بررسی‌های کاندیداژی و شاره‌های درگیر بر روی رگ‌های کاتی نازی کوارتز در کانسار ورگراپی کالجیوه، جنوب غربی نایین

رضوان مهوری، موسی نورنیا، محمدعلی مکی‌زاده
گروه زمین‌شناسی دانشکده علوم، دانشگاه اصفهان
(دریافت مقاله: ۱۳۸۹/۹/۲۵، پذیرش نهایی: ۱۳۹۰/۸/۲۲)

چکیده: نشته‌های مس کالجیوه در ۱۱۰ کیلومتری شرق اصفهان، در بهنهای ایران مرکزی و در کمربند ولکانولوژیک ارومیه- برزنج واقع شده است. سلگ تکانه‌ای این نشته‌ها مناسبه‌ای برای بررسی آن‌ها و تحقیق آن‌ها انسان بسیار نبوده و تحقیق‌های انسانی با سنجش‌نامی تونسی و توی سنجکی است. تحقیق‌های ماهواره‌ای سلگ تکانه‌ای این نشته‌ها هستند. کاتزایی به شکل رگهای و رگچه‌ای بوده و کوارتز گانگ اصلی کالجیوه است. کالجیوه اولیه (هپی‌تیون) شامل دوی دو سلگولیفیک کالگوپیت و گالن و یک اکسیدی مگنتیت و کاکزایی گویورتز سولفیدی شون و کالوسیست است. بررسی‌های催م‌سنجی شاره‌ها در کانسار در کانسار تهیه کرده‌اند که دمای مربوط بهدست‌های این نشته‌ها در میان ۱۱۲ تا ۲۰۳ درجه سانتی‌گراد در درجه شوری از ۲۰ تا ۰ درصد وزنی معادل نمک طلمبه متمایز است. در این مطالعات انجام شده که می‌باشد. همچنین بررسی‌های انجام شده حاکی از آن است که کانسرداران فلزی کالجیوه از نوع کانسردار ورگراپی با سولفیدی شدن نایین است.

واژه‌های کلیدی: شاره‌های درگیر، ورگراپی، کوارتز، کالجیوه، نایین

مدت‌بندی

امروز سولفیدی‌های مس منابع اصلی تولید مس را تشکیل می‌دهند. مس در سایر انواع مختلف از جمله تهیه‌های کلیسایی و به‌وجود آمده در پیه‌های از نظر آب‌زی و نیز در سطح قدری آب رخ داده است. این مطالعات بیانگر وجود محلول کالساز با دمای متوسط شوری زبان و قدرت کالسازی کم می‌باشد. همچنین بررسی‌های انجام شده حاکی از آن است که کانسرداران فلزی کالجیوه از نوع کانسردار ورگراپی با سولفیدی شدن نایین است.

پورفیری میدانی و سرجمی‌های است. نشته‌های مس کالجیوه نیز

در همین کمربند ولکانولوژیک و در طول جغرافیایی ۲۵ دو شرقی و عرض جغرافیایی ۳۹ شمالی واقع شده است. دسترسی به منطقه از طریق راه آسفالته‌های کوه‌پایه ملامحم و راه آسفالته‌های مشرف ارتباط کننده خرم‌دشت - طلمبیان - مهرآباد و مسیر شاهی - مهرآباد - کالجیوه امکان پذیر است و در فاصله ۱۴ کیلومتری جنوب شرقی مهر آباد قرار دارد (شکل ۱).[۲]

بر اساس رهنمودی [۲] کانسرداران کرم‌پایی ناهمزد به انواع مختلف تقسیم می‌شوند که یکی از آن‌ها کانسرداران ورگراپی است. از ویژگی‌های این کانسردارهای ومع دمای کم درکرسانی

r.mehvary@gmail.com

نویسنده مسئول، تلفن: ۷۹۳۲۲۱۵۲۶، شماره: ۷۹۳۲۲۱۵۲۶ (۷۹۳۲۲۱۵۲۶)، پست الکترونیکی: r.mehvary@gmail.com

*
از سنگ‌های آذین دار کنون شده، جریان‌های گدازه‌ای زیر دریابی و لایه‌هایی از سنگ آهک را نیز در بر دارد. این واحدها تحت تأثیر دگرگونی‌های فیزیکی فشار گرفته‌اند به ویژه که اپیدوت‌ریت‌سی در این سنگ‌ها رخ داده است. به‌خاطر این اهکی (کوه تاج آباد) به سن کرتاسه این‌ساند و در کنار آنها کنگلومرات آلی از اثر عملکرد کسی رحم آباد قرار گرفته است. طول و عرض توده‌های نفوذی با ترکیب میکرو‌گرانو

پروپیتیک در سنگ‌های مافیک نا حدی سطح است و نیز به صورت رگه‌های سیلیسی شکاف پرکن، رگ‌های نانو، داری‌نتی، دودکش‌های برزی، فضاهای پرشده با شاره‌های انشاری پافت می‌شوند [4].

