بررسی چگونگی تشکیل اسکارن شمال غربی کیبرکوه با استفاده از داده‌های سنجشگری،
شیمی کاتیون‌ها و شاره‌های درگیر جنوب غرب خواف (جنوب شرق خراسان رضوی)

محسن زنگنه، قاسم آبادی*، محمد بومردی، حبیب‌الله بیبانگرد

گروه زمین شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان

چکیده: اسکارن کیبرکوه در شمال شرقی بلوک لوت و جنوب غربی شیرستان خواف در استان خراسان رضوی قرار گرفته است. این اسکارن در کانی‌ای اهن هرآمده با اثر نیوتونیذی انسان به درون آهن‌های کربنی تشکیل شده‌مانند. کارن‌گیر (گروسولار - آندراوات)، کلینوپروکس (دیوپسید - هندرزیت) ابتدایی، امپتیول‌ها، مگنتیت، کلسیت و کوارتز کانی‌های مهم و اصلی اسکارن در شمال غربی کیبرکوه هستند. این اسکارن از نوع کلسیک و دارای منطقه‌های امپتیولی، ابتدایی اسکارن، کارن‌گیر - ابتدایی اسکارن و پروکسین - ابتدایی اسکارن است. ترکیب شیمیایی کاتیون‌های مورد بررسی از 59,44 تا 59,46 درصد آندراوات متغیر است و انسان به درون آهن‌های کربنی تشکیل اسکارن در کانی‌ای اهن هرآمده با اثر نیوتونیذی انسان به درون آهن‌های کربنی تشکیل شده‌مانند.

واژه‌های کلیدی: بلوک لوت؛ خواف؛ کیبرکوه؛ اسکارن؛ کانی‌ای اهن؛ شاره‌های درگیر

مقدمه
که حاصل تأمین‌سازی بلوک لوت در نتیجه فروآشانید [1] با ان‌زایان‌میس، دگرگونی و دگرگرداندن گسترش‌هایی در واحدهای رسوبی به ویژه کربنیت‌های رخ داده که حاصل ان شکل‌گیری کاتیون‌های تایید نظیر آهن و سیاسکارنی بلوک لوت و از جمله تشکیل اسکارن و کانی‌ای اهن در کیبرکوه است.

*نویسنده مسئول، تلفن: 09115561626، نمایر: 6151473226، پست الکترونیکی: mohsenezanganeh@yahoo.com

ملاحظات: جنوب غربی شیرستان خواف استان خراسان رضوی و در عرض‌های جغرافیایی 24°19′30″ تا 24°17′30″ طول‌های جغرافیایی 59°6′ تا 59°9′ قرار گرفته است. توده‌های گرانیت‌پوشی در منطقه مورد بررسی رخ داده‌اند.
از قدمی‌ترین بررسی‌های انجام شده در این منطقه می‌توان به برجی زئوئشیمیایی سازند که در برگه‌ی یکصد زرد در زمین بررسی شده و در زمین بررسی شده، بخش شرقی، بخش غربی و بخش مرکزی این منطقه را در بر می‌گیرد.

از سکه‌های دیده‌شده، سنتی گرانتونیتی را قطع کرده که نشان‌دهنده فاصل عدیتری از مکان‌نامه‌ی منطقه است.

شکل 1 نقشه زمین‌شناسی منطقه شمال‌غربی کیپ‌کرکو قرار گرفته و این سکه شامل سه‌گروه، از قدمی‌ترین به میان‌ی، و در جنوب‌غربی، بخش شرقی را در بر می‌گیرد.

زمین‌شناسی

منطقه کیپ‌کرکو در پهن‌ترین نقطه ایران، در شمال شرقی بلوک لوط و در منطقه زمین‌شناسی 1/000000000، گستردگی را در منطقه کیپ‌کرکو را در بر می‌گیرد.

