 نیم) و 70 گرم در (تا نیم) می‌شود. به ناحیه پیچ‌چین

یک صحرایی و بررسی آزمایش‌گاهی سنتوریا گسترش یافته در منطقه دارد. مشاهده یک کانال سازی که این کانال سازی دستگاه فیشر فیلیپس مدل XRF بوده است. این نمونه از خریداری می‌شود و نیز میان طبق کانال‌های بی‌پروا که در این تجربه به داشت که کانال سازی از سازمان ZM شناسی آمریکا و کانادا خریداری شدند. همچنین آنالیز به روش ICP-MS روش‌های مختلف نوپا و خاکی کمپار با دستگاه

ذوب قلیایی انجام شده است. در این روش 170 گرم از نمونه در لیمب می‌شود. ترکیبات مختلف ذوی شده و این بسیار همگن می‌شود. این روش برای آنت که همکار ها ذوی شده و قابلیت عناصر به‌همراه خاکی کمپار بررسی آن‌ها ریال و آن‌ها داده به نیمه. Excel، بهترین نرم‌افزار متناسب برای نقشه داده به بینه.

تغییرات عناصر مختلف در نرم افزاری

چ تناسب نتایج.
بررسی تغییرات عناصر اصلی جزیی و خاکی کمیاب در ژن‌های ... ۶۲۹

جلد ۱۹، شماره ۴ رژستار ۱۳۹۰

زمنی‌شناسی
گستره‌ی پی‌چولی مس پورفیری همند از نظر زمین‌شناسی ناحیه‌ای در گوشه‌ی شمال شرقی برگه ۱۰۰۰۰۰۰۰ سرجاهشور [۱۸] قرار گرفته است. باید این نشان دهد که این ژئومورفولوژی، شامل سیستم سنجش‌های این برخی نقاط سنجش‌های نیمه‌عمق اسیدی- حدمفاصل در این نقاط نفوذ کرده‌اند. اما بررسی‌های صحراوی و ازمایشگاهی این پروژه نشان داد که سیستم اولیه از واحدهای که در نهایت سیستم سنجش‌های نفوذی هم‌عمق یکسان و در گذر شده‌اند. اکثر سیستم‌های ناحیه‌ای نفوذی منطقه دگرگونی شده و کانون‌هایی بر اساس نقاط مشاهده می‌شود.
دگرسانی
سنگهای آنتفیشانی و توده‌های نفوذی وابسته به کانی‌سازی در گسترده‌ترین حداکثر ۱۲۰ کیلومتری به‌طور ناحیه‌ای بیشتری بی‌کانی‌سازی در شرق ناحیه با مشاهده دگرگویی روند خطی توده‌های مستقیمی بین آنها و گسترش توده‌های نفوذی عملکرد نشان دهنده کانی‌سازی و شدت دگرسانی در منطقه‌ای یپ‌جولی ماهرباند نشان‌دهنده کانی‌سازی نوع پورفیتری است.

براساس بررسی‌های صحرایی و همزمانگاهی ۶ نوع دگرسانی درون‌زد در گسترده‌ی پی‌جولی همین تفکیک شده که عبارتند از: ۱ زون کوارتز- سرسبیت - کربنات - پیریت، ۲ زون کوارتز - کربنات - پیریت، ۳ زون آرژنیت - سلیسی و ۴ زون کربناتیک (شکل ۱)، لازم به یادآوری است که به منظور جدایی دقیقتر و تفسیر بهتر دگرسانی‌ها و ارتباط آن با کانی‌سازی و زون‌شناسی، زون‌های دگرسانی به صورت ضعیف (شدت کمتر از ۳۰ درصد)، متوسط (شدت بین ۵۰ تا ۳۰ درصد) و شدید (شدت بیش از ۵۰ درصد) در نقشه نشان داده شدند.

گرافیک درآمد آن حداکثر ۹ واحد وابسته به کانی‌سازی در منطقه شناسایی شدند. این وابستگی ممکن است به‌صورت دگرسانی پورفیتری و برش‌گرما، بی‌کانی‌سازی نفوذی، بی‌کانی‌سازی و برش‌گرما، بی‌کانی‌سازی، نفوذی از این میان واحد هورنی‌نن و دگرسانی نفوذی از نظر نوع و شدت دگرسانی تراکم باقی را نشان می‌دهد.

از آن‌ها سازگاری پورفیتری است.

۴- دگرسانی نفوذی در سطح سطح جایی معیق یک شبکه در توده‌های وابسته به کانی‌سازی نفوذی که در توده‌های هورنی‌نن و دگرسانی ممکن است تراکم باقی را به کانی‌سازی نفوذی از این میان واحد هورنی‌نن نشان می‌دهد.