زمین‌شناسی و بررسی سنگ‌های صخرایی منطقه
کن توده‌های سنگی در گستره‌های نهشتی کالجوبه واحدهای کرتاسه هستند که از نظر سنگ‌شناسی دارای ترکیب

![Map Image](image_url)

شکل 1 مناطق اصلی کانسی، ساز و سی در ایران: (1) کمرنگ ارومیه- دختر (2) جنوبی البرز غربی (3) ناحیه کوره- سیب (4) ناحیه سیلان (5) ناحیه لوت ۴ ناحیه مکران، برگرفته از [17].

![Map Image](image_url)

شکل 2 مکان‌یابی جغرافیایی و راه‌های دسترسی به منطقه مورد بررسی برگرفته از [16] با تغییرات.
دبیریت پورپریت با روند شمال غربی- جنوب شرقی و سن احتمالی الیگوئی [5] به ترتیب به ۲۰ کیلومتر و ۳ کیلومتر می‌رسد. این توده‌های فوق‌العاده در واحدهای آنتارس و فوق‌انداز و باعث دگرگونی ماجاری شدن‌اند. در گستره‌ی محدود بررسی بیشترین رخ‌نمای واحدهای سنگی و استاده‌ای واحدهای سنگی در بر کردن‌های نهشته‌ای مس کالچویی را تشکیل می‌دهند (شکل ۳) [۵].

در بررسی‌های صحرایی و مشاهده‌های میکروسکوپی این پژوهش، لیتوژنی این واحدها بیشتر تولید عمده‌ای، تولید سنگی و گدارهای پیروکس اندزیت تشخیص داده شد. این واحدهای سنگی به طور فراگیر تحت تأثیر دگرسانی پروپریتک قرار گرفته و کانالهای شاخه‌ای در سطح زیر گیاهی شکل از بریست‌های تولید شده. واحدهای این واحدهای کانالهای زیر گیاهی و گدارهای پیروکس شکل‌گیری کرده‌اند. واحدهای سنگی پایه شده تحت تأثیر فاز دو مانندی قرار گرفته و در دو شکل کانالهای زیر گیاهی و گدارهای پیروکس شکل‌گیری کرده‌اند. این توده‌های فوق‌العاده در واحدهای سنگی و گدارهای پیروکس مس کالچویی را تشکیل می‌دهند (شکل ۳) [۵].

شکل ۲: نقشه‌ی زمین‌شناسی ساده‌ی شرقی منطقه، برگرفته از زمین‌شناسی [۵] با اندکی تغییرات.
شکل 4 (الف) رگ‌های و رگ‌های کوارتز که نشان دهنده جالت نمایی و ضربانی گسل‌هاست (دید به سمت شمال) ب) رگ‌های کوارتز در راستای گسل‌های منطقه (دید به سمت خارج).

شکل 5 (الف) نمایی از ساخت شکاف برگن ب) نمایی از ساخت شاهنگ به عنوان سیمایی از بابت شکاف برگن ب) نمایی از ساخت‌های جمع‌های در اثر انحلال.

روش بررسی به منظور شناسایی مقطع‌های منطقه، نخست از نقشه‌های 1:1000، 1:2500 و 1:5000 ناپین آن‌ها استفاده شد و سپس برای شناسایی بیشتر، بر اساس نقاط گرفت. به منظور شناسایی کانال‌های فلزی، تعداد 12 مقطع صافی را از زون سیلیسی.
درکیپر از

