کانونشناسی و نحوه تشکیل کانی‌های گروه سرپانشین در سرپانشین‌های امیزه‌ای افیولیتی

بافت در استان کرمان

حمید احمدی بور، نادیه محمدی

پخش زمین شناسی، دانشکده شیمی، آنر، کرمان، ایران

چکیده: هر سه چندربخشیت سرپانشین‌های (لباردیت، کریزوتیل و آنتی کریزوتیل) در سرپانشین‌های آمیزه‌ای افیولیتی بافت دیده می‌شود و از نظر بافت و ترکیب شیمیایی، تفاوت‌هایی با یکدیگر دارد. لباردیت با ساختار ورق‌ای در زمینه‌های پریدوتیلی دیده می‌شود، در حالی که آنتی‌گریزوزیل به‌صورت تغییرات درگاه‌ها یا در محل زون‌های ترشی تشکیل شده و گریزوزیل به‌صورت رشت‌های شفاف و طلایی، فقط محدود به شکل‌های ریز است. پریدوتیلی این منطقه، بر اساس درجه‌ی سرپانشین‌شدن به سه گروه پری‌دوتیلی یا نسبتاً سرپانشین‌شده (حداقل ۵۰ درصد)، پریدوتیلی بیشتر سرپانشین‌شده (۹۰-۱۰۰ درصد) و پریدوتیلی هیمالا نسبتاً سرپانشین‌شده (۵۰-۹۰ درصد) تقسیم می‌شوند. سه مدل برای پریدوتیلی سرپانشین‌های این منطقه، متفاوت می‌باشد.

مقدمه

استکبار از بررسی و توجه به کانی‌های سرپانشین، بهشت در حال افزایش است، زیرا وجود کانی‌های سرپانشین. دلیل برای آنگی‌گونه و چرخه‌ای آب در عمق زمین است. از آنجا که سرپانشین‌های به‌رازی باید از تاریخچه‌ی خود را نگه‌داشته و از بررسی دقیق آن‌ها آمیزه‌ای است و بدلیل وجود اکثریت مکرر تغییر شکل در سرپانشین‌های، نتایج حاصل از

واژه‌های کلیدی: آمیزه‌ای افیولیتی بافت، آنتی‌گریزوزیل، لباردیت، کریزوتیل

hahmadi@mail.uk.ac.ir
ترکیب شیمیایی سربانیشها از ریز پردازندگان الکترونی استفاده شد (جدول 1). آنالیزها به میکروسکوپ الکترونی مدل JEOL JXA 8900 SUPERPROBE این مقاطع با میکروسکوپ الکترونی مدل LEO 1530 (EHT=15.00 kV, Mag = 2.00KX, signal A = BSD) در دانشگاه مونترآل آنالیز شدند.

جدول 1 نتایج تجزیه ریز پردازش الکترونی برخی از انواع سربانیش و کلریتهای موجود در بیرودویت‌های سربانیشی شده‌ی آزمایشی اولیه.

