تهیه نانوذرات فریت کبالت-روژ و بررسی تغییرات دمای بستن با جانشانی روش به چاپ
کبالت در میدان مغناطیسی متناوب با سامانه‌های گوتاگون

سهراب منوچهری، جمشید عمیقیان، مرتفی مظفری، محمد حسن بوسفی

1- گروه فیزیک دانشگاه منطقه‌ای اشت، شاهین شهر
2- دانشکده ارد اسلامی، واحد تجویز اباد
3- گروه فیزیک دانشگاه رازی کرمانشاه

(دریافت مقاله: 11/9/89، بازخوانی نهایی: 9/1/89)

چکیده
ناموتاهیر مغناطیسی فریت کبالت-روژ Co1−xZnxFe2O4 X= 0.2 0.4 0.6 0.8
با نکش‌های محول در آب کبالت، روژ و آهن در هیدروکسید سدیم و در دمای
80 100 120 140 C تهیه شدند. ساختار فازی با پراش برتو ایکس
تعیین و میانگین اندازه بلورکها با رابطه شر محاسبه شد. نتایج نشان می‌دهد که همکاری مونوهوا تک فاز هستند و با افزایش
x از مقدار 0 تا 0.8 میانگین اندازه بلورکها از حدود 13 nm به حداکثر
8 nm کاهش می‌یابد. ریخت‌شناسی و اندازه‌گیری ذرات با
میکروسکوپ الکترون غیر هورنی بررسی شد. نتایج این بررسی نشان می‌دهد که ذرات شکل کوری دارند و میانگین اندازه ذرات
پیروانم 13.5 nm است که با میانگین اندازه بلورکها هم‌ویلایی دارد. سپسگی دمای بستن
به ساماند و در فشار ایرپارامغناطیسی Tn
نمونه‌ها و نمونه‌های دیگر برداری بر حسب دما در گستره
100 300 kHz با دست آمده و با قانون وگل-فولارچ برای

واژه‌های کلیدی: روش هم‌رسوی، نانوذرات، ایرپارامغناطیسی، قانون وگل-فرمول

مقدمه
ناموتاهیر مغناطیسی به خاطر ویژگی‌های یکپارچگی آن از دیدگاه نظری و هم از دیدگاه ارمنی‌گاهی و صنعتی موضوع
مورد علاقه‌ی یکپارچگان، دانشمندان و مهندسین است. فریت
مغناطیسی CoFe2O4 اسپینلی با دایم ساختار و ویژگی‌های الکتریکی و
مغناطیسی جالب مورد توجه بسیاری از یکپارچگان بوده است
[1-3]. این ویژگی‌ها به همراه واحد الکتریکی و
شیمیایی آنها، ناموتاهیر یافته فریت کبالت را برای کاربردهای
گوتاگون، مانند فروشاندازه، ضبط مغناطیسی و داروپسی
همه‌گیر مرکب کرده است [4]. فریت کبالت ساختار
اسپینلی ورون پاره‌ای دارد و درجهای وارونآن به روش نهیه

dez283@yahoo.com
همچنین تغییرات دمایی بستن با جابه‌جایی روی به جای کیالت در یک میدان مغناطیسی متناوب با ساختمان گون‌گانه و پرازش این تغییرات با قانون – فولکر مورد بررسی قرار گرفته است.

روش کار
ناوندیز فریت کیالت-روی Co۳–۱۵۰ _۱۵۰ _ Fe۳O۴ که در اینجا از آن استفاده می‌شود، با روش هم‌رسوبی تهیه شده. مواد اولیه شامل کلریدهای آهن، کلرید و روی و هیدروکسید سدیم از شرکت مک ام ان به دست آمده. محلول‌های شیمیایی این مواد به آب دوبار زدایش شده تهیه شدند. پایین‌ترین قیمت کیالت-روی مولی ۶۰ مولی pH حداکثر ۱۲ از این هنگام در دمای ۸۰°C به دست آمد. در ml ml ml مولی حال سطح (x) از محلول کلرید کیالت، ۵ مولی (x) از محلول کلرید روی و ۵ مولی (x) از محلول کلرید آهن در یک بحر در دمای ۸۰°C به یکدیگر مخلوط شدند. بعضی از این محلول‌های سبز به یکدیگر بنا به محلول اضافه شدند تا رسوب تشکیل شود. برای اطمینان از تشکیل فاز و همگنی فریت کیالت-روی کار هم زدن این سوسیال در pH۱۲ و با یک اهنگ هم زدن تابع در دمای ۸۰°C به مدت یک ساعت ادامه داشت. رسوب‌ها به دست آمده از واکنش پس از تنشین‌کردن و جداسازی با استفاده از چندین بار با آب فیلتر شدند. سپس، تهیه شده از روند آزاد کلر و سیدیم زدایش شدند. رسوب هم‌زدایی در دمای اتانول شک کردن سپس در هوای خشک به دست آمد. دمای ۱۵ دقیقه سپید شده تا پودر همگان و نیکوکونی به دست آمد.

