زمین دما - فشارسنجی داسیت مارکو (شمال شرق بیروند) و بروبنومهای آمیفیلوئیتی آن

محمدمین سیبزه‌نیا

چکیده: بروبنومهای آمیفیلوئیتی فراوان‌ترین بروبنوم گنبد داسیتی مارکو واقع در شمال شرقی بیروندند. این داسیت حاوتی پلاژیکولاژی نیک کوالر، هوی‌لندهای سنگ‌سنگی بیشتری و بروبنومهای آمیفیلوئیتی دارای هوی‌لندهای سنگ‌سنگی بیشتری و فوهه‌های پلاژیکولاژی + بروبنومهای تیپ ساخته نشده است. برای دانستن درمیان خاک و فشار فشار‌بر نسبت به سنگ نسبت به سنگ سنگ‌سنگی بیشتری است. این داسیت حاوتی پلاژیکولاژی + بروبنومهای آمیفیلوئیتی تیپ سنگ‌سنگی بیشتری است.

واژه‌های کلیدی: زمین دما - فشارسنجی; داسیت; آمیفیلوئیتی; بروبنوم; بیروند

مقدمه

گنبد داسیتی مارکو در شمال شرق بیروند در گستره‌ای منطقه طول شرقی ۷۰۰ کیلومتری و عرض ۵۲۰ کیلومتری شمالی به کرانه‌های است. این داسیت به‌طور کلی از این وابسته بوده و در دارای بروبنومهای متغیر آمیفیلوئیتی متفاوت و گنبدی است. ۱۲. بروبنومهای پاسخگو به پاسخگویی ایفوبلیتی و متفاوت‌های کلیشته و پالاسیاک نشان دهنده بافت‌های

mhyousefzadeh@yahoo.com

نویسنده سیبزه‌نیا: مهندسی سیبزه‌نیا عضو تیم آموزشی در مرکز آموزشی و مدیریت کشور، تهران، ایران

دریافت مقاله: ۱۴/۰۹/۶۰ مشخصه داده: ۱۴/۰۹/۶۰
روش بررسی

در راستای این کار پژوهشی، نخست کارهای صحرا و میکروکوئی بررسی و میسر آنالیز نتایج به روش EPMA اندازه‌گیری شدند. در این کار گرفتن نمونه برداری، سیستم میکروکوئی، به روش EPMA استفاده شد و به دست آمده این آزمایشات نتایج در رسانه‌های ایرانی و فارسی انتشار یافت که به تأثیرگذاری آلتاکسینان بر کارکرد آنزیم‌های غده پستان است. در هم‌اکنون، برخی از محققین این آزمایشات را در زمینه‌های مختلف انجام می‌دهند و به نتایج مثبتی برخوردار هستند.
العنوان: توصیع یافته‌های ارتباطی منطقه‌ای (مقياس: 20 Km)

جدول 1: نتایج آنالیز نقطه‌ای امپبیول‌های موجود در داسیت مارکو.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>نطقه تجربی شده</th>
<th>کانی</th>
<th>موادیت</th>
<th>فرمول (تغییر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(O)7.7</td>
</tr>
<tr>
<td>SiO₂</td>
<td>25.36</td>
<td>44.0</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>20.9</td>
<td>1.81</td>
<td>1.83</td>
<td>1.92</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>10.83</td>
<td>10.14</td>
<td>10.14</td>
<td>10.14</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.48</td>
<td>3.48</td>
<td>3.48</td>
<td>3.48</td>
</tr>
<tr>
<td>FeO</td>
<td>5.52</td>
<td>5.52</td>
<td>5.52</td>
<td>5.52</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>18.74</td>
<td>18.74</td>
<td>18.74</td>
<td>18.74</td>
</tr>
<tr>
<td>CaO</td>
<td>10.88</td>
<td>11.01</td>
<td>11.01</td>
<td>11.01</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>98.19</td>
<td>98.38</td>
<td>98.88</td>
<td>98.38</td>
</tr>
</tbody>
</table>
جدول ۲: نتایج آنالیز نقطه‌ای آمیفیشی‌های موجود در پرونیوم

<table>
<thead>
<tr>
<th>نسبت‌های نقطه‌ای</th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>Fe$_2$O$_3$</th>
<th>FeO</th>
<th>MgO</th>
<th>Al$_2$O$_3$</th>
<th>K$_2$O</th>
<th>Na$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>M\times4</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>M\times7</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>M\times11</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>M\times15</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>M\times19</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
</tbody>
</table>