<table>
<thead>
<tr>
<th>کلریت</th>
<th>کرونوئیت</th>
<th>آنتگوئیت</th>
<th>بلنیت</th>
<th>اوریزیدت</th>
<th>FeO(t) = FeO + Fe2O3</th>
<th>Mg# = [Mg/Mg + Fe]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H9</td>
<td>H34</td>
<td>H36</td>
<td>H47</td>
<td>H77</td>
<td>H80</td>
<td>H32</td>
</tr>
<tr>
<td>SiO2</td>
<td>41.5</td>
<td>41.1</td>
<td>41.1</td>
<td>41.1</td>
<td>41.1</td>
<td>41.1</td>
</tr>
<tr>
<td>TiO2</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Al2O3</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>FeO</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>CaO</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>K2O</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>NiO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Oxygen(p.f.u)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
بحث و بررسی
محيط زمین شناسی آميزه افیبلینی بافت
آميزه افیبلینی بافت با ساحه میزانی 617 کیلومتر مربع
بين طول‌های جغرافیایی ۵۴° ۵۵ و ۵۳° ۴۰ و عرض‌های
جغرافیایی ۳۴° ۴۰ و ۳۴° ۴۵ در طول جغرافیایی بانه
 شهر بابل قرار دارد (شکل 1). این آفیبلینی به عنوان
یک آميزه رنگی زیمن ساخته متشکل از بلورهایی از سلک‌گره
ایقانوسی که طی کرتانه با پالی روی سلک‌گره قارچ‌های رانده
شد، در نظر گرفته شده است [3-5]. این آميزه توسط زمین-
شناسان متعددی مورد بررسی قرار گرفته و آنرا یک محيط
افیوالینی نامیده هم‌دان در سری ستوده که بین بلور
لوب و زو زمستن سیرجان (عنی شاخه از نونتینس) باز
شده است [1]. این آفیباچی به عنوان یک محيط افیوالینی
فرونشین تبیس به سن کرتانه در نظر گرفته شده [5] و برخی
دیگر نیز به حوضه پشت کنمن به سن کرتانه پایه معرفی
کرده‌اند [6]. این آميزه، به روند شمال غربی- جنوب شرقی بین
کم‌کشتفاک ارمود- دختر و زو دندریست سیرنج-
سیرجان قرار گرفته است (شکل 1 ب). سیرجان مورد
بررسی به‌صورت خودشان بزرگ و پرکرده و هم به
صورت زمین‌ای که واحدهای سلکی دیگر را احاطه کرده، با
ساحه میزانی 42 کیلومتر مربع، در تمام طول آميزه دیده
می‌شود.

شکل 11: نقشه زمین‌شناسی آميزه افیبلینی بافت با اقتباس از نقشه‌ی ۲۵۰۰۰۰۰۰۰۰: ۱ سیرجان. شماری 1192 (۱۳۹۱): ultimately کم‌کشت
افیبلینی مورد بررسی بین دو زو ساختاری ارمود- دختر و زو زمستن سیرجان. به نقشه پراکنده افیبلینی ایران و موقوفیت آميزه رنگی
مورد بررسی روی چند نمونه به طور پرکرده، در خواص‌های سلک‌گره یک گزارش شده است

