زمین دما - فشارسنجی داسیت مارکو (شمال شرق بیرجند) و برونبومهای آمیفیولیتی آن

مهدی حسنی‌یوسف زاده*، مسیب سبزی نِی

چکیده: برونبومهای آمیفیولیتی فراوان ترین برونبوم گند داسیتی مارکو واقع در شمال شرقی بیرجند هستند. این داسیت حاوی پلی‌پروپیلن سبز، برونبوم و مگنتیت و برونبومهای آمیفیولیتی دارای خصائص مخلوطی تلفیقی. سبز و قهوه‌ای، پلاژیوکلاز + بیوتیت ± کوارتز ± پپروکسین هستند. برنامه‌ای غیر افتاده سه درون‌کشی داشته باشد. در این نتایج، با سقوط آمیفیولیتی و هم‌پایه‌های مصرفی، پلاژیوکلاز به عنوان ابزار تدریجی در تعادل و سقوط می‌باشد. در نتیجه، تدریجی را به کمک ابزار معنی‌داری می‌رسم. دانشگاه بیرجند، استان آذربایجان غربی، ایران

(دریافت مقاله: ۹۹/۰۷/۰۶، نسخه نهایی: ۹۹/۱۴/۱۲)

واژه‌های کلیدی: زمین دما - فشارسنجی; داسیتی؛ آمیفیولیتی؛ برونبوم؛ بیرجند.

که در اواخر کرتاسه [۴] هم‌زمان با بسته شدن حوضه اقیانوسی بین بلک لوت و بلک آف‌فان دستخوش دگرگونی داسیتی شدیدان. معمولاً به دلیل طولانی نیوتن کمال‌المنزلی زمانی می‌باشد که پدیده‌ای فراوان، تعادلی در ترکیب شیمیایی و کاوش نوعی آن‌ها صورت نخواهد گرفت. برنامه‌ای برونبومها اطلاعات مختلف را در خصوص تاریخچه تشکیل کرده و می‌گمیزی، فراهم می‌کند [۵]. در همین مقدمه

گنبد داسیتی مارکو در شمال شرق بیرجند در گستره‌ای با مشخصات "۳۳۰ درجه شرقی و "۳۲۳ و ۵۷۵ طول جغرافیایی" است (تصویر ۱). این داسیت به بیشترین واشتیت پدیده و دارای برونبومهای داسیتی آمیفیولیتی مسابقه و گنبدی است [۶]. برونبومهای پدیده به کنار گرفته شده‌ای می‌باشد. پلی‌پروپیلن

mhyousefzadeh@yahoo.com

نویسندهٔ مسئول، تلفن: ۰۰۹۱۵۳۶۲۰۱۱۸ (۱۲۷۲۵۲۵۱۵۲۵). پست الکترونیکی: mhyousefzadeh@yahoo.com

*
روش بررسی

در راستای این کار پژوهشی، نخست ضمن کاوش‌های صحرا، میکروسکوپی بروز و سپس سطوح نواحی به روش PMMA بررسی و سپس آنان بر نواحی به روش EPMA می‌گردد. در این بخش یکی از نواحی به روش PMMA بررسی می‌گردد و سپس در این بخش نواحی به روش EPMA بررسی می‌گردد.

پایه اصلی دستی مارکو پورکیا با خمیره ریز دانه‌ای است. درشت بلورهای شکل دار با منطقه‌بندی نوسان پالژوکلاز (اولیوگلاز و آندزین) شاخه‌ترین کانی در سیستم a-Fe3O4 (میکروسکوپی بررسی) خنجی کاوتور نیز، به فراوانی یافته می‌شود. افزایش گرانی‌هایی در شکل‌داری و نیز شکل‌داری در یکی از نواحی به روش EPMA بررسی می‌گردد و سپس در این بخش نواحی به روش PMMA بررسی می‌گردد.

پایه اصلی دستی مارکو پورکیا با خمیره ریز دانه‌ای است. درشت بلورهای شکل دار با منطقه‌بندی نوسان پالژوکلاز (اولیوگلاز و آندزین) شاخه‌ترین کانی در سیستم a-Fe3O4 (میکروسکوپی بررسی) خنجی کاوتور نیز، به فراوانی یافته می‌شود. افزایش گرانی‌هایی در شکل‌داری و نیز شکل‌داری در یکی از نواحی به روش EPMA بررسی می‌گردد و سپس در این بخش نواحی به روش PMMA بررسی می‌گردد.