شکل ۲ نقشه زمین‌شناسی ساده شده گسترده پی‌جولی همینه.
قسمت‌های مختلف دگرسانی‌های متفاوت در دیده شود که این مستلح به دوری یا نزدیکی بخش‌های مختلف واحدهای این گروه در اغلب سایر سایر کاتی‌سازی و به‌پروپی از آن اختلاف دلمای و دیگر عوامل نوپوشی‌های بریم‌گردد. همچنین شدت یک نوع دگرسانی در قسمت‌های مختلف توده‌های آن توده، می‌تواند شیمیایی یا تحت تأثیر قرار می‌گیرد. از این میان تغییرات عناصر اصلی طی فرابند دگرسانی سه چشمه‌ای است.

در منطقه‌های مورد بررسی دو توده منهمی نمی‌تواند در هری نمونه همیشه و هری نمونه همیشه گوناگون قرار گرفته بودند. برای بررسی تغییرات زنتیمیایی انتخاب شدند. این دو توده جزئی توده‌های باسئی مس-تلای نوری. مهم‌سازی نمونه نسبتاً زیاد و بدون دگرسانی به منظور مقایسه تغییرات زنتیمیایی، تناها از این توده در سرسر بودند.

جدول‌های (1) و (2) نتایج تجزیه عناصر اصلی نمونه‌های تناها و نمونه‌های دگرسان شدید توده‌های هوری‌بند مونوژنیت پورفیری و هوری‌بند دیوریت پورفیری را به تفکیک نوع دگرسانی و شدت آن آرائه می‌نماید.
جدول 1 نتایج تجزیه عناصر اصلی توده‌های موزونه‌بندی پورفیری نازه و نمونه‌های دگرسان شده آن به دگرسان‌های کوارتز-پیرت-
کربنات- پروپاپتیک و کربنات‌های به شدت مختلف.\\n
<table>
<thead>
<tr>
<th>کوارتز - پروپاپتیک</th>
<th>کوارتز - پروپاپتیک</th>
<th>کوارتز - پروپاپتیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>شدت دگرسانی</td>
<td>تازه</td>
<td>نازه</td>
</tr>
<tr>
<td>طول</td>
<td>67%</td>
<td>67%</td>
</tr>
<tr>
<td>عرض</td>
<td>33%</td>
<td>33%</td>
</tr>
</tbody>
</table>

جدول 2 نتایج تجزیه عناصر اصلی توده‌های موزونه‌بندی پورفیری نازه و نمونه‌های دگرسان شده آن به دگرسان‌های کوارتز-پیرت-
کربنات- پروپاپتیک و کربنات‌های به شدت مختلف.\\n
<table>
<thead>
<tr>
<th>کوارتز - پروپاپتیک</th>
<th>کوارتز - پروپاپتیک</th>
<th>کوارتز - پروپاپتیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>شدت دگرسانی</td>
<td>تازه</td>
<td>نازه</td>
</tr>
<tr>
<td>MA-95</td>
<td>MA-134</td>
<td>MA-186</td>
</tr>
<tr>
<td>طول</td>
<td>67%</td>
<td>67%</td>
</tr>
<tr>
<td>عرض</td>
<td>33%</td>
<td>33%</td>
</tr>
</tbody>
</table>

توده‌های موزونه‌بندی پورفیری شکل‌های (4) تا (6) میزان افزایش یا کاهش عناصر اصلی را نسبت به نمونه تازه هم‌ضد دارند. در نتایج تجزیه عناصر که در توده‌های کوارتز-پیرت-
کربنات- پروپاپتیک و کربنات‌های به شدت مختلف ظاهر شدند، به سبب آنزیم‌های رگه‌ای در نمونه افزایش یافتند. در توده‌های کوارتز-پیرت-
کربنات- پروپاپتیک و کربنات‌های به شدت مختلف.

در دگرسانی کوارتز-پیرت-کربنات، میزان Al2O3 افزایش یافت. این تغییرات احتمالاً به عنوان یکی از عوامل کنترل‌کننده افزایش یا کاهش عناصر در هر نوع نمونه یکی از عوامل کنترل‌کننده افزایش یا کاهش عناصر در هر نوع نمونه.
دلیل آزاد شدن پتاسیم اصلی سیستم در محیط آهکی-لالی‌بی

درگیری پتروپتاسیمی: در این زون پیشرفت کاهش در آلی‌پتاسیم TFeO و Na₂O, K₂O, A1₂O₃, SiO₂, MgO و CaO شدت درگیری آن می‌دهد که به علت دگرگان شدن پتاسیم و فلزات‌پتاسیم و هورتندل است. واکنش MgO با ترکیب‌های درگیری TFeO و CaO که نشانه‌دهنده آزادی شدن ترکیب یون در زون پیشرفت به سنگ است هر چه پیشرفت این نوع ترکیب‌های کلرید، Na₂O و MnO, TiO₂ ایجاد پتاسیم نشده است اکسیدهای TFeO و P₂O₅ تغییر ناهنجاری معنی‌داری در شدت نشان داده‌اند.