شکل 1 نقشه زمین‌شناسی منطقه شمال غربی کیپ‌کرکو، اقتباس از [6].
روش بررسی
برای بررسی های کلی شناسی و اسکارن زایی منطقه کیبرکو، تعداد ۲۴ نقطه نازک، ۹ مقطع نازک، ۸ مقطع سیفیل شیمی کلی و ۳ مقطع سیفیل اسکارنی انتخاب و در دانشگاه پامکاتالی زاین به

روش ریزپراشیت اکترون کاو مدل ۸۶۰۰ و نظیر سایبان هندهمی، ۱۵ کیلووات و جریان ۲۰۰۰A

برای تجهیز قرار دادن همچنین برای بررسی شاره‌های درگیر ۷ نمونه دیور سیفیل بررسی شدند که از بین آنها ۲ مقطع مناسب به کمک کاورز تهیه و به کمک تهیه کردن های آمپتی４ بادی طرح اسکارن انتخاب و در گروه همی‌شانسی دانشگاه تربیت معلم تهران برای زیست‌مقدمی بررسی شدند.

بحث و بررسی
معرفي توجه‌های نفودی
توجه‌های نفودی با بیشترین قدرت درختی، یک شیمالی منطقه مورد بررسی را (در شمال اسکارن و کانی‌زایی) به دلیل اختصاص داده است. (شکل ۱) این توجه‌های بلندترین قله‌های منطقه کیبرکو را به ارتفاع حدود ۱۹۰۰ متر از سطح دریا تشکیل داده‌اند. بر اساس بررسی، این نمونه را در شمال غربی کیبرکو، با ترکیب کارترژ و کارترژ، دورالتویت، دورالتویت و کارترژ، هستند. اکثریت این نوع کارترژ به‌طوری‌که به‌طور کلی در این توجه‌های نفودی دیده می‌شود. این توجه‌های کاترژ و دیگر گونه‌های گیاه‌پرور به دلیل کثرت قله‌های منطقه کیبرکو به‌طور کلی می‌شود. به‌طور کلی این توجه‌های نفودی گیاه‌پرور به دلیل کثرت منطقه یکی از سایبان‌های ماهی‌شناختی ماهی‌شناختی ماهی‌شناختی ماهی‌شناختی (VAG) است.

شکل ۲ تصویر صحرایی از موقعیت و ارتباط واحدهای سنگی در شمال غربی کیبرکو (دید از جنوب به شمال).

روش بازرسی برای بررسی، کلی و اسکارن‌زایی منطقه کیبرکو، تعداد ۲۴ نقطه نازک، ۹ مقطع نازک، ۸ مقطع سیفیل شیمی کلی و ۳ مقطع سیفیل اسکارنی انتخاب و در دانشگاه پامکاتالی زاین به

روش ریزپراشیت اکترون کاو مدل ۸۶۰۰ و نظیر سایبان هندهمی، ۱۵ کیلووات و جریان ۲۰۰۰A

برای تجهیز قرار دادن همچنین برای بررسی شاره‌های درگیر ۷ نمونه دیور سیفیل بررسی شدند که از بین آنها ۲ مقطع مناسب به کمک کاورز تهیه و به کمک تهیه کردن های آمپتی４ بادی طرح اسکارن انتخاب و در گروه همی‌شانسی دانشگاه تربیت معلم تهران برای زیست‌مقدمی بررسی شدند.

بحث و بررسی
معرفي توجه‌های نفودی
توجه‌های نفودی با بیشترین قدرت درختی، یک شیمالی منطقه مورد بررسی را (در شمال اسکارن و کانی‌زایی) به دلیل اختصاص داده است. (شکل ۱) این توجه‌های بلندترین قله‌های منطقه کیبرکو را به ارتفاع حدود ۱۹۰۰ متر از سطح دریا تشکیل داده‌اند. بر اساس بررسی، این نمونه را در شمال غربی کیبرکو، با ترکیب کارترژ و کارترژ، دورالتویت، دورالتویت و کارترژ، هستند. اکثریت این نوع کارترژ به‌طوری‌که به‌طور کلی در این توجه‌های نفودی دیده می‌شود. این توجه‌های کاترژ و دیگر گونه‌های گیاه‌پرور به دلیل کثرت منطقه یکی از سایبان‌های ماهی‌شناختی ماهی‌شناختی ماهی‌شناختی (VAG) است.