پایه اصلی دستی مارکو پورکیا با خمیره ریز دانه‌ای است. درشت بلورهای شکل دار با منطقه‌بندی نوسان پالژوکلاز (اولیوگلاز و آندزین) شاخه‌ترین کانی در سیستم a-Fe3O4 (میکروسکوپی بررسی) خنجی کاوتور نیز، به فراوانی یافته می‌شود. افزایش گرانی‌هایی در شکل‌داری و نیز شکل‌داری در یکی از نواحی به روش EPMA بررسی می‌گردد و سپس در این بخش نواحی به روش PMMA بررسی می‌گردد.
جزئیات جدول نشان می‌دهد که آزمایش‌های کیما و مکانیکی در داسیت مارکه (شمال شرق برجند) و...
جدول ۲: نتایج آتالیز نقطه‌ای آمفیسیال‌های موجود در برنیوم

<table>
<thead>
<tr>
<th>کالی</th>
<th>هیبرنیت</th>
<th>کربنات</th>
<th>موجود</th>
<th>مولتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>TiO₂</td>
<td>Al₂O₃</td>
<td>Cr₂O₃</td>
<td>FeO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>MnO</td>
<td>MgO</td>
<td>CaO</td>
<td>K₂O</td>
</tr>
<tr>
<td>Na₂O</td>
<td>K</td>
<td>Mn</td>
<td>Mg</td>
<td>Na</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فرمول (متوسط)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
</tr>
<tr>
<td>0.024</td>
</tr>
</tbody>
</table>

جدول ۳: نتایج آتالیز نقطه‌ای آمفیسیال‌های موجود در آنتیوئیت

<table>
<thead>
<tr>
<th>کالی</th>
<th>هیبرنیت</th>
<th>کربنات</th>
<th>موجود</th>
<th>مولتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>TiO₂</td>
<td>Al₂O₃</td>
<td>Cr₂O₃</td>
<td>FeO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>MnO</td>
<td>MgO</td>
<td>CaO</td>
<td>K₂O</td>
</tr>
<tr>
<td>Na₂O</td>
<td>K</td>
<td>Mn</td>
<td>Mg</td>
<td>Na</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فرمول (متوسط)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
</tr>
<tr>
<td>0.024</td>
</tr>
</tbody>
</table>

آدام جدول ۲

<table>
<thead>
<tr>
<th>کالی</th>
<th>هیبرنیت</th>
<th>کربنات</th>
<th>موجود</th>
<th>مولتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>TiO₂</td>
<td>Al₂O₃</td>
<td>Cr₂O₃</td>
<td>FeO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>MnO</td>
<td>MgO</td>
<td>CaO</td>
<td>K₂O</td>
</tr>
<tr>
<td>Na₂O</td>
<td>K</td>
<td>Mn</td>
<td>Mg</td>
<td>Na</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فرمول (متوسط)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
</tr>
<tr>
<td>0.024</td>
</tr>
</tbody>
</table>

آدام جدول ۳

<table>
<thead>
<tr>
<th>کالی</th>
<th>هیبرنیت</th>
<th>کربنات</th>
<th>موجود</th>
<th>مولتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>TiO₂</td>
<td>Al₂O₃</td>
<td>Cr₂O₃</td>
<td>FeO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>MnO</td>
<td>MgO</td>
<td>CaO</td>
<td>K₂O</td>
</tr>
<tr>
<td>Na₂O</td>
<td>K</td>
<td>Mn</td>
<td>Mg</td>
<td>Na</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فرمول (متوسط)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
</tr>
<tr>
<td>0.024</td>
</tr>
</tbody>
</table>
تصویر ۲ درشت بلورهای پلاژیوکلاز و هورتبلند سیز دو تشکیل دهنده اصلی داسیت با پاکت پورفلیی و پروتانوم‌های آمفیبولیتی موجود در آن (ب).