باتری تغییرات عناصر اصلی، نیکلیتی و فلزات‌پتاسیم در زون‌های

افزایش شدت درگیری دیده می‌شود. این مسئله نشان می‌دهد که در شدت کم درگیری TFeO و Na₂O, K₂O, A1₂O₃, SiO₂, MgO و CaO که بسیار به سبب سیستم افزوده شده ولی با افزایش شدت TFeO که با شیوه‌گرافی به سبب افزوده شده که با کلاهی که در این نوع TFeO که یازم برای تشکیل سریزی در ترکیب‌های درگیری شدن کاهشی دارد. در کل مقدار فلزات‌پتاسیم کاهشی و آزاد Na₂O و MgO چنان مقداری که نشانه‌دهنده ترکیب پتاسیمی و فلزات‌پتاسیم در ترکیب‌های Na₂O و MgO وجود دارد است. در نهایت مقدار Na₂O و MgO در این نوع Na₂O و MgO به دلیل نشانه‌دهنده ترسیم‌پتاسیم در ترکیب‌های Na₂O و MgO کاهش شده است. در نهایت مقدار Na₂O و MgO که افزایش شدت پتاسیم می‌کند.

کاهش محسوس با افزایش شدت درگیری می‌باشد TFeO و CaO شدته و باعث شده است. این مسئله در تغییرات پتاسیمی که تغییر تأثیرات در سنگ‌سازی نشان داده می‌گردد، شدت سایه‌ها و صفحات سنگی و قالب‌ها و شکل‌های چوبی کاهش شده است. این مسئله در تغییرات پتاسیمی که تغییر تأثیرات در سنگ‌سازی نشان داده می‌گردد، شدت سایه‌ها و صفحات سنگی و قالب‌ها و شکل‌های چوبی کاهش شده است. این مسئله در تغییرات پتاسیمی که تغییر تأثیرات در سنگ‌سازی نشان داده می‌گردد، شدت سایه‌ها و صفحات سنگی و قالب‌ها و شکل‌های چوبی کاهش شده است.
شکل ۴‌alfa ۴ پ - تغییرات اکسیدهای اصلی در شدت‌های مختلف در گرانی و کوارتز- سرپیت- گریت‌ها در توده هورنبلند مونزونیت پورفیری. محور Y معرف نسبت عناصر در نمونه سالم است.

شکل ۵‌alpha ۵ پ - تغییرات پرولیتیک اصلی در شدت‌های مختلف در گرانی و کوارتز- سرپیت- گریت‌ها در توده هورنبلند مونزونیت پورفیری. محور Y معرف نسبت عناصر در نمونه سالم است.
شکل ۶الف و ب – تغییرات اکسیدهای اصلی در شدت‌های مختلف دگرسانی کربناته در توده‌های فورامینیفیری. محور Y معرف میزان تغییرات عنصر نسبت به نمونه سالم است.

شکل ۷ نام‌گذاری زنده‌میابی توده‌های موزونیت پورفیری در شرایط دگرسانی‌های کوارتز-سرسیت-کربناته-پورپتین و کربناته با شدت‌های مختلف. نمودار از میبدل موست [۲۰۱].

شکل ۸ موقیعی توده‌های فورامینیفیری در شرایط دگرسانی‌های کوارتز-سرسیت-کربناته-پورپتین و کربناته با شدت‌های مختلف در نمودار شاند [۲۱].
دارای مولکول‌هایی با آزادت کم‌تری و کم‌تری از

CaO

هرمزیت اولیه و آزاد شدن این عناصر است. مقادیر

همانند آهن و منیزیم در شدت کم، کاهش نشان می‌دهد که به

مقداری که پلاژیوکلاره‌ها در کلسیم لازم برای تشکیل کلسیت نیز از

همن‌کاری این ماده است. در شدت بالا اضافه شدن

کلسیم به‌وسیله‌ای نیز به سنگ باعث افزایش مقادیر کلسیت

شده است. اکسیدهای P_2O_5 و MnO، TiO_2

شده‌ای شناسایی نشان می‌دهد (شکل‌های 10 اف و ب).

تغییر عناصری جون Na_2O و K_2O، SiO_2

نمونه‌هایی در کلسیم نمودار نامنگذاری زنیمی‌ای می‌سازد.

می‌تواند 200 نمونه‌ی بنام و تغییر هامان یگیان باشد.

از نظر

زنیمی‌ای نمودار نامنگذاری زنیمی‌ای می‌سازد.