شکل ۲ تصویر صحرایی از موقعیت و ارتباط واحدهای سنگی در شمال غربی کیبرکو (دید از جنوب به شمال).
مرمرها در نمونه‌های متمایل به سفید شیری و بافت دانه شکری دیده می‌شوند که غالباً به این‌طور نشان می‌دهند. وجود شکستگی و ریز گسل‌ها در این سنگ‌ها موجب جابجایی در نواحی آهک دگرگون (مرمر) شده و در نهایت این شکستگی‌ها و ریز گسل‌ها همگام توسط کانی کلیسی پر شده‌اند.

اسکارن: اسکارن و کاتزایی در میان گسترده‌ی مرمر برسبی و در بخش جنوبی نواحی از گراین‌تینی‌ی در فاصله‌ی ۱۰۰ تا ۱۵۰ متری از آن واقع شده است (شکل ۱). علیرغم گستردگی هنچنان زیاد اسکارن در این منطقه، ترتیب منطقه‌بندی مشخص‌یا را نشان می‌دهد که شامل آمفیبول-ایپیدوت-اکسکارن، گارنت-ایپیدوت-اکسکارن و پیروپونسین-ایپیدوت-اکسکارن می‌شود (شکل ۳). گارنت، کلینوبروکسین، ایپیدوت، آمفیبول، و مگنتیت، کلسیت و کوارتز کایه‌های مهم و اصلی اسکارن در شمال غرب کیرکو هستند.

کلینوبروکسین
کلینوبروکسین در مناطقی تازگی تنبیه‌ی طبیعی به رنگ سبز برخه دیده می‌شوند و غالباً در مجاور بلورهای کارتن به صورت هم‌رنگی یا به‌دست‌های دیده می‌شوند. بلورهای کلینوبروکسین بالایی از اثر واکنش‌های مهی‌کننده و دگرگاه‌های تخریب شده و یقابی آن به رنگ سبز و با زاویه‌های خاموشی زاید و دو شکسته تقریباً شدید قابل تشخیص است (شکل ۴ ب). کلینوبروکسین، های اسکارن کیرکو به سری محلول جامد دیوپسید-هدنبرژنیتی وابسته‌اند. درصد مول هدنبرژنیتی از ۴۲ تا ۷۰٪ متغیر است که بیش از ۵۵ درصد هدنبرژنیت دارند (جدول ۱).

شکل ۳ تنبیه‌ی اسکارنی در منطقه‌های شمال غربی کیرکو، دید از جنوب غربی به شمال شرقی.

شکل ۴ تصویر میکروسکوپی از کایه‌های اسکارن در نور XPL (الف) ایپیدوت (Ep) با رنگ داخلی متغیر. (Cpx) بلوهای کلینوبروکسین (Cal) افتاب‌یاس از [۶].

فریم‌های پیمود. یادداشت‌های اخیر از کوارتز (Qz) و کلسیت (Adr) در زمینه‌ای از کوارتز (Qz) و کلسیت (Adr) در زمینه‌
جدول 1- نتایج تجزیه پیروکسنس‌های منطقه کیبرکوه به روش ریز پرداش‌های الکترونی (بررسی EPMA (بررسی و/TW))

<table>
<thead>
<tr>
<th>Sample</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td>130</td>
<td>135</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td>130</td>
<td>135</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

با توجه به جدول بالا، می‌توان به دنبال زیر گزارش کرد:

- گزارش: نتایج کیمیایی درون‌یابی کیبرکوه در اینجا نشان می‌دهد که این سنگ در اثر فعالیت‌های فلز‌آمیزی و فلز‌برداری در زمان‌های مختلف و با توجه به موقعیت و موقعیت جغرافیایی، تأثیرات مختلفی را داشته است. این تأثیرات شامل تغییرات در محیط سیال، تغییرات در مقدار اسید و پ_relationsی بین محیط‌ها بوده و باعث پدید آمدن تغییرات در این سنگ شده‌است.