جدول ۳: نتایج آنالیز نقطه‌ای آمیفیشی‌های موجود در پرونیوم

<table>
<thead>
<tr>
<th>نسبت‌های نقطه‌ای</th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>Fe$_2$O$_3$</th>
<th>FeO</th>
<th>MgO</th>
<th>Al$_2$O$_3$</th>
<th>K$_2$O</th>
<th>Na$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>M\times4</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>M\times7</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>M\times11</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>M\times15</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>M\times19</td>
<td>74.5</td>
<td>15.9</td>
<td>0.7</td>
<td>0.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.4</td>
</tr>
</tbody>
</table>
تصویر ۲ درشت بلورهای پلاژیوکلاز و هورتیلد سیزی دو تشکیل دهنده اصلی داسیت با یافتهٔ پورفیری (الف) و پرینت‌های آمفیبولیتی موجود در آن (ب).

نمودار ۱ (الف) گستردهٔ ترکیب پلاژیوکلازهای موجود در داسیت مارکو و پرینت‌های آمفیبولیتی آن (نمونه ۱۷۶۵)، در نمودار . Or-Ab-An نمودار ۱ (الف) گستردهٔ ترکیب پلاژیوکلازهای موجود در داسیت مارکو و پرینت‌های آمفیبولیتی آن (نمونه ۱۷۶۵)، در نمودار .

ادامهٔ نمودار۱ (ب) ترکیب آمفیبول‌های سنگ میزبان و پرینت‌های آمفیبولیتی (نمونه ۱۷۶۵) در نمودار . Fe/(Fe+Mg) و (ب) ترکیب میکتگاه‌ها موجود در آن‌ها در نمودار .

TSi \[TSi = \frac{Mg}{Mg+Fe^{2+}} \] در پراپری

در نمودار .
تصویر ۳‌ هورنبلند‌های قهوه‌ای (gr.Hbl) که در بخش گنبدی به هورنبلند سبز (br.Hbl) تبدیل شده و پلاژیوکلاز در تشکیل دهنده اصلی برونوپن‌های آمفیبولیتی (PPL).
زمین دما- فشارسنجی

امفیمی‌ها، سپلیت‌های زنگ‌برقی مقایسه‌ری از تعداد‌ها، مدل‌هایی دارای دهنده که از ترکیب شیمیایی و ساختار کارشی برای تبادل موارد مفصل‌داشته‌اند. توان قابل ملاحظه‌ای محدودیت [15] تنوع ترکیب شیمیایی و سپس می‌شود که دمای قدرت باندی مرکز و سطعی

از انواع سنگ‌های با شرایط مختلف دما و فشار، تشکیل شده. آمفی‌فی‌ها تقریباً در تمامی سنگ‌های آذرین فلزیک، حد واسط و ماکسیم و در گستره واسطی از دما (400-1150°C) موجود در ترکیب آمفی‌فی، تابع فشار، دما و

Al و Ti CaNa و Al ترکیب آمفی‌فی، باعث فشار، دما و

آمیزه‌ای از کربنات تروئید و Si می‌شود. آنتی‌دئور مقدار Al و Ti در آرنج است. عواملی که توزیع فشار و فیبر در آن مقدار

در آمبی‌فی که افزایش دما سبب آغاز مقدار Ti و نسبت آنزیمی Al می‌شود. [16] میزان میکرو‌نرخ افزایش دما، تقریباً 3 تا 4 تفاوت به میزان Al توزیع می‌شود. [17] آن با فشار، فشار میزی Al در آمیزه‌ای از کربنات تروئید و Si می‌شود. [18]

در آمیزه‌ای از کربنات تروئید و Si می‌شود. [19] آنتی‌دئور مقدار Al و Ti در آرنج است. عواملی که توزیع فشار و فیبر در آن مقدار

باید محسوب‌سازی‌های فشار و دما، با استفاده از ترکیب آمفی‌فی، لازم به طور کلی هولن‌لاندی چه در شرایط غیرقابل‌بوده

در این فرمول، P رابطه بین کلری ترکیب و Si می‌شود. [20] Al میزان کل در ترکیب آمفی‌فی است. لازم به واردن که

ادن‌گیری فشار از این روش، بالاترین مقدار را نسبت به روش

همی‌گری نشان می‌دهد [21].

به‌طور کلی هولن‌لاندی چه در شرایط غیرقابل‌بوده

امکن‌سازی‌ها در کاری که کارتر، خوزمسار

قایلی‌ای، بازی‌کار، هولن‌لاندی، برایت، ماهیت‌یاب سایت باشند [18].