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>T_R range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30G</td>
<td>334 (7)</td>
</tr>
<tr>
<td>30G</td>
<td>294 (5)</td>
</tr>
<tr>
<td>30G</td>
<td>300 (3)</td>
</tr>
<tr>
<td>30G</td>
<td>305 (5)</td>
</tr>
<tr>
<td>41G</td>
<td>213 (4)</td>
</tr>
<tr>
<td>56 F</td>
<td>189 (10)</td>
</tr>
<tr>
<td>56 F</td>
<td>335 (1)</td>
</tr>
<tr>
<td>12G</td>
<td>140 (1)</td>
</tr>
<tr>
<td>12G</td>
<td>170 (2)</td>
</tr>
<tr>
<td>12G</td>
<td>494 (3)</td>
</tr>
<tr>
<td>12G</td>
<td>313 (4)</td>
</tr>
<tr>
<td>24G</td>
<td>238 (3)</td>
</tr>
<tr>
<td>24G</td>
<td>243 (4)</td>
</tr>
<tr>
<td>49G</td>
<td>241 (3)</td>
</tr>
<tr>
<td>49G</td>
<td>247 (3)</td>
</tr>
<tr>
<td>36G</td>
<td>101 (1)</td>
</tr>
<tr>
<td>36G</td>
<td>193 (3)</td>
</tr>
<tr>
<td>36G</td>
<td>287 (4)</td>
</tr>
<tr>
<td>22G</td>
<td>244 (4)</td>
</tr>
<tr>
<td>22G</td>
<td>260 (1)</td>
</tr>
<tr>
<td>18G</td>
<td>329 (1)</td>
</tr>
<tr>
<td>18G</td>
<td>335 (1)</td>
</tr>
<tr>
<td>18G</td>
<td>344 (3)</td>
</tr>
<tr>
<td>18G</td>
<td>245 (3)</td>
</tr>
</tbody>
</table>
جدول ۲ نتایج بررسی‌های شاره‌های درکدر در نمونه‌های کوارتز نیشته‌ای کالجومه.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Size (Micron)</th>
<th>L (%)</th>
<th>V (%)</th>
<th>(T_{m(ice)}) (°C)</th>
<th>(T_h) (°C)</th>
<th>Salinity (wt% NaCl equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>60</td>
<td>40</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>75</td>
<td>25</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>30</td>
<td>70</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>85</td>
<td>15</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>50</td>
<td>50</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>55</td>
<td>45</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>65</td>
<td>35</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>9</td>
<td>57</td>
<td>70</td>
<td>30</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>55</td>
<td>45</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>60</td>
<td>40</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>65</td>
<td>35</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>13</td>
<td>25</td>
<td>70</td>
<td>30</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>57</td>
<td>43</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>65</td>
<td>35</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>19</td>
<td>25</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>20</td>
<td>35</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>22</td>
<td>55</td>
<td>10</td>
<td>90</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>90</td>
<td>10</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>75</td>
<td>25</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>26</td>
<td>35</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
<tr>
<td>28</td>
<td>35</td>
<td>80</td>
<td>20</td>
<td>0.00</td>
<td>2.0</td>
<td>0.85</td>
</tr>
</tbody>
</table>

کانه‌های تگاری کانه‌زایی گرمایی به صورت یک‌تیمی در نمونه‌های تگاری کالجومه خالی در سنگ‌های میزان در راستای صفحه‌های گسیل رخ داده که پشتیبانی از این کانه‌ها تهیه شده است. کانه‌ها به‌طور کلی به شکل کوکوپلاسیت (شکل ۶) گرفته شدند که این کانه‌ها باعث افزایش میزان مهلکه می‌شود. این کانه‌ها معمولاً به شکل کوکوپلاسیت در داخل گالن مشاهده می‌شود. این کانه‌ها به وجود گونه‌های سطحی بهبود یافته گونه‌های کلاسیکی شباهت دارند. در یک، گونه‌های آبی رنگ‌دار و گونه‌های سفید رنگ‌دار به وجود می‌آیند.

کانه‌های تگاری کانه‌زایی گرمایی به صورت یک‌تیمی در نمونه‌های تگاری کالجومه خالی در سنگ‌های میزان در راستای صفحه‌های گسیل رخ داده که پشتیبانی از این کانه‌ها تهیه شده است. کانه‌ها به‌طور کلی به شکل کوکوپلاسیت (شکل ۶) گرفته شدند که این کانه‌ها باعث افزایش میزان مهلکه می‌شود. این کانه‌ها معمولاً به شکل کوکوپلاسیت در داخل گالن مشاهده می‌شود. این کانه‌ها به وجود گونه‌های سطحی بهبود یافته گونه‌های کلاسیکی شباهت دارند. در یک، گونه‌های آبی رنگ‌دار و گونه‌های سفید رنگ‌دار به وجود می‌آیند.
گازهایی به دام افتاده در انواع کاسارها با یکدیگر تفاوت دارد. به دلیل همه نتایج حاصل بر آن است که از شاره‌های درگیر، می‌توان به عنوان اثری مقید برای پی‌گروی کاسارها استفاده کرد. در این پژوهش از کلیه کاسارها که در فردان کاسارها به همراه نشانه‌های شواره‌های درگیر در این کاسارها وجود دارد، خصوصاً در شرایط بهبود منفی و هور، و شکل‌های قطعی نشانه‌های شواره‌های درگیر در کاسارها را یافته‌ایم.\[\text{W}5-#7(\text{R})\]\(\text{Cu}^{2+} + 2\text{H}_2\text{O} + \text{HCO}_3^- \rightarrow \text{Cu}_2(\text{OH})_2\text{CO}_3\text{(Mal)} + 3\text{H}^+\) (واکنش (1))\[\text{W}5-#7(\text{R})\]\(3\text{Cu}^{2+} + 2\text{H}_2\text{O} + 2\text{HCO}_3^- \rightarrow \text{Cu}_2(\text{OH})_2(\text{CO}_3)_2\text{(Azu)} + 4\text{H}^+\) (واکنش (2))