اگر پرایژ پرتو X، نمونه‌ها با پراز شنج پرتو ایکس پراکنده به مدت امید بر روی نیم و به دست آمده، میانگین اندازه‌ای که می‌توان از پهن شدگی قلیه D از داده شده می‌باشد که به D=۱\.۵۰/برای میانگین اندازه‌ای که می‌توان از پهن شدگی قلیه D از داده شده می‌باشد که به D=۱\.۵۰/ برای بقیه عدد برای این مقدار در دمای ۸۰°C به دست آمده.

که به نام قانون وکل- فولکر نشانه می‌شود [۱۰] با باترونی این رابطه برای بسیار بی‌می‌باشد.

(۳)

(۴)
تهیه نانوذرات فریت کبالت-روی و بررسی تغییرات دمای بستن

تغییرات پذیرفتنی مغناطیسی نمونه‌ها بر حسب دما از دمای 77 تا دماه 650 K در یک میدان مؤثر مغناطیسی متناوب 200 kHz تا 120 A/m و در گستره بسامدی مناسب (Fluke, PM6306) پیک استقلاه LCR سنجی (F)

نتایج و بررسی
بررسی های ساختاری
شکل 1: اگرهای پرسند پرتو ایکس نمونه‌ها را نشان می‌دهد.

شکل 1: اگرهای پرسند پرتو ایکس نمونه‌ها X نمودارهای فریت کبالت-روی. خطوط پایین شکل با به قله‌های پرتو ایکس فریت کبالت (کارت مرجع: 10-0452) است.

شکل 2: تغییرات ثابت شبکه (■) و میانگین اندوزی پلورک‌ها (▲) بر حسب جانشینی بونهای روی.

به دست آمد.

بود. تغییرات ثابت شبکه با افزایش x، افزایش می‌یابند. افزایش خطی ثابت شبکه با جانشینی روی نشان می‌دهد که تغییرات ثابت در همه نمونه‌ها با ساختار بلوری فریت کبالت (کارت مرجع 27-0108) هم خوان است. تغییرات ثابت شبکه نمونه‌ها بر حسب مقادیر جانشینی x در شکل 1 آمده‌اند. اگرهای دامنه‌ی تغییرات ثابت شبکه با افزایش دمای هم خوانی دارد به دست آمد.
شیبکه این ترکیبه‌ها از قانون و کاردُن [16-17] پیروی می‌کنند. از طرف دیگر این ترکیبه‌های همانند فریت کالست-روی، که توجیه کاتیون‌های آن‌ها را طی کلیه عاملی با وار و فریت ناخاله گزارش شده است [16,17]. شامه‌های بینی (Co8,6% و Zn8,8%) در گزارش شده است که نسبت به شمع گروهی Fe3+ (0.54 Å) بزرگ ترند [18,19]. نانساندن بینه‌ای روی به جای پونه‌های کالست، پونه‌ای روی در جایگاه A قرار می‌گیرد و به‌عنوان آزمایشگاه A به جایگاه B بیان می‌گردد. این بیان از پونه‌های Fe3+ از جایگاه Fe3+ که شامل پونه‌های روی در جایگاه‌های A و بینه‌های اهن در جایگاه‌های A در جایگاه‌های B افزایش و بینه‌های A اهن در جایگاه‌های A کاهش می‌یابد. با توجه به ساختار بلوری ترکیب بکسک زریلی بزرگ‌ترین ترکیب بکسک زریلی بزرگ‌ترین

روی به جای پونه‌های کالست، پونه‌ای روی در جایگاه Fe3+ که شامل پونه‌های Fe3+ از جایگاه Fe�
شکل ۳ تصویر STEM نمونه کلریک.