atg = antogorite, chry = chrysolite, liz = lizardite, ol = olivine, opx = orthopyroxene, ref light = reflect light, xpl light = crossed polars light, SEM = Scanning Electron Microprobe
از درگاسی فراغت پریوپورین‌های منطقه، سرپنین‌سنگ‌شنگ شدن است. سرپنین‌سنگ‌شنگ پریوپورین‌های منطقه از پیرامون دانه‌ها یا بخشی از پیرامون دانه اشکال مربوط به ریزه پیش روی می‌کند، در این‌جا سرپنین‌سنگ‌شنگ در این شکل ریزه‌ها به دلیل زودگی‌ترین واکنش پیش روی می‌کند. در این‌جا هر یک از پریوپورین‌ها با یک مشخصه مشابه بیشتر به این بخش شتاب‌دهنده بیشتری دارد که بخش داشته باشد. این دوره از شکل‌های درست گسترش یافته است (شکل ۲ آلف). در پریوپورین‌ها نیز سرپنین‌سنگ‌شنگ از پیرامون دانه‌ها شروع شده و به سمت مرکز دانه پیش روی می‌کند. دو درنگ کلی در استریتی‌های سرپنین‌سنگ‌شنگ بدین شکل که در پریوپورین‌ها این شکل ریزه‌ها در عدد سنتگ‌ها و شکل‌های خیلی بزرگ (خاکستری ۲ سانتی‌متر) است، به رنگ آبی، در این‌جا سرپنین‌سنگ‌شنگ در این‌جا که به دلیل زودگی‌ترین واکنش پیش روی می‌کند، در این‌جا هر یک از پریوپورین‌ها با یک مشخصه مشابه بیشتر به این بخش شتاب‌دهنده بیشتری دارد که بخش داشته باشد. این دوره از شکل‌های درست گسترش یافته است (شکل ۲ ب). شکل ۳ پریوپورین‌های منطقه از پیرامون دانه‌ها شروع شده و به سمت‌های داده که پیرامون هارپوزورین‌های قلوه‌ای شکل ۲ ب تشکیل شده است. سپس در سرتیبی سرپنین‌سنگ‌شنگشان در این‌جا سنتگ‌ها، کریوتوپین است و کریوتوپین که فقط به دلیل بارش‌گذاری و شکل‌های خیلی بزرگ (خاکستری ۲ سانتی‌متر) است، به رنگ آبی، در این‌جا سرپنین‌سنگ‌شنگ در این‌جا که به دلیل زودگی‌ترین واکنش پیش روی می‌کند، در این‌جا هر یک از پریوپورین‌ها با یک مشخصه مشابه بیشتر به این بخش شتاب‌دهنده بیشتری دارد که بخش داشته باشد. این دوره از شکل‌های درست گسترش یافته است (شکل ۲ ب). به رنگ آبی، در این‌جا سرپنین‌سنگ‌شنگ در این‌جا که به دلیل زودگی‌ترین واکنش پیش روی می‌کند، در این‌جا هر یک از پریوپورین‌ها با یک مشخصه مشابه بیشتر به این بخش شتاب‌دهنده بیشتری دارد که بخش داشته باشد. این دوره از شکل‌های درست گسترش یافته است (شکل ۲ ب).
سگنگ‌ها از نظر بافتی، شیب الیوپس‌های موجود در سرپانتهای و Wicks
همکاران [8]، سه مدل را برای سرپانتهای شدید الیوپس در نظر گرفته‌اند و در سرپانتهایی متنوع، با افزایش درجه سرپانتهایی، این سه مدل، تشخیص داده شدند که به شرح زیر بودند: مدل اول: سگنگ‌سازی شدید الیوپس‌های دانه‌ای الیوپس و بالغ‌مانند الیوپس سالم در وسیع‌ترین مدل اول گسترش بافت شکه‌ای و بافت ساخته شده‌ها است (سرپانتهای
شده الیوپس در سنگ‌های گروه 1) مدل دوم: گسترش دوباره-ای سرپانتهای شدن الیوپس‌های بالغ‌مانند الیوپس‌های
به سنگ‌های گروه 2 و 3. مدل سوم: سگنگ و گسترش سرپانتهایی شده‌ها از آن‌ها فرم کامل دانه‌ای
الیوپس. این مدل به ایجاد بافت ساخته شده بافت‌های آنواری و با بهبود
کمتری بافت شکه‌ای شده است (سرپانتهای شدن الیوپس‌ در
 سنگ‌های گروه 3).

مدل بیشترین برای سرپانتهای شدن الیوپس‌های موجود در سنگ‌های گروه اول متعلق دانه‌ای شده است که توسط
Wicks و همکاران [8] ارائه شده و در بالا به این شده است.
بافت اولیه الیوپس دانه‌ای به شکل شکه‌ای و

یا در مرز شکستگی‌های الیوپس در حال تاکید
است. این بافتی است که در راستا دانه‌ای الیوپس
به صورت نهایی و به روش‌های یکپارچه تهیه می‌شود و

پیوسته در داخلی الیوپس (خاکستری، نازدیک، نازدیک
رگه‌های ذخیره و معمولاً دارای خاموشی موجی است.

برخی از برخی از دانه‌ای الیوپس سالم در وسیع‌ترین
بات به رشته‌هایی به دست آمده که به رگه‌های
شکستگی، ناهنجاری ایستاده و دانه‌ای الیوپس که با رگه
های لرزاندی احتمالاً شکسته شده از نظر دیگری پیکان
سنگ‌های الیوپس در سنگ‌های گروه 2 و 3.

این مدل به شکل شکه‌ای و بافت ساخته شده است.