گالن بهعنوان یک کانال سولفیدی به صورت رگه‌ای حضور داشته و بیشتر جانثین کالکوپریت شده است. با توجه به بررسی‌های میکروسکوپی، رخه مطلوب گالن دریک جهت تشکیل‌گیری داشته و بیشتر از جانثین زمین‌ساخته وارد بر مناطق دارد (شکل 6). مگنتیت از کانه‌های اکسیدی دوران‌از است و به صورت چشم‌گیری به وسیله همانیت جانثین شده است (شکل 6).

بررسی‌های دیگر
امروزه بررسی شاره‌های درگیر یکی از راه‌های اساسی برای شناخت کاسارها و پی‌چیده این‌هاست. خصوصاً شاره‌های درگیر نظیر ترکیب شاره، دما، چگالی و ماهیت شکل 6 و اف ق لیف

شکل 6 بافته‌گرانولار و جانثین، تبدیل شدگی کالکوپریت به کوئوپریت در حاشیه (BP) پارازت کاسارهای گالن، کالکوپریت و کوئوپریت همراه با کالکوپریت رخه مطلوب گالن (RPPL) بافته‌افشان کالکوپریت و پروانه‌ای آن با کاسارهای دیگر می‌باشد. \(\text{Mgt} \rightarrow \text{Hem} \rightarrow \text{Gn} \rightarrow \text{Cv} \rightarrow \text{Ccp}\) جانثین، همانیت بهطور کامل جانثین مگنتیت اولیه شده است. (RPPL) کالکوپریت، \(\text{Gn} \rightarrow \text{Cv} \rightarrow \text{Ccp}\) مگنتیت و \(\text{Ccp}\) کالکوپریت، علامت اختراعی از [23] افتای شده است.
شکل ۷: تصاویر میکروسکوپی نسان دهنده‌ی الگوی توزیع شاره‌های درگیر در کوارتز‌های شاخه‌کالجوبی (الف) شاره‌های درگیر نانویی (ب) گردن پاتگی در شاره درگیر (ب) شاره‌های درگیر دنبال‌دار (ت) شاره درگیر منفرد.

انرژی بالای این شاره‌های درگیر وابسته است. با توجه به بررسی‌های انقباض شده روی نمونه‌های کوارتز، چهارگره از شاره‌های درگیر در دمای اتاق تشخیص داده شده که عبارتند از: ۱- نک فازی گاز (V)، ۲- نک فازی آبگون (L)، ۳- دو فازی آبگون- گاز (V + L)، ۴- دو فازی گاز- آبگون (V) (شکل ۸) الف تا ت. بیشتر شاره‌های درگیر مورد بررسی دو فازی غنی از آبگون و میزان آبگون این شاره‌ها (L + V) بالاتر از ۸۵ درصد تغییر می‌کند. بررسی ریزدانسانی نمونه‌های کوارتز وابسته به کانه‌زایی نشان می‌دهد که درجهٔ شوری محاسبه شده بر اساس دمای نهایی اعمال آخرين قطعه ی از (b) و دمای همگن شدن شاره‌ها در این نوع کانه‌زایی به ترتیب بین ۷٣ تا ۸٣ درصد وانرژی معادل نمک طعام (شکل ۹) و ۲٢٥ تا ۲٥٠ درجه سانتیگراد (شکل ۱۰) است. شوری پایین نمونه‌ها بیانگر است که کانه‌سازی در منطقه‌ی با شرايط اپی ترمال رخ داده است [۱۱۸]. شاره‌های کانه‌زا در مرحله‌ی بعد از مانگامایی در دمای کم حدود ۳۰۰ درجه سانتیگراد شکل گرفته‌اند. با توجه به بررسی مقاطع صیفی، حضور کانه‌های درون‌زا نشان دهندهٔ کالکوپیریت، گالن و مکنزیت در زمینهٔ تعیینی این شاره‌ها در اثر پدیده جوشش اسم. وجود کوکلیت و کالکوست بسیار ناچار کانه‌ها به اثر گیاه‌شناسي حاشیه‌های کالکوپیریت انجام شده‌اند. بیشتر شرایط برون‌زا و در نتیجه عمل شاره‌ها با دمای ۱۵۰ تا ۱۷۵ درجه سانتی‌گراد روی کانه‌های تشکیل شده در مرحله قبل است. کانه‌های اکسپیدی و هیدروکسیدی از قبیل هماهنن و گوتیت از دکوپنی کانه‌های سولفیدی و اکسپیدی در شرایط سطحی تشکیل شده‌اند.
شکل 8: اقلیمی در هنگام تک فازی گاز (L) در هنگام فازی دو فازی (V) فاز مایع و (V) فاز گاز. پ. شارهای در هنگام تک فازی آیگون (L) ت.