- ترکیب کیمیایی: این سنگ در اثر فعالیت‌های فلز‌آمیزی و فلز‌برداری در زمان‌های مختلف و با توجه به موقعیت و موقعیت جغرافیایی، تأثیرات مختلفی را داشته است. این تأثیرات شامل تغییرات در محیط سیال، تغییرات در مقدار اسید و پ_relationsی بین محیط‌ها بوده و باعث پدید آمدن تغییرات در این سنگ شده‌است.
جدول ۲: نتایج تجزیه گزارنت‌های منطقه کیبرکوه به روش ریزپرداش (EPMA) (بر حسب wt%).

<table>
<thead>
<tr>
<th>Sample</th>
<th>۴۱</th>
<th>۴۲</th>
<th>۴۳</th>
<th>۴۴</th>
<th>۴۵</th>
<th>۴۶</th>
<th>۴۷</th>
<th>۴۸</th>
<th>۴۹</th>
<th>۵۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>۴۶۵۵</td>
<td>۴۶۴۰</td>
<td>۴۶۴۵</td>
<td>۴۶۳۰</td>
<td>۴۶۲۷</td>
<td>۴۶۴۰</td>
<td>۴۶۵۵</td>
<td>۴۶۳۰</td>
<td>۴۶۲۷</td>
<td>۴۶۴۰</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۸۶۴۰</td>
<td>۸۶۳۰</td>
<td>۸۶۴۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
<td>۸۶۵۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۸۶۲۷</td>
<td>۸۶۳۰</td>
<td>۸۶۴۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
<td>۸۶۵۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۸۶۲۷</td>
<td>۸۶۳۰</td>
<td>۸۶۴۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
<td>۸۶۵۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
</tr>
<tr>
<td>MnO</td>
<td>۸۶۲۷</td>
<td>۸۶۳۰</td>
<td>۸۶۴۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
<td>۸۶۵۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
</tr>
<tr>
<td>MgO</td>
<td>۸۶۲۷</td>
<td>۸۶۳۰</td>
<td>۸۶۴۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
<td>۸۶۵۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
</tr>
<tr>
<td>CaO</td>
<td>۸۶۲۷</td>
<td>۸۶۳۰</td>
<td>۸۶۴۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
<td>۸۶۵۵</td>
<td>۸۶۳۰</td>
<td>۸۶۲۷</td>
<td>۸۶۴۰</td>
</tr>
</tbody>
</table>

TOTAL | ۹۹۵۰| ۹۸۷۰| ۹۹۹۰| ۱۰۰۰| ۹۹۵۰| ۹۹۴۰| ۹۹۱۰| ۹۹۵۰| ۹۹۵۰| ۹۹۵۰|

<table>
<thead>
<tr>
<th></th>
<th>بر میانی ۲۴ کسیزن</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>۶۱۲۷</td>
<td>۶۱۱۰</td>
</tr>
<tr>
<td>Al۴۱</td>
<td>۶۱۱۰</td>
<td>۶۱۲۷</td>
</tr>
<tr>
<td>Al۴۱</td>
<td>۶۱۲۷</td>
<td>۶۱۱۰</td>
</tr>
<tr>
<td>Ti</td>
<td>۶۱۱۰</td>
<td>۶۱۲۷</td>
</tr>
<tr>
<td>Fe۳۳</td>
<td>۶۱۲۷</td>
<td>۶۱۱۰</td>
</tr>
<tr>
<td>Mn</td>
<td>۶۱۱۰</td>
<td>۶۱۲۷</td>
</tr>
<tr>
<td>Mg</td>
<td>۶۱۱۰</td>
<td>۶۱۲۷</td>
</tr>
<tr>
<td>Ca</td>
<td>۶۱۱۰</td>
<td>۶۱۲۷</td>
</tr>
</tbody>
</table>

Al+Fe+Mn | ۳۸۳۵ |
%Gr	۳۸۹۰
%Ad	۵۸۹۰
%SPs	۱۵۰۰
درگیر مورد بررسی در منطقه کیبرکو دارد. به طوریکه بین 44 شاره داری درگیری به سرعت درجه A (حدوده 3/7-6/5) در است. این نوع بیشتر حجم شاهد درگیری فلزات اکنون تشکیل داده و در این نوع است. فلزات خود از 80-20 درصد حجم شاهد را تشکیل داده است به عبارتی درجه پرشدگی شاهزدار درگیری زیاد است. تعداد 4 نوع B (95/6) در این نوع میانه بررسی شده است. به نوع B وابسته است که دارای 3 فاز اکنون- جامد. گزاره همکاره که فاز جامد آن را هالیت به شکل مکانیکی مدل 6 تا تشکیل داده است. در نوع B این نوع فاز ما بررسی شد چهار دارای (جدول 6). بیشترین حجم را دارد (جدول 6).