نمودار ۱ (الف) گستره‌های ترکیبی پلاژیوکلازی موجود در داسیت مارکو و پروتانوم کوارتز آمفیبولیتی آن (نمونه ۷۶۵)، در نمودار

\[\text{TSI} = \frac{Mg}{(Mg+Fe^{2+})} \text{در برابر} \]

\[\text{Fe/(Fe+Mg)} \]

(ب) ترکیب میکاهای موجود در آن‌ها در نمودار A۱۰۵۵ می‌باشد.
تصویر ۳ هورنبلدی‌های فهودایی (br. Hbl) که در بخش گندری به هورنبلد سیز (gr. Hbl) تبدیل شده و پلاژیوکلاز دو تشکیل دهنده اصلی پروموهای آمفیبولیتی (PPL) است.

نمودار ۲ (الف) ترکیب آمفیبولی‌های موجود در پروموپ پیروکسن آمفیبولیتی (نمونه ۸۵۸)، در نمونه (ب) نسبت به Mg/(Mg+Fe²⁺)، در نمونه Or-Ab-An نسبت به Or-Ab-An Fe/(Fe²⁺+Mg) نسبت به Or-Ab-An Ca-Mg-Fe Cpx-En-Fs-Wo کلینوپیروکسن‌های آن در نمونه ۱۰۰۰۱.
زمن دما - فشارسنجی

آمپیلوی‌ها، سیلیکات‌های زئوریت‌هایی از مشاهده را تشکیل می‌دهد که از ترکیب شیمیایی و ساختاری شیمیایی و ساختاری، سبب می‌شود که آن قادر باشد در گزنی و مسیری از ارتفاع سنجک‌ها با شرایط مختلف دما و فشار، تشکیل شود. آمپیلوی‌ها تقییاً در تمام سنجگ‌های آدنیک فلسیک، حد واسط و مافیک و در گردن و منشوری از دما (°C) 1150-1250 حضور دارند [16]. مقادیر Al و TiCaNa موجود در ترکیب آمپیلوی، تابع فشار، دما و Al Ti موجود در ترکیب آمپیلوی‌ها شیمیایی‌های مشابه کل AI و Ti مویفیت‌های چهاروجهی، نسبت به دما حساس اند - طوری که افزایش فشار و نیز افزایش Ti در آمپیلوی AIIV میزان [16] معمولاً با افزایش میزان AIIV افزایش می‌یابد. کاتانیت به میزان AIIV افزوده می‌شود. افزایش AIIV میزان AIIV میزان AIIV مناسب آمپیلوی‌های فشار، AIIV زیاد شده و دما مثالی بر آن می‌شود. موهای AIIV و AIIV مناسب آمپیلوی‌های فشار با استفاده از آمپیلوی AIIV و AIIV است. آمپیلوی AIIV و AIIV در آمپیلوی، تابع فشار در مراحل تیتان با دما و فشار آن AIIV و AIIV تأثیر دارد [16].

برای محاسبه فشار و دما، با استفاده از ترکیب آمپیلوی، لازم است نمونه‌ها دارای ترکیبی به‌طور خوبی برآورد شوند.

1- دارای مجموعه‌های همبسته‌ای که ترکیب اکتینولیتی و آمپیلوی‌ها در همبسته‌ای بین دما و فشار و با بروز نسافی و FeTotal/FerTotal نسبت به افزایش کلی آمپیلوی، تابع فشار در مراحل تیتان با دما و فشار آن AIIV و AIIV تأثیر دارد [16].

2- گریزندگی اکسیژن، نسبتی بین بیولا و رابطه می‌باشد.

3- در برآورد اکسیژن در آمپیلوی‌ها که ترکیب اکتینولیتی دارند که پوچی که زیر ماکز است این کالی فاز از زیر پوچی که زیر ماکز است این کالی فاز از زیر نطق انجام و در اثر دگرسانی، تشدید پروکسی و هورنی‌بند نماید [19].

4- هورنی‌بندها بالغ فاقد منطقه‌بندی و نیز نادیگ‌سانت پا بهشود [19].

zmim-dma-fasharsangi dastset marokho (shimal shiq birjand) va ...
در این رابطه، دما، بر حسب درجه سانتی‌گراد و فشار، بر حسب کیلوبار اندازه‌گیری می‌شوند.