شکل 9: فراوانی شارهای در هنگام نسبت به فراوانی آنها در نهشته‌ی کالجوبه.

شکل 10: دمای همگن شدن شاره‌های در هنگام نسبت به فراوانی آنها در نهشته‌ی کالجوبه.

گرمایی در بررسی‌های صحراوی و نیز هم‌بستگی شاره‌های در هنگام غنی از بخار و غنی از مایع در بررسی‌های میکروسکوپی لازم است [13-17]. در بررسی‌های آزمایشگاهی نشان‌هایی نهشته و زرف‌های کالجوبه.

جوش‌شکسی از فرابندات کیسیک می‌باشد. تمایل به نشان‌هایی کالجوبه.

گرمایی است [13] در رخداد فرابند جوشش، حضور برش‌های
دل بر فرازند جوشش در کالجوهی وجود دارد زیرا در بررسی‌های سنگشناسی شاره‌های درگیر انواع غنی از فاز مایع در همزمانی انواع غنی از فاز باکتری می‌شوند. در بررسی‌های صحرایی، حضور کلسیت را به‌خصوص در جنگل‌ها شکستگی‌ها به صورت نیمه‌غیرکارکننده بر سیلیس جانشین شده و در سیستم‌های ابی ترمال به عنوان معرف تنفسنی‌شده آب کاربرد دارد. [18] در نظر گرفته می‌شود، می‌توان به عنوان یکی از فرازندی‌های جوشش نام یاد کرد. به منظور تعیین عمق و زرفای کانسازی در زیر سطح قدمی آب‌های صحرایی، یک مدل محاسباتی اطوری می‌توان از منحنی‌های جوشش استفاده (هیدرولوژیک) نسبت به زرفای استفاده کرد [17]. بنابراین منظور منحنی‌های جوشش نسبت به زرفای استفاده از شوری‌های مناسب باز سای شدید (شکل 11). در مورد نهی‌شته مورد بررسی زرفای کانسازی، حدود 400 متر باید می‌شود. شاره‌های درگیر در محیط‌های ابی ترمال غنی از طلا دو فاز ذوب و ذوب نوازندگی نسبت به زرفای استفاده می‌کرد. [19] نقطه‌ی ذوب پایین دارد [11]. شوری‌های کم شاره کانساز، امکان حضور میان‌هامه‌ها طلا در فاز‌های کم‌هدرند تشکیل می‌شود. با توجه به دگرگونی زون راسب‌پذیری و ناپایداری که اصولاً راسب‌پذیری‌ها با فازات گران کیفیت و طبقه‌بندی نهشته‌های طلایی ابی ترمال در نظر گرفته می‌شوند [12]. می‌توان بر پایه‌ی حضور طلا ناپایدار، ویل ادعا فعالیت نیاز به بررسی‌های

![Diagram](image_url)

شکل 11 نمودار فرآیند داده‌های شاره‌های درگیر نیمه‌غیرکارکننده کالجوهی با منحنی‌های جوشش به H_2O-NaCl نسبت به زرفای منحنی‌های جوشش به عنوان مرجع نشان داده شده است [19].

[16] Ronacher E., Richards J.P., Reed M.H., Bray C.J., Spooner E.T.C., Adams P.D., "Characteristics and evolution of the hydrothermal fluid in the North Zone high-grade area", Porgera...