می‌تواند نقشی در چگونگی رشد الیوپس و قطعات
شکستگی‌های که بلوک الیوپس درشت از الیوپس‌های

رفتار الیوپس در سنتی‌مادر تلوپیزیتی (در نور تداخلی). ب- بافت ساخته شدی در سنتی‌مادر دوتنی با بهسه الیوپسی که هنوز به

سرپانتهای دنباله‌شده است (در نور استحصالی). ب- تصویر نموداری از چگونگی رشد لرزاندی لرزاندی در محل فرورفتگی دانه الیوپس.

\[\text{OL} \]

\[\text{2 Pesosoidal lateral veins} \]

\[\text{Massive lizards vein} \]
شکل ۵- بافت شبکه‌ای در تصویر SEM-تصویر نمونه‌برداری از چگونگی رشد شبه فیبرهای لیزرادیتی در اطراف بافت شبکه‌ای. بافت نواری در سینگ مادی دونینی سرپانشیتی شده (در نور تداخلی).

سنگ‌ها، الیوت‌های باقی‌مانده در میان بافت‌های شبکه‌ای، ساعت شنی، لیزرادیتی و یا نواری، دوباره تحت تأثیر فرآیند سرپانشیتی شدن قرار گرفته‌اند و به‌طور کامل از بین رفته‌اند. به‌طوری‌که هیچ دانه‌ای الیوت‌سالیمی در سینگ باقی نمانده و یا سرپانشیتی، بروزتی، مگنتیت و یا تالک چاکینگ شده‌اند. سرپانشیتی‌شدن در پیرامون بافت‌های شبکه‌ای و یا لیزرادیتی‌شدن سینگ‌های گروه قبل با تشکیل شبه فیبری و یا دانه‌های لیزرادیتی همراه بوده است، ولی چگونگی سرپانشیتی شدن در میان این بافت‌ها متغیف است، زیرا در این نقاط بقایای الیوت‌ها قرار داشته که با پیشرفت سرپانشیتی‌شدن، الیوت‌های زیر بقایی شبکه‌های اصلی این بافت‌ها مشابه در بافت شبکه‌ای تغییر کرده است. در این دوره، در مرحله اول، لیزرادیتی‌با تشکیل شبکه فیبرهای سیار طیف (با رنگ تداخلی نارنجی) به دست می‌رسد. سپس سرپانشیتی‌شدن و تشکیل شبه فیبرهای لیزرادیتی متغیر شده (احتمالاً به دلیل تمام‌شدن شاره) و باقی‌مانده دانه‌های الیوت‌های در وسط سالم است. سپس با نفوذ شاره جدید، که ترکیب متفاوتی دارد، مطرح‌شده چهار‌میکرو‌همکاران [8] است. در این دوره، همزمان با آغاز چگونگی شبکه‌ای شکل‌گیری در تصویر SEM-تصویر نمونه‌برداری از چگونگی شبکه‌ای بافت، فیبرهای لیزرادیتی موجب شده و مخلوط‌شده در سینگ‌های گروه ۲ و ۳، مدل دوم و با سوم از مدل‌های هارپورژیتی (در نور تداخلی).
شکل 7. افزایش درجهٔ سرپنتینی‌سازی در 1 و 2 فاز موجب ایجاد وضعیت نئوایا و تشکیل بافت ساخته شده، لازم به ذکر است که در مرحله‌ی 2، مولکول‌های سرپنتینی‌سازی شده برای اتصال به بافت نویزی در اطراف از بخارات در وسیلهٔ مهاجران از رشد رهایی کرده‌اند. در این صورت، طرح بافت ساخته شده در مرحله‌ی 1 از این مراحل سبب شده، که در نهایت بافت نویزی، به‌طور کامل تشکیل شده است.

سپرینتینی‌سازی در دو مرحله از طریق انتقالات از بخارات در وسیلهٔ مهاجران رخ می‌دهد. در این مراحل نسبت به مرحلهٔ قبل، تفاوت شیب دما و فشار حاکم در این اجسام واکنشی و یا اتصالات ترکیبی بین این دو مرحله نسبت به حاشیه، شبکه‌ای تشکیل می‌دهد. به‌طور کلی، بازهٔ ترکیبی‌های خاصی ایجاد می‌شود که شبکه‌ای حاکی از رگه‌های کریزوتلی و ماکتی‌سازی 11) می‌باشد.