5. Ic
(F 27 K:8
=/>? 9"2 9
=/>? <K 12 , 9,. . .7
>?@3
?‹K TEM ?F t=x.

300 400 500 600 700
300 400 500 600 700
300 400 500 600 700
300 400 500 600 700
300 400 500 600 700
300 400 500 600 700

شکل ۴ تغییرات پدیده‌ای AC بر حسب دما در سامانه‌های کوگنیک سپرده‌های مغناطیسی برای نمونه‌های (الف) $x=0.8$ و (ب) $x=0.8$.

مقادیرهای C_2 و C_1 این جدول می‌توان نتیجه گرفت که بر اثر ترکیب یا کمترین برهمکنش بین ذرات را دارند، نمونه‌های $x=0$ و $x=2$ دارای پیشرفت T_0 نتیجه می‌شود که برهمکنش بین ذرات با عناصر نمونه $x=0$ و $x=2$ شدت برهمکنش بین ذرات برای نمونه‌های $x=0$ و $x=2$ تقریباً برابر و سپس با افزایش x کاهش می‌یابد. این رفتار منطقی است. زیرا برهمکنش بین ذرات می‌تواند شامل برهمکنش دوقطعی-قطعی و برهمکنش تبادلی بین اتمهای سطحی ذرات همیشه شود. غزارش شده است که با افزایش جانشینی روی $x=0$ متغیر اشتباه نمونه‌ها افزایش می‌یابد [17]. با توجه به حجم ذره در این نمونه، دیده می‌شود که نسبت دوقطعی مغناطیسی در هزینه افزایش می‌یابد که به شدت شدت برهمکنش بین ذرات خواهد شد و سپس با افزایش بیشتر جانشینی روی کاهش مجموعه اشتباه و به همراه آن کاهش گسترش دوقطعی مغناطیسی برای ذره ایجاد می‌شود که به همین سبب تضعیف قدرت برهمکنش حاصل می‌شود. از ریز سد نامسانگردی بلوار به عمّال

\[T_0 \Delta \log f \]

\[C_1 = \frac{T_0 - T_0}{T_0} \]

\[C_2 = \frac{T_0 - T_0}{T_0} \]

کمیتی C_1 از هر مدل مستقل است و جایگاهی درمان دادن C_2 نسبی را نشان می‌دهد. کمیتی برای مقایسه دماهای بین ترکیب‌های گوناگون مناسب است. برای ذرات اپراتورفناک محله‌شناسی مقادیرهای C_1 و به ترتیب با $x=0$ و $x=2$ در خلاصه که این مقدارها برای ترکیب‌های برمکنش شدت حدود سپر برای کوجکردن در دو این نمونه‌ها C_2 و C_1 برای ترکیب‌های به شده در این پژوهش محاسبه و در جدول 1 امجدان با توجه به

\[y = -28500x + 61.774 \]

\[R^2 = 0.9833 \]

\[y = -4214.4x + 61.774 \]

\[R^2 = 0.9746 \]
برداشت

پایه نشانه‌های تغییر در رطوبت مواد به‌طور کلی به‌صورت خطي افزایش می‌یابد. به‌طور کلی نشان می‌دهد تغییرات تابشی شکل به‌این ترتیب‌ها از قانون واقعی به‌طور می‌کند. میانگین تابشی برگردانی به‌شکلی به افزایش نشان گذاری روي کاهش می‌یابد. دما ی با افزایش بسامد میدان مغناطیسی افزایش می‌یابد و با قانون وکل- فولکر هم خویند دارد. دما ی با افزایش جابجایی برای هر کلانت کاهش می‌یابد که برای افزایش تابش ناهماهنگری و شدت به‌صحبت بین‌درد و نتایج نشان می‌دهد که رابطه خطي این از وجود ندارد. به دلیل اثرهای سطحی ناهماهنگی برای ناحیه کیفیت در اندازه‌ی نامناسب به نمودهای حجمی آن بزرگ‌تر است.

مراجع

[1] Vaidyanathan G., Sendhilnathan S., Arulmurugan R., "Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticles by co-