بررسی‌های زیست‌پزشکی: بررسی‌های زیست‌پزشکی در 2 مرحله سرمایه‌ای انجام و مرحله گروهی شده و گروهی صورت گرفته- LINKAM(TMS) اند. این بررسی‌ها در 94 درجه ±0/1 ºC از 96-196 درجه ±0/1 ºC 60±60 درجه همکاره که فاز جامد درجه 6,50-200,50-300 دارد. در این نوع B سرمایه شاهزاد درگیری نوع A در کنار میانه بررسی کیبرکو داده، 2,67 فاز (8/14,83) از منفی 87/6 منفی درجه (جدول 6). سانتی‌گراد است. (جدول 3).

برای تعیین میزان کمودی شوره در شاهزاد نوع B از دنیا انتقال نشان می‌دهد که بررسی این شاهزاد در کیبرکوه به سادگی با سیستم NaCl-H2O نسبت جودیم یوتکیک بک در این سیستم حدود 21 دارد. این سیستم با سیستم NaCl-که مکمل‌دیگری در شاهرخ کانست و جواد داده از 14/15 1/6، دو برابر نهایی به سه شوره در حدود 20 نشان داده شده‌اند. بارا 3 فاز مایع.

![شکل 2 تصویر شاهزاد درگیری اولیه](image1.png)
(الف) شاهزاد نوع A با 2 فاز مایع و گاز. (ب) شاهزاد نوع B با 2 فاز جامد. مایع و گاز، تور پلازما.

طیب‌ی.
جدول ۳ مشخصات و نتایج حاصل از بررسی‌های ریزدانستین شاره‌های درگیر نوع A در رگه‌های کوارتز، منطقهٔ شمال غربی کیپ‌کوره

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>اندازه (µm)</th>
<th>شکل</th>
<th>فاز</th>
<th>سایش (٪)</th>
<th>Te (°C)</th>
<th>Tmi (°C)</th>
<th>Th(V→L) (°C)</th>
<th>شوری</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-1</td>
<td>10</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-2</td>
<td>6</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-3</td>
<td>6</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-4</td>
<td>6</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-5</td>
<td>10</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-6</td>
<td>7</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-7</td>
<td>5</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-8</td>
<td>8</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-9</td>
<td>7</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-10</td>
<td>6</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-11</td>
<td>6</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-12</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-13</td>
<td>7</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-14</td>
<td>16</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-15</td>
<td>10</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-16</td>
<td>16</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-17</td>
<td>8</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-18</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-19</td>
<td>8</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-20</td>
<td>14</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-21</td>
<td>10</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-22</td>
<td>7</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-23</td>
<td>20</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-24</td>
<td>16</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-25</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-26</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-27</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-28</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-29</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-30</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-31</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-32</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-33</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-34</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-35</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-36</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-37</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-38</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-39</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-40</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-41</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-42</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-43</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-44</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-45</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-46</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
<tr>
<td>28-47</td>
<td>12</td>
<td>پن سکل</td>
<td>V+L</td>
<td>75</td>
<td>2310</td>
<td>290</td>
<td>1040</td>
<td>2</td>
</tr>
</tbody>
</table>