در مطالعه از انتروپی اورکس و تشکیل باستیت، در سنگ‌های مورد بررسی، انتروپی اورکس‌ها معمولاً از اطراف بافت در طول شکستگی‌ها، در مسیر باقیماندهٔ مهره‌های نیز ایجاد می‌گردد. در این مراحل، انتروپی اورکس‌ها به‌طور کامل تشکیل می‌شود و سبب درد رهایی کرده‌اند. در این مرحله، سپرینتینی‌سازی در دو مرحله از طریق انتقالات از بخارات در وسیلهٔ مهاجران رخ می‌دهد.

شکل 8. بررسی اثر شکستگی‌ها در راستای شکستگی‌ها در بلوار ازبیکوس (در نور داخلی) و سپرینتینی‌سازی در راستای شکستگی‌ها در بلوار ازبیکوس (در نور داخلی).
تشکیل آنتی گروتی در سرپانچه‌های منطقه دو نو آنتی- گروتی دیده می‌شود: یکی آنتی- گروتی که با رشد در برش گره‌ها، روی شکل‌های کلی ترکیب شده‌اند (شکل 12 ف) و دیگری آنتی- گروتی که در یک سطح معمولاً با اکسیژن بهره‌برداری می‌شود و در داخلی فلز بیشتر به هم قفل شده (interlocking) و گاهی به شکل‌های شعاعی (spokes) چیده می‌شود و دارای رنگ‌های تنقلی سفید، آبی، تانژنی و یا زرد که در کنار سری اول است و معمولاً نسبت به لیزریت و کریزینیت بافت شاخص هر کدام از آنها نشانه می‌شود. زیرا لیزریتی فقط در اطراف دانه‌های ریز و یا در وسط آنها سابک‌تر و بافتی فیبری همراه با اکسی‌آنتی جای می‌گیرد. اگر یک نوا یا یک چندنوجی و گریزینیت بیشتری فلوتری زمینه فلزی همراه با قبضه‌های شکیل‌های سخت، شیشه‌ای، سخت، نواری یا چندنوجی، و گریزینیتی بیشتری فلوتری زمینه می‌شود و با رشد رسته‌های دیگر بافت‌های شاخصی به دیده می‌شود. ولی آنتی گروتی دارای اکسی‌آنتی شاخصی بیشتری است. آنتی گروتی به‌صورت زمینه فلوتری در برخی از سطح‌ها دیده می‌شود و گریزینیتی بافت زمانی که در دیده می‌شود و به‌نظر می‌رسد که اگر از سطح‌های شاخص می‌شود، شرایط دما و فشار با ریزترین قرار گرفته‌اند [15]. شدت سرپانچه‌تی نشان‌دهنده این است که بافت‌های در این زمینه‌های دستگاه‌پذیری از دیدگاه‌های آنتی‌گروتی نیز به‌مدت گذشته با رشد و در مرحله دیگر از هم گیری و ثابت‌ناتوانی است. تا کنون گرایش‌ها و بافت‌های از دیدگاه یک دیگر گرفته شده که بر رشد‌های دیگر در زمینه‌های دیگر است. غالب این فاز تغییرات شکل آنتی گروتی است.
شکل 10.alfa - تصویر شماتیک از نحوه رشد رشته‌های کریزوتیلی فلای. β - تصویر شماتیک از نحوه رشد رشته‌های کریزوتیلی مورب.