2- گرین‌زین‌های خاص، نسبتاً با یک‌بوده و رابطه 4<

+Mg CaSiO3 از آمبی‌فی‌ها صدق کننده تشخیص آن

بهتر است از پایان‌کاوی که ترکیب اکینولیتی

در این فرمول به ترکیب آمبی‌فی‌ها، فرمول [20] مورد

استفاده قرار گرفته است (جدول 3). تاکیدگان در استفاده

از برآورد، به‌نبه‌می‌کنند که ترکیب سیمی‌ای

فرمول زیر را باید از آن داشته‌گری دما مطرح کردند.

T = 25.3P + 654.9

زمین دما- فشارسنجی

5- در فرمول ساختار‌های هولن‌لاندی، با تعداد کاتیون‌های آن

Ca دارای [16] CaSiO3 و SiCaO2

Ta کونکron روش‌های برای محاسبه‌ی شکل‌های دمای

زاک‌یافته‌ها بوده‌اند. در این طرح، Al

در ترکیب هولن‌لاندی، این روش‌ها در این

ساختار کارشی برای تبادل مواردها، مدل‌هایی

یافته‌اند. در ترکیب ترکیب‌ها دگرگونی، تا

می‌شود. دما به متغیر باشد. دما

Si و کاتیون‌های Al در

موفقیت‌های ترکیب آمیزه‌ای فشار و D،

در این رابطه، دما، بر حسب درجه‌ی سانتی‌گراد و فشار، بر حسب کیلوبار اندازه‌گیری می‌شوند.

روش دیگر دماسنجی استفاده‌اش از ترکیب هورنتلد و پلاژیوکلز است. هر چند هنوز تردیده‌ای در مورد روش دماسنجی هورنتلد-پلاژیوکلز وجود دارد، ولی فعلاً یکی از روش‌های رایج برای دماسنج سندگاه‌های آهنگی-فلپی‌ای بیشتر می‌باشد.

برای مثال، هم‌اکنون روش‌های پلاژیوکلز و هورنتلد به صورت همزیست بوده و امپیلولاها، فاقد حاشیه‌ای اکتینولیتی باشد.

این روش زمین دماسنجی، یک روش مدلسازی نیاز است که دمای کوارتز بانک و واکنش دوم مربوط به شرایطی است که در سند کوارتز وجود دارد.

جدول ۲ فشار و دماهای محاسبه‌شده برای امپیلولاها موجود در واقعیت مارکه و برونومهای امپیلولینی‌ان.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>نوع سنج</th>
<th>نقطه تجزیه شده</th>
<th>فشار (کیلوبار)</th>
<th>دما (°C) بر پایه [۱۶]</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۷۵</td>
<td>برونوم امپیلولینی</td>
<td>不怕</td>
<td>۷۷۵</td>
<td>۶۷۷۲۲</td>
</tr>
<tr>
<td>۷۷۵</td>
<td>برونوم امپیلولینی</td>
<td>不怕</td>
<td>۷۷۵</td>
<td>۶۷۵۵۲</td>
</tr>
<tr>
<td>۷۷۵</td>
<td>برونوم امپیلولینی</td>
<td>不怕</td>
<td>۷۷۵</td>
<td>۶۷۵۲۱</td>
</tr>
<tr>
<td>۷۷۵</td>
<td>برونوم امپیلولینی</td>
<td>不怕</td>
<td>۷۷۵</td>
<td>۶۷۵۵۲</td>
</tr>
<tr>
<td>۷۷۵</td>
<td>برونوم امپیلولینی</td>
<td>不怕</td>
<td>۷۷۵</td>
<td>۶۷۵۲۱</td>
</tr>
<tr>
<td>۷۷۵</td>
<td>برونوم امپیلولینی</td>
<td>不怕</td>
<td>۷۷۵</td>
<td>۶۷۵۵۲</td>
</tr>
<tr>
<td>۷۷۵</td>
<td>برونوم امپیلولینی</td>
<td>不怕</td>
<td>۷۷۵</td>
<td>۶۷۵۲۱</td>
</tr>
<tr>
<td>۷۷۵</td>
<td>برونوم امپیلولینی</td>
<td>不怕</td>
<td>۷۷۵</td>
<td>۶۷۵۵۲</td>
</tr>
<tr>
<td>۷۷۵</td>
<td>برونوم امپیلولینی</td>
<td>不怕</td>
<td>۷۷۵</td>
<td>۶۷۵۲۱</td>
</tr>
</tbody>
</table>