مرز دویریت نش می‌یابد. در حالی که نمونه‌ی کمتر از 15

درصد درگرانش به علت افزایش سیلسیوس در مرز میان‌کریز

می‌باشد و در حدود 30 درصد درگرانش شده به دلیل سببیم و پاتسیم در میان دویریت قرار

گرفته است (شکل 12). از نظر شناسی شاک

[21] نیز به دلیل

افزایش Al و کاهش محسوس K و Na نمودارهای میان‌کریز

می‌باشد. H: همچنین نمونه‌ی تغییر

هوریزونت درگرانش میان‌کریز از نظر نمودار آهکی‌قلی‌پلاکی‌های

شوشینت است، ولی نمودارهای درگرانش در میان دویریت به شکل

[14].

درگرانش پروپیلیک: در این زون کاهشی در اکسیدهای

K_2O و SiO_2 به طور تامن‌تبلیغ شدت درگرانش دیده

می‌شود که به علت درگرانش شدن فلسفات نتایج است. است

میزان Al_2O_3 به وسیله محاول به سیستم افزوده شده است

Toxide 10-14 میزان افزایش با کاهش عناصر اصل را

تغییر که نتایج نشان می‌دهد (شکل‌های 12) تا (14) نمودار

درگرانش از عناصری ممکن تغییر نتایج است. تغییر دیگر کاهش سپیلسیوس به وجود آمدن. مقادیر

Al_2O_3 نیز با افزایش شدت درگرانش افزایش یافته است که

نشان‌دهنده اضافه شدن این عنصر به محلول به سنگ و

تشکیل کلی میان ستایسیسی و کانی‌ها را می‌سازد. میزان

کاهشی که هم‌زمان نمودار کم‌تری که در شدت کم

درگرانش به سیستم افزوده شده ولی با افزایش شدت,

به‌وسیله‌ی گرمای به سیستم اضافه شده، بلکه K

از نظر

درگرانش نشان می‌دهد که

شذیب‌بازی که با افزایش نمودارهای پاتسیم نتایج است.

تامین شده است. علاوه بر آن مقادیر از

K_2O نمودار خارج

شده است. میزان

K_2O نمودار کاهش نشان می‌دهد که

تغییر پرژکولاره‌ها و دیگر کانی‌ها سپیلسیوس اولیه

با Na_2O و MgO. افزایش شدت درگرانش به سیستم افزوده شده چهار

پیشرفت.
منیزیم در تمامی شده است. اکسیدهای 5
دگرانسی بیشتر به صورت انگکی از سیستم خارج شده‌اند که
در اثر تخریب آبایی و کالی‌های 11
الف تا پ. در نامگذاری شیمیایی در شدت پایین و بالا
تغییر چندانی در نمودار اجرا نشده، ولی در دو سطح
به سمت دیوریت گافروی تغییر کرده است که به علت کاهش
شدید سیلیس، سدیم و پتاسیم است (شکل 12). همچنین
موفقیت نمونه در نمودار شاند [21] در محیط متاویولوئوس جا
به جا شده (به دلیل افزایش آلومینیوم) و در نمودار باکتریال و
تیلاور [22] از اثر نمودار (به محیط پتانسیم اکسید اکسیدی
بالا (به دلیل کاهش پتانسیم) تغییر کرده است (شکل‌های 13 و
14).

ولی در مورد نمونه‌ی با شدت 30 تا 50 درصد دگرسانی تغییر
بیشتر ناحیه‌ی شناخته شده و در نمودار نمونه‌ی
های پرو perilite و شده کم و زیاد به سبب افزودن شده، ولی
در نمونه‌ی با شدت متوسط کاهش نشان می‌دهد. مقادیر
تخریب هورنبلند و آزاد شدن این عناصر است. در حالیکه در
شده با یا این دو عنصر به سیستم اضافه شده و کالی‌های
مانند کریستا را به مقدار زیاد تشکیل داده‌اند. مقادیر
برخلاف دگرسانی پرو پریلای فقط در نمونه‌ی با شدت متوسط
کمی افزوده شده و در دو حالت دیگر به شدت از سیستم خارج
شده است. این نشان می‌دهد که کلسیم لازم برای ساخت
کریست با بیشتر و کلسیم تغییر از تخریب کلی‌های آهن و

شکل 10 الف و ب - تغییرات اکسیدهای اصلی در شرایط مختلف دگرسانی کوارتز- سرسبیت- کربنیت- پیریت در توده‌ی هورنبلند دیوریت

پورفیری. محور Y معنی میزان تغییرات عنصر نسبت به نمونه سالم است.

شکل 11الف تا پ - تغییرات اکسیدهای اصلی در شرایط مختلف پرو پریلای دگرسانی در توده‌ی هورنبلند دیوریت. محور Y معنی میزان تغییرات عنصر نسبت به نمونه سالم است.
شکل 22 ناحیه‌های زنده‌سپاری توده‌های هورنبلند دوربری پورفری در شرایط دگرسانی‌های کوارتز-سیسیت-گربنات-پورپت و پروپیتپیک با شدت‌های مختلف نمودار از میدان پارسوت[۱۷۰].