شکل 11.alfa - رشد رشته‌های کریزوتیل در یک بارش مالی موجود در سرپانتینیت با سنگ‌ماده هارپیوپتیتی گروه 3 (در نور منطقه). β - رشد و رشد رشته‌های کریزوتیلی بر روی یک بلوک کوه‌ای موجود در یک شکاف در نور نارنگی. - تصویر SEM از رگه کریزوتیلی شکل ب که رشد غیر پکناختی رشته‌های کریزوتیلی رشدی و یا کوته‌های کریزوتیلی اشکالی نوسان ماند و سنوسی نامنظم را می‌خواهد.

شکل 12.alfa - رشد انتی‌گویی به پایه‌های درون یک پایه (در نور نارنگی). β - رشد انتی‌گویی به پایه‌های درون یک پایه (در نور نارنگی).

شیمی‌کاتی‌های سرپانتینیتی موجود در آمیزه‌های کلاسیس بافت سرپانتینیتی موجود در آمیزه‌های کلاسیس بافت، از نظر ترکیب شیمیایی (جدول 1)، به 4 گروه تقسیم می‌شود که عبارتند از: سرپانتینیتی نوع لیزاردیت، سرنگ تل شکل‌دهنده از گیاسک (باستئیت)، انتی‌گویی و کریزوتیلیهای رشته‌ای.

با توجه به نتایج تجزیه‌ای کاتی‌های سرپانتینیتی منطقه مورد بررسی بر روی نمونه‌های شکل 12 گرفته و تغییر نمونه‌های در گستره تأثیر به پایداری از سرپانتینیتی به نظر بود. یا که باعث می‌گردد گونه سرپانتینیتی بعنی لیزاردیت، کریزوتیلی و انتی‌گویی قرار می‌گیرند. [16] کاتی‌های گروه سرپانتینیتی را از نظر میزان...
لیزاردیت و کریزونیت: در شکل ۱۴ الاف انواع لیزاردیتها بر اساس یافته‌های را نشان می‌دهد. مسئله قابل توجه در مورد لیزاردیتها، کریزونیت، نظریه‌برای آن‌ها کلریت و یا تالک است که در بررسی‌های میکروسکوپی به راحتی قابل تشخیص نیست. برای آگاهی از وجود هره‌ندید لیزاردیتها، ممکن است نیاز به سیمپاتی با کلریت و یا تالک است که در بررسی‌های میکروسکوپی به راحتی قابل تشخیص نیست.

از نظر ترکیب شیمیایی، کریزونیت‌های منطقه‌داری MgO-H₂O در بالاترین بوده (میانگین ۳۲٪) در حالی که میزان در لیزاردیت و آنتی‌گوپیت، به ترتیب برابر میانگین ۲۵۵.۴ و ۳۶ و در کریزونیت‌های منطقه (میانگین ۱۴.۴٪) کمتر از لیزاردیت و آنتی‌گوپیت است. ولی از لحاظ مقادیر SiO₂ و FeO تقریباً مشابه با آنتی‌گوپیت است (جدول ۱). ترکیب مولی در سرپانکسینی در سرپانکسینی گرندیت نوع ۱۵.

شکل ۱۴ الاف: تفاوت ترکیب انواع لیزاردیتها موجود در منطقه‌های مواد مطمئن در نمونه به MgSi#-نمونه شده به در MgSi#-نمونه نیست به در MgSi#-نمونه نیست به در

شکل ۱۳ الاف: گستره‌های کلی‌های گروه سرپانکسینی روی سیستم (MgO-SiO₂-Al₂O₃) [۱۶] و قرارگیری سرپانکسین‌های منطقه‌داری مورد بررسی بر روی گستره‌های پایدار یک روش گینگی‌پاره گروه سرپانکسین‌های این لیزاردیت، کریزونیت و آنتی‌گوپیت. گرندیت و آنتی‌گوپیت در سرپانکسین‌های این الاف (MgO/FeO)SiO₂ در سرپانکسین‌های آزمایشگاهی رنگ‌های مشابه از آن‌ها کلریت و یا تالک است که در بررسی‌های میکروسکوپی به راحتی قابل تشخیص نیست. برای آگاهی از وجود هره‌ندید لیزاردیتها، ممکن است نیاز به سیمپاتی با کلریت و یا تالک است که در بررسی‌های میکروسکوپی به راحتی قابل تشخیص نیست.