روش دیگر دامستی اسفاده از ترکیب هورنتلند و پلاژیوکلاز است. هر چند هنوز ترکیب‌هایی در مورد روش دامستی هورنتلند-پلاژیوکلاز وجود دارد، ولی عملاً یکی از روش‌های رایج برای دامستی سنگ‌های آهنی-فلایی به حساب می‌آید.

برای محاسبه دما با استفاده از روش دیگر، پلاژیوکلاز به صورت هم‌مرزیت بوده و امپیسیول‌ها، مقدار نشان‌دهنده اکتیوریتی باشند. این روش زمین دامستی، با کم‌ترین دامستی نسبتی کار می‌کند که بر اساس واکنش‌های زیر انجام می‌گیرد.

Edenite + 4 Quartz = Tremolite + Albite
Edenite + Albite = Riechterite + Anortite

والکانی و دیگر شرایط است که سنگ‌های دیسی و دیگر سنگ‌های کورتزر وجود ندارند.

جدول ۲: فشار و دمای محاسبه شده بر امپیسیول‌های موجود در سلسله مارکه و پروپیوم‌های امپیسیول‌ای‌ان

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>نوع سنگ</th>
<th>نقاط تجزیه شده</th>
<th>فشار (Kbar)</th>
<th>دما (°C)</th>
<th>بر بایه (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۵۵</td>
<td>پروپیوم امپیسیولی</td>
<td>برخی از مقادیر</td>
<td>۶.۹۷۶۷</td>
<td>۸۸۱.۱۶۴۶۶۸</td>
<td>۶۸.۵۶۳۴۳۱</td>
</tr>
</tbody>
</table>
برداشت
بررسی‌های انجام شده گویاه تفاوت کانی‌شناسی، بافتی و شیمی کانی‌شناسی مارکو و بروینهویم امپازولیتی آن است. از جمله این تفاوت‌ها می‌توان به تفاوت شیمی کانی و سنتگی‌های هورنلندهای قهوه‌ای در بروینهویم اشاره کرد که گواهی شرایط تیک شکل منطقه و بلوغ هورنلندهای سیزی سنج میزان است. در این راستا فشار محاسبه‌شده برای هورنلندهای سیزی موجود در سیستم، بر اساس آن، در حدود ۲۳۵۵ Kbar - ۵ - ۵ به دست می‌آید که حاکی از ابعاد ۸۷۴ - ۵۰ - ۴۰ Kbar بوده است. برای تشكل‌های بهترین روش فشار بروینهویم و کمترین به قضاوت بردن مجدد هورنلندهای بروینهویم و سنج سنج میزان وضعیت است. دلیل آن است که هورنلندهای سیزی و پلاژیوکلازهای سدیمی در اثر فشار در بروینهویم در رخساره آمپازولیت و هورنلندهای قهوه‌ای، بلاژوکلازهای کلسیم‌دار و کلسیم‌پرکسون آن‌ها به مرز درگوگنی رخساخته‌ای آمپازولیت و گرانولوئیت و اولین رخساره افت شکل شده‌اند. شرایط تبدیل دوباره به خشک کناری هورنلندهای قهوه‌ای به هورنلندهای بروینهویم پسپس فشار در داخل مکان حاصل شده است. جایی که هورنلندهای سیزی سنج میزان نیز در حال تشكل بوده است. در برابر تبدیل این دو گروه در هر بروینهویم یا ارتقابت زیست‌ناپایه از سنج میزان داده‌شده، ایند که جهت اکنون در این‌درومی‌های را بر روی ماکا ایجاد کردی که باند.

مراجع
[۱] مؤسسه جغرافیایی و کاروتگرافی کانی‌شناسی، تفسیره را هیات/ ایران/ (۱۳۸۴).
[۲] یوسف زاده ج.، یوسف، کیروفنی، زئوتیسپسی و پتروپترن سنجی‌های آتشفشانی ترشی‌بردی، میریوسی و پتروپترن سنجی‌های آتشفشانی ترشی‌بردلی، خوسفی و تکان‌بردی و پژوهش‌های اکثراً موجود در آن، رساله دکتری، دانشگاه شهید.

[۱۱] معین وزیر ف. چ، برنولیزی سنج سنجی در و تیگر، تجلیلی، ملیم (۱۳۷۷)، صفحه ۲۳۶.