شکل 23 موقعیت توده‌های هورنبلند دوربری پورفری در شرایط دگرسانی‌های کوارتز-سیسیت-گربنات-پورپت و پروپیتپیک با شدت‌های مختلف در نمودار شاد[۱۷۱].

شکل 24 تعیین سری ماجمایی توده‌های هورنبلند دوربری پورفری در شرایط دگرسانی‌های کوارتز-سیسیت-گربنات-پورپت و پروپیتپیک با شدت‌های مختلف در نمودار پکسیلو و تیمپر[۱۷۲].
توزیع عنصر فرعی و خاکی کمیاب در فرادن دگرسانی
همانند عنصر اصلی. عنصر فرعی و خاکی کمیاب نیز طی فرادن دگرسانی، ممکن است به وسیله آیکون به سیستم اضافه و با یک در گسلان شدن در خاکی کالیه‌ی اولیه سنگ آزاد شده و خارج شود. قبلاً گمان می‌کردند که عنصر نادر خاکی
جین دگرسانی پی تکرار هستند ولی بررسی‌های اخیر نشان داد که این عنصر نیز شدیداً متغیرکاراند. [۱۱-۲۲] فلس و هرمن [۲۲] گزارنده کرد که اغلب عنصر
قبایی در غالب همبسته‌های کربنات، پلی‌ورنین انتقال
رده ای آگوئه که عنصر
همچنین پی تکرار عنصر
به وسیله میزان در
دسترس بودن یون‌های همبسته انواع
های REE در آگوئه که عنصر
شکل رابطه با پایین
و
pH و
CI- و
SO₄²⁻
شود [۲۲۲] برایندوو. [۲۲] پیشنهاد کرد که عنصر
همافتهای پایدارتری شکل داده و به مدت طولانی
نسبت به عنصر
LREE در آگوئه با پایدار می‌ماند. بنابراین
تماکیل زنده که در محصولات نهایی سیستم‌های گریما باشند.
RT و
۲۰ تا ۴۰ نمونه از این عنصر را به تفکیک نوع دگرسانی و
شدن آن ارائه می‌دهد.

tوهویه هورتن لنگ مترویت پورفری

dگرسانی کورمان- سریست- کربنات- پیریت: کاهشگری در عنصر
LREE و
HREE در نمونه‌های دگرسان شده نسبت به نمونه
ی سالم دیده می‌شود که در مورد عنصر
LREE مشخص‌تر
است (شکل ۱۵). عنصر
Gd تغییر سیار ناجی به صورت
هورتن لنگ مترویت پورفری.
جدول 3 نتایج تجزیه عناصر فرعی و خاکی کمیاب توده هورنلند مسکووری نازه و نمونه‌های دگرسانه‌ای آن به دگرسانی‌های کوارتز-سیسیت کربنات-پیریت، برولیتیتیک و کربنات‌های با شدت‌های مختلف.