بنیان قرار می‌گیرد. یکی از این انالیزهای (شماره D10) به سرپانکسین‌های کروم‌سربیلول و باسنته است که در آن نقطه، سرپانکسین‌ها به‌صورت هره‌ندید با کلریت دیده می‌شود و آن‌ها به یک گروه سرپانکسین وابسته است که احتمالاً دارای زیر شاخه‌های SiO₂ و کلریت صورت گرفته است.

MgO-SiO₂-Al₂O₃

<table>
<thead>
<tr>
<th>ماده</th>
<th>MgO</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیزاردیت</td>
<td>۲۳٪</td>
<td>۴۳٪</td>
<td>۲۴٪</td>
</tr>
<tr>
<td>کریزونیت</td>
<td>۲۵٪</td>
<td>۳۴٪</td>
<td>۲۷٪</td>
</tr>
<tr>
<td>آنتی‌گوپیت</td>
<td>۲۷٪</td>
<td>۴۳٪</td>
<td>۲۰٪</td>
</tr>
</tbody>
</table>

شکل ۱۵ الاف: نمونه‌های سرپانکسینی در گرندیت نوع ۱۵.
تصاویر SEM نشان می‌دهد که شکل‌ها و موارد سنی انواع کلیه‌های گروه سریانیت‌های موجود در منطقه را می‌توان تشخیص داد. به نظر می‌رسد که لزاردیت، کریزوتیل و مواد مولکولی دستاوردیک مربوط به کف اقباسی و همچنین قطعات از اکسیدها تفاوت‌های چشمگیری نشان می‌دهد. برای یکی از سریانیت‌های بسیار نسبی تفاوت‌های با بالوردها تشکیل شده است که از اکسیدها و کلروپروکسین (باستیت) دارای Cr و پایین‌ترین هستند (باستیت) در بسیاری از سریانیت‌های حاوی کم میانگین Cr در منطقه، کمتر از لیزرادیتهای است که در بافت شیب‌های جایگزینی‌های شیاهاند و میزان Si باستیت‌های منطقه، نیز بالاتر از لیزرادیتهای است.

آنتی‌گروت: آنتی‌گروت با نسبت پایین‌تر Mg/Si نسبت Mg/Si سریانیت‌های دیگر محسوس می‌شود (شکل 14) که این مسئله بدلیل ساختار موج مناسب (alternating wave) در آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌باشد. Mg/Si بوده و لیزرادیت از آنتی‌گروت آنتی‌گروت با نسبت Mg/Si سریانیت‌های دیگر منطقه، می‌ба
نیز در نمونه‌های سنگین این منطقه دیده می‌شود. بخش VI
(شکل ۱۶) مرحله ششم سرپانشین شدن سنگ‌های رشته‌ای ناشان می‌دهد. در این مرحله، از سرپانشین شدن کامل دانه‌های
البون، رشته‌های کریزیتیون، درون رگه‌های نازکی که
چندوجهی کامل سرپانشین شده از قطع کرده‌اند. شروع به
رشد می‌کند. در مرحله هفتم (شکل ۱۶، بخش VII)، رگه-
های کریزیتیونی با رشته‌های پیشرفته کوانتور دو رشته‌های مرحله
ی قبل، رگه‌های کریزیتیونی، مرحله ششم از قطع می‌کند.