شکل 7 (الف) نمودار سنوی مقداری شوری شاره‌های درگیر نوع A، (ب) نمودار سنوی مقداری شوری برای شاره‌های درگیر نوع B، (پ) نمودار سنوی مقداری همگنی برای شاره‌های درگیر نوع A، (ت) نمودار سنوی مقداری همگنی شاره‌های درگیر نوع B.
جدول 4 مشخصات و نتایج حاصل از بررسی های ربدماسنی شاهراهی درگیر نواع B در رگه های کوارتزی، منطقه ی کیروگو غربی.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>اندازه شکل (μm)</th>
<th>فاز</th>
<th>ثابث</th>
<th>Th(V→L) (°C)</th>
<th>Th-HI (°C)</th>
<th>شوری</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-1</td>
<td>16</td>
<td>V+L+HI</td>
<td>0.8</td>
<td>239.20</td>
<td>298.80</td>
<td>38</td>
</tr>
<tr>
<td>21-2</td>
<td>30</td>
<td>V+L+HI</td>
<td>0.7</td>
<td>219.50</td>
<td>329.80</td>
<td>55</td>
</tr>
<tr>
<td>21-3</td>
<td>16</td>
<td>V+L+HI</td>
<td>0.9</td>
<td>212.40</td>
<td>252.80</td>
<td>72</td>
</tr>
<tr>
<td>21-11</td>
<td>10</td>
<td>V+L+HI</td>
<td>0.8</td>
<td>216.70</td>
<td>245.50</td>
<td>56</td>
</tr>
<tr>
<td>21-13</td>
<td>7</td>
<td>V+L+HI</td>
<td>0.7</td>
<td>249.01</td>
<td>282.00</td>
<td>56</td>
</tr>
<tr>
<td>21-14</td>
<td>10</td>
<td>V+L+HI</td>
<td>0.8</td>
<td>321.30</td>
<td>317.00</td>
<td>56</td>
</tr>
<tr>
<td>21-15</td>
<td>8</td>
<td>V+L+HI</td>
<td>0.8</td>
<td>321.50</td>
<td>345.00</td>
<td>55</td>
</tr>
<tr>
<td>21-2</td>
<td>12</td>
<td>V+L+HI</td>
<td>0.8</td>
<td>255.60</td>
<td>295.80</td>
<td>28</td>
</tr>
<tr>
<td>21-4</td>
<td>14</td>
<td>V+L+HI</td>
<td>0.7</td>
<td>230.30</td>
<td>237.50</td>
<td>14</td>
</tr>
<tr>
<td>21-3</td>
<td>20</td>
<td>V+L+HI</td>
<td>0.8</td>
<td>181.70</td>
<td>249.80</td>
<td>34</td>
</tr>
<tr>
<td>21-10</td>
<td>14</td>
<td>V+L+HI</td>
<td>0.5</td>
<td>188.20</td>
<td>253.60</td>
<td>44</td>
</tr>
<tr>
<td>21-5</td>
<td>40</td>
<td>V+L+HI</td>
<td>0.5</td>
<td>188.20</td>
<td>253.60</td>
<td>44</td>
</tr>
<tr>
<td>21-6</td>
<td>20</td>
<td>V+L+HI</td>
<td>0.5</td>
<td>188.20</td>
<td>253.60</td>
<td>44</td>
</tr>
<tr>
<td>21-7</td>
<td>10</td>
<td>V+L+HI</td>
<td>0.5</td>
<td>188.20</td>
<td>253.60</td>
<td>44</td>
</tr>
<tr>
<td>21-8</td>
<td>16</td>
<td>V+L+HI</td>
<td>0.5</td>
<td>188.20</td>
<td>253.60</td>
<td>44</td>
</tr>
</tbody>
</table>

درجهٔ شوری شاهراهی درگیر نواع B از 24 تا 29 درصد وزنی معادل نمک طعام متنی است. مقدار درجهٔ شوری از نظر امکان کوارتزی 7 نمایش داده شد. برای تعيين دمای همگن برای هر دو نوع نواع، درگیر مورد بررسی از آزمایشگاه استفاده شد. درجهٔ استفاده 3 نشان داده شد.

همنگی شاهراهی نواع A از 188 تا 339 درجهٔ استفاده ماتی است. فقط در ناحیهٔ دمای بالاتری نشان می‌دهد.

نمونه‌های دمای همگنی در شکل 7 نمایش داده شده است.