<table>
<thead>
<tr>
<th>کوارتز-سیسیت</th>
<th>کربنات-پیریت</th>
<th>برولیتیتیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>شدت آلتراسیون</td>
<td>تازه</td>
<td>پر</td>
</tr>
<tr>
<td>میکرو‌پنومتراچی</td>
<td>ppm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>زئینیم</td>
<td>167</td>
<td>219</td>
<td>326</td>
<td>193</td>
<td>281</td>
<td>164</td>
<td>197</td>
</tr>
<tr>
<td>تیتانیم</td>
<td>17</td>
<td>36</td>
<td>16</td>
<td>17</td>
<td>33</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>مس</td>
<td>30</td>
<td>36</td>
<td>47</td>
<td>92</td>
<td>54</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>نیکل</td>
<td>15</td>
<td>30</td>
<td>47</td>
<td>92</td>
<td>54</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>کبالت</td>
<td>16</td>
<td>27</td>
<td>47</td>
<td>92</td>
<td>54</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>تیتانیم</td>
<td>20</td>
<td>75</td>
<td>30</td>
<td>47</td>
<td>92</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td>نیکل</td>
<td>30</td>
<td>75</td>
<td>47</td>
<td>92</td>
<td>54</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>کبالت</td>
<td>16</td>
<td>30</td>
<td>47</td>
<td>92</td>
<td>54</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Zn</td>
<td>26</td>
<td>36</td>
<td>92</td>
<td>54</td>
<td>36</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>1</td>
<td>2</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ba</td>
<td>110</td>
<td>80</td>
<td>42</td>
<td>28</td>
<td>22</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Rb</td>
<td>57</td>
<td>37</td>
<td>50</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Sr</td>
<td>90</td>
<td>54</td>
<td>92</td>
<td>54</td>
<td>92</td>
<td>54</td>
<td>92</td>
</tr>
<tr>
<td>Y</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Zr</td>
<td>98</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Nb</td>
<td>1</td>
<td>2</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Hf</td>
<td>1.5</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Pb</td>
<td>7.5</td>
<td>34</td>
<td>96</td>
<td>34</td>
<td>96</td>
<td>34</td>
<td>96</td>
</tr>
<tr>
<td>Th</td>
<td>39</td>
<td>51</td>
<td>63</td>
<td>51</td>
<td>63</td>
<td>51</td>
<td>63</td>
</tr>
<tr>
<td>U</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ملایرها</th>
<th>REE</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>43.9</td>
</tr>
<tr>
<td>Ce</td>
<td>25</td>
</tr>
<tr>
<td>Pr</td>
<td>51.1</td>
</tr>
<tr>
<td>Nd</td>
<td>20.3</td>
</tr>
<tr>
<td>Sm</td>
<td>3.4</td>
</tr>
<tr>
<td>Eu</td>
<td>1.0</td>
</tr>
<tr>
<td>Gd</td>
<td>3.6</td>
</tr>
<tr>
<td>Tb</td>
<td>0.5</td>
</tr>
<tr>
<td>Dy</td>
<td>6.5</td>
</tr>
<tr>
<td>Ho</td>
<td>5.0</td>
</tr>
<tr>
<td>Er</td>
<td>0.4</td>
</tr>
<tr>
<td>Tm</td>
<td>0.2</td>
</tr>
<tr>
<td>Yb</td>
<td>1.1</td>
</tr>
<tr>
<td>Lu</td>
<td>0.3</td>
</tr>
<tr>
<td>ΣREE</td>
<td>100.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>انرژی Eu/Eu*</th>
<th>(La/Yb)N</th>
<th>(Ce/Yb)N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.70</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Downloaded from ijcm.ir at 12:06 +0430 on Saturday May 16th 2020
جدول 4 نتایج تجزیه عناصر فرعي و خاکی کمیاب توده هورنیلند، دوربریپورفیرو تازه و نمونه‌های دگرسان شده‌اند به دگرسانی‌های کوارتز-سرسیت-کربنات-پیریت و پروپیت لیت با شدت‌های مختلف.

| پروپیت شدت‌های | پروپیت | کوارتز-سرسیت-کربنات-پیریت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>شدت الکتراسیون</td>
<td>نازخ</td>
<td>15 ppm</td>
</tr>
<tr>
<td>MA-95</td>
<td>MA-134</td>
<td>MA-186</td>
</tr>
<tr>
<td>V</td>
<td>319</td>
<td>199</td>
</tr>
<tr>
<td>Cr</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>Co</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Ni</td>
<td>32</td>
<td>23</td>
</tr>
<tr>
<td>Cu</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Zn</td>
<td>26</td>
<td>164</td>
</tr>
<tr>
<td>Cs</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>Ba</td>
<td>25</td>
<td>573</td>
</tr>
<tr>
<td>Rb</td>
<td>785</td>
<td>73</td>
</tr>
<tr>
<td>Sr</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Y</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Zr</td>
<td>95</td>
<td>94</td>
</tr>
<tr>
<td>Nb</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hf</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pb</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>Th</td>
<td>8.6</td>
<td>1.4</td>
</tr>
<tr>
<td>U</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REE</th>
<th>MA-95</th>
<th>MA-134</th>
<th>MA-186</th>
<th>MA-196</th>
<th>MA-147</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>33</td>
<td>34.18</td>
<td>18.83</td>
<td>14.47</td>
<td>20.95</td>
</tr>
<tr>
<td>Ce</td>
<td>55.6</td>
<td>48.88</td>
<td>39</td>
<td>31.82</td>
<td>41.77</td>
</tr>
<tr>
<td>Pr</td>
<td>8.25</td>
<td>55.5</td>
<td>5.8</td>
<td>4.13</td>
<td>4.93</td>
</tr>
<tr>
<td>Sm</td>
<td>5.57</td>
<td>4.79</td>
<td>4.21</td>
<td>4.3</td>
<td>4.57</td>
</tr>
<tr>
<td>Eu</td>
<td>1.21</td>
<td>1.32</td>
<td>1.77</td>
<td>1.39</td>
<td>1.44</td>
</tr>
<tr>
<td>Gd</td>
<td>3.09</td>
<td>3.65</td>
<td>3.75</td>
<td>5.6</td>
<td>4.98</td>
</tr>
<tr>
<td>Tb</td>
<td>0.73</td>
<td>0.57</td>
<td>0.58</td>
<td>0.63</td>
<td>0.61</td>
</tr>
<tr>
<td>Dy</td>
<td>0.56</td>
<td>0.5</td>
<td>0.45</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Ho</td>
<td>0.7</td>
<td>0.7</td>
<td>0.63</td>
<td>0.75</td>
<td>0.88</td>
</tr>
<tr>
<td>Er</td>
<td>1.55</td>
<td>1.1</td>
<td>1.15</td>
<td>1.2</td>
<td>1.95</td>
</tr>
<tr>
<td>Tm</td>
<td>0.84</td>
<td>0.85</td>
<td>0.85</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>Yb</td>
<td>1.88</td>
<td>1.85</td>
<td>1.73</td>
<td>1.45</td>
<td>1.49</td>
</tr>
<tr>
<td>Lu</td>
<td>0.72</td>
<td>0.72</td>
<td>0.7</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>ΣREE</td>
<td>13.87</td>
<td>11.82</td>
<td>10.15</td>
<td>9.89</td>
<td>10.08</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.29</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>(La,Yb)N</td>
<td>0.97</td>
<td>0.98</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>(Ce,Yb)N</td>
<td>0.33</td>
<td>0.43</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
</tbody>
</table>
محله پلوشانسی و کانی شناسی ایران