فرورانش و یا فراوانی پوشیت اقبائی‌نشی و تحلیل آنتی‌گروپت
در این مرحله ناحیه پوشیتی اقبائی‌نشی یا ناحیه پوشیتی می‌باشد. در این مرحله، توسط Ghasemi & Talbot و Shahabpour
شد است. با وجود شرایط مطلوب و ایجاد دما و فشار، آنتی-
گروپت یک نسل روبای ایجاد شده به رشد می‌کند. پیشرفته سرپانشین شدن منجر به تشکیل شیشه‌های درحم–
González رشدگردی آنتی‌گروپت می‌شود. بر عقیده-

های بلند و در این کریزیتیون با رشته‌های کوانتور تحقیق شد.
شکل ۱۶ افزایش درجه سرپانشینی شدن را یک سنگ
سالم تا کامل سرپانشینی شده و چگونگی رشد کانال‌های
لزاریتی و کریزیتیون را نشان می‌دهد. سرپانشینی شدن در این
سنگ‌ها مانند یک سنگ کالکتر را خیلی سالم شود. شده در مرحله دوم (شکل ۱۶، مرحله II) به
(شکل ۱۶، مرحله V)، سالمینیو به در ساختار سرپانشین شدن می‌باشد.

فرورانش اقبائی‌نشی یا ناحیه پوشیتی می‌باشد. در این مرحله، توسط Ghasemi & Talbot و Shahabpour
شد است. با وجود شرایط مطلوب و ایجاد دما و فشار، آنتی-
گروپت یک نسل روبای ایجاد شده به رشد می‌کند. پیشرفته سرپانشین شدن منجر به تشکیل شیشه‌های درحم–
González رشدگردی آنتی‌گروپت می‌شود. بر عقیده-

بودل دانه‌ای از سرپانشینی شدن می‌باشد. در این مرحله، توسط Ghasemi & Talbot و Shahabpour
شد است. با وجود شرایط مطلوب و ایجاد دما و فشار، آنتی-
گروپت یک نسل روبای ایجاد شده به رشد می‌کند. پیشرفته سرپانشین شدن منجر به تشکیل شیشه‌های درحم–
González رشدگردی آنتی‌گروپت می‌شود. بر عقیده-

بودل دانه‌ای از سرپانشینی شدن می‌باشد. در این مرحله، توسط Ghasemi & Talbot و Shahabpour
شد است. با وجود شرایط مطلوب و ایجاد دما و فشار، آنتی-
گروپت یک نسل روبای ایجاد شده به رشد می‌کند. پیشرفته سرپانشین شدن منجر به تشکیل شیشه‌های درحم–
González رشدگردی آنتی‌گروپت می‌شود. بر عقیده-
سربانیت‌سینه‌ای شده در زمان‌های بعید و بافت‌های باقی‌مانده، ولی در مورد لیزرادیت و گرژوتیل به‌نظر می‌رسد که بدین پیش از شکاف‌سپرایی افیانوس تیکچ ناتی‌بافت و در شرایط دگرگونی درجی کف افیانوس تشکیل شده باشد.

شکل 16. افیانوس در جریان سربانیت‌سینه‌ای شدن در سنگ‌های پریدونیتی امیده‌ای افیانوسی بافت را در هفت مرحله نشان می‌دهد. مرحله 1: تشکیل الوبین با بافت منطقه‌ای. مرحله II: شکاف‌سنگ که با ایجاد بافت شبکه‌ای همراه است. مرحله III: افیانوس رشد الوبینی به سمت مرکز دانه‌های الوبین و باقی‌ماندن الوبین سالم در وسط که بافت تواری را می‌سازد. مرحله IV: افیانوس رشد لیزرادیت‌ها تا ازون یک درن کامل دانه الوبین. در این مرحله، بقا‌ی الوبینی سالم و در حالی یک درن چندگانه تشکیل می‌دهد. مرحله V: افیانوس با ایجاد بافت شیبک و چندوجهی‌های هرکدام است. مرحله VI: رشد گرژوتیل با برف‌های بلند بر روی بافت‌های مرحله VII. قبلاً مرحله VII. رشد چندان مرحله‌ای که گرژوتیل رشد دارد در شکاف‌های دگرگونی در جریان گرفته شده در نور تداخلی گرفته شده (شکل d) در نور طبیعی باشد.

کاکینی و نحوه تشکیل کاکینی گروه سربانیت‌های در سربانیت‌های...

قدرنائی
در اینجا لازم است از همکاری‌های بی‌دریغ برپرس کشف گانتر

مراجع