طرح 17 تغییرات عناصر فرعی و برخی عناصر خاکی کمیاب به‌هنگام شده به بوسته قرارده [31] در نمونه‌های درگاسانی کوارتز-سیسنت.

درگاسانی پروپیلنیک: غنی‌شدگی اندکی در عناصر HREE در نمونه‌های درگاسان شده نسبت به نمونه‌های سالم HREE دیده می‌شود (شکل 17). این غنی‌شدگی در نمونه شده کم Gd و Eu، Sm به خصوص در عناصر مشاهده شده است. در نمونه‌های با شدت بیش از 30 درصد درگاسانی مقدار عناصر REE تقریباً برای با نمونه‌های سالم شده و در پرخبه مواد نیز حتی تهی شدنی مشاهده می‌شود. مانند عناصر HREE (شکل 17). همچنین نسبت LREE به REE (شکل 17) با بالا رفتیدند درگاسانی افرازیش نیز می‌دهد (جدول 3). به‌هنگام شده عناصر فرعی و Rb برخی از REE نسبت به بوسته قرارایی نشان می‌دهد که در شدت کم این درگاسانی‌ها از نظر خارج شده، در حالیکه در شدت بالا مقداری به وسیله مخلوط اضافه شده است. این

www.ijcmir.ir

Downloaded from ijcmir.ir at 12:06 +0430 on Saturday May 16th 2020
در نمونه‌های درگاسان‌های شبه‌پرتوکسیمیک در توده‌های هورنبلند مونزونیت پرفیروی، دستخوش کاهیدگی اندکی شده‌اند که به تخرب فلزسایهای Sr و Ba و نیز هم‌امکان دارگاسان‌های دیگر با افزایش شدت درگاسانی تهی‌شدنی شدیدی نشان می‌دهند که به علت تخریب پلاژیوکلازهای که در نمونه‌های درگاسان‌های سالم باعث شده است که تهی‌شدنی شدیدگی نیزم به دلیل اثر در نظر گرفته شده است. عنصر Nb در نمونه‌های درگاسانی که در شدت کم درگاسانی میزان آن بیشتر است، همچنین عنصر Y در شدت کم درگاسانی غنی‌شدنی اندکی درد و Zr شدت بیش از ۶۰ درصد تهی‌شدنی نشان می‌دهد. عناصر Hf و Ta با افزایش شدت درگاسانی به شدت کاسته شده‌اند (شکل ۲۰).
توده هورنیلند دیویدیت پورفیری

dگرسانی کوارتز- سرسیت- کربنات- پیریت: که‌هایگی در اکثر
عنصر HREE و LREE در نمونه‌های دگرسانی شده نسبت به
نمونه‌های سالم دیده می‌شود که در مورد عناصر
مشوهدت است (شکل 21). این که‌هایگی در مورد عناصر
La افزایش شدت دگرسانی افزوده شده است. در
حالیکه در عناصر دیگر بالا رفتند شدت دگرسانی تأثیر
چندانی Eu و Gd نسبت به مورد عناصر سالم چنانچه
پیشنهادی است. عنصر Na نسبت به مورد عناصر
یافتهای دیگر نسبت به مورد عناصر در
دیده (شکل 21). حالت نسبت به
دگرسانی کمی افزوده شده است. همچنین نسبت
(La/Yb)N با بالا رفتند شدت HREE
پیشنهادی بیشتر دستخوش شده است (جدول 4). به‌هنجار شدن
عنصر فرمی و برخی از نسبت به پیشنهادی قرارهای
نمونه به ماده که در
دیده که

شکل 21 تغییرات عنصر B به‌بها در N نمونه‌های دگرسانی کوارتز- سرسیت- کربنات- پیریت در توده‌های هورنیلند

نتایج به نمونه‌های نژاد شده نمی‌دهد. این بدان علت است که
Rb در سرمایه‌ای از تحلیل هرچه بیشتر فلسفات‌های
پتاسیم ناپسین شده است. این موضع با تغییرات تنش
همخوان دارد و حتماً در شدت بالا مقدار اضافی K از سیستم
در شدت بالا باید افزایش شد SR و Ba آزاد شده است (شکل 22). عنصر
دگرسانی نهایی کاهش نشان می‌دهد که به علت تخریب
پلاژیوت‌الاسنت. لازم به یادآوری است که که‌هایگی
Y و Nb در اثر دگرسانی Zr
طلی دگرسانی ناجی بوده است. عنصر
دستخوش نهایی شده که این نهایی‌گی در شدت بالای
دگرسانی شدن کمتر است. تغییر زیبکون می‌تواند عامل
پیشنهادی باعث شد که عنصر
پیشنهادی با وسیله ایگون به سیستم اضافه شده است (شکل
22). تغییرات عنصر من، سرب و روی نیز باعث به شدت
کاتی سازی و حضور کلئه‌های سولفیدی در نمونه‌های

شکل 20 تغییرات عنصر P و برخی عنصر خاکی کمبین شده به پوسته و قارای [33] در نمونه‌های دگرسانی کربنات در توده‌های هورنیلند مونزونیت پورفیری.
نگاشته شده در "نگاشته شده در عناصر و اثر تغییرات عناصر در کیمیایی و خاکی کمیاب در زون‌های ..."

بردشت
کانی‌سازی مس-طلای پورفیری گسترشی پی‌جویی همین به
یک رشته از پورفیری می‌شود. دقیقاً در بی‌پورفیری در "نگاشته شده در اثر تغییرات عناصر در کیمیایی و خاکی کمیاب در زون‌های ..."
مورد کنترل می‌کند. همچنین نوع واحد سنگی بررسی شده در
میزان تغییرات عناصر تاثیر دارد. به نحوی که مقایسه تغییرات
زئوسمی للو دی مونوزنیتی با توده دیورتی در درکسانته-
های مشابه اختلافی را خصوصاً در عناصر فرعی و خاکی
کمیاب نشان می‌دهد که همه عناصر اصلی، فرعی و
خاکی کمیاب یا نیم‌داهنده در درکسانته دست‌خوش تغییرات می‌شوند.
P₂O₅ , MnO , TiO₂ و که این میزان تغییر در برخی گم (مانند
K₂O , SiO₂ و در برخی عناصر (مثل Eu , Y , Gd , Nb
Hf , Zr , Rb , Ba , Sr , Na₂O , TFeO , MgO , CaO , Al₂O₃
و اغلب عناصر REE) قابل توجه است. شدت درکسانته
سنگ علاوه بر نوع درکسانته، مقدار تغییرات عناصر را در اکثر

مقایسه زئوسمی دو تودهٔ نفوذی نسبتاً سالم با
ترکیب مونژنیت و دیورتی با نمونه‌های درکسانت شده
درکسانته‌های کوارتز- سرسیت- کریت- پروپیتیک و
کریت) آنها نشان می‌دهد که همه عناصر اصلی، فرعی و
خاکی کمیاب یا نیم‌داهنده در درکسانته دست‌خوش تغییرات می‌شوند.
P₂O₅ , MnO , TiO₂ و که این میزان تغییر در برخی گم (مانند
K₂O , SiO₂ و در برخی عناصر (مثل Eu , Y , Gd , Nb
Hf , Zr , Rb , Ba , Sr , Na₂O , TFeO , MgO , CaO , Al₂O₃
و اغلب عناصر REE) قابل توجه است. شدت درکسانته
سنگ علاوه بر نوع درکسانته، مقدار تغییرات عناصر را در اکثر

![شکل 22 تغییرات عناصر پهن‌جر از کنار کریت (31) در نمونه‌های درکسانتی پروپیتیک در توده هورتیند دیورتی پورفیری.](https://example.com/shaal/22)

![شکل 24 تغییرات عناصر فرعی و برخی عناصر خاکی کمیاب پهن‌جر از کنار کریت (32) در نمونه‌های درکسانتی پروپیتیک در توده هورتیند دیورتی پورفیری.](https://example.com/shaal/24)

[19] ملکزاده ام، کریپور م. ح. یی‌سنجی زیرکون به روش اورانتوم- سرب در منطقه اکتشافی سرسال‌فرهی (۱۳۸۷): شاهدی بر دوره متطوّری انوین مبانی نخاب پروپری در ایران، مجله زمین‌شناسی اقتصادی ایران (در حال چاپ).