از انجاکه این داده‌ها در دسترس قابل ملاحظه‌ای بالاتر از نوع A و B قرار دارد. در سایر نمونه‌های از نوع A و B به تمام این نمونه‌ها در شناسی طبیعی می‌تواند به نظر جوهرش گرماب‌هایی با شوری بالا و کم‌ویاب باعث خطرات ممکن منجر شود. همگی کامل مایع در پس از اسیدهای دیگری منابع ممکن است در نتایج حاصل از این آزمایشات باشد و در پیشگیری از تنش‌های زایدایی به بالینی داده‌ها دارد و

علت آن ممکن است نشان دهد که نسبت به گهمگانی همان‌گونه که نشان داده شده گزینهٔ که تفاوت‌های رخ داده و دمای آن از 1377 درجه‌سانتی‌گراد است (جدول 4) با بررسی امکان آزمایشات می‌تواند دمای همگن‌شد به برای شاهراهی درگیر بین 200 تا 240 درجه‌سانتی‌گراد در تنهایی گرمایش 7 نمایش داده شد. در جدول 3 نشان می‌دهد.

گردن (شکل 7) چنانکه در ناحیهٔ دمای بالایی می‌تواند در کوارتزی و شوری گسترش یابد. برای شاهراهی درگیر A در جدول 7 نمایش داده شده که برای شوری و دمای بالایی شکل می‌گیرد و می‌توان آن را دارای کوارتزی و دمای بالایی B تا متوسط هستند. دمای همگنی در شاهراهی درگیر نواع A تقریباً در جدول 7 نمایش داده شده که برای شوری و

زمان‌های مختلف از شاهراهی درگیر نواع A است.
شکل 8 نمودار دمای همگنی در مقابل مقدار شوری شاره‌های درگیر در کاتی کوارتز همراه با کاتی زایی، شمال غربی کیبرکو.

در نهایت، بر اساس دمای همگن شدن محاسبه شده، منطقی به نظر می‌رسد که گرمایهای با شوری بالا را مستند کانترایی آهن و مس در منطقه کیبرکو دانست.

اسکارن زایی بر اساس بررسی‌های صحرا و آزمایشگاهی اسکارن‌زایی در منطقه کیبرکو بخشی از رخداد درگونی مجاوری، دگره‌نیایی و فعالیت گرمایی وابسته به فرآیندینگ کیبرکو است. رخداد درگونی مجاوری به کیبرکو شامل دو مرحله اصلی شناخته می‌شود. اسکارن‌زایی با شوری در مرحله دگره‌نیایی که خود به دو مرحله اسکارن پیشروندگه و اسکارن پسرودنه قابل توجهی دهستند. بعضی از گزارندها ممکن است واپس به مرحله درگونی باشنند.

مرحله اسکارن پیشروندگه با کاتی‌های بی آب اندرادیت و دیوپسید- هدنبریت نقاط قابل تشخیص است. از این رو در مرحله سبز درگیر در از دمای تغییر آنها نمود دمای همگنی شاره‌های درگیر در گرمایهای کوارتز مورد بررسی نیز فقط مربوط به مرحله پسرودنه (حداکثر 430 درجه سانتی‌گراد) باعث است که با در نظر گرفتن بیشترین، شار و ماهی تشکیل می‌تواند بالاتر باشد. بنابراین دمای تغییر اسکارن پیشروندگه به دلیل افزایش انرژی شاره‌های درگیر

مسیر C، که برای هر نوع شار محتمل ترین شرایط برابر نمونه مورد بررسی نشان دهنده اختلاف آب‌های گرم با شوری بالاتر با آب‌های ریزتر و سرد است. رابطه‌ی شوری و دما در این مسیر مشابه است و در نهایت مسیر D که رابطه‌ی معکوسی از دما و شوری را نشان می‌دهد.

حذف از جوش‌بند کاهش دیمکت که نمونه‌های مورد بررسی چنین روندی را نشان نمی‌دهند. این بحث به دوباره شوری و دمای همگن شدن که از طریق شاره‌های درگیر حاصل می‌شود. می‌توان ارتباط بین شاره‌های درگیر و نوع کانترایی را مشخص کرد. در شکل 9 شاره‌های نوع B کاملاً در گسترش اسکارن قرار می‌گیرند. بنابراین شاره‌های نوع A نیز باید به شاره‌های نوع B مشابه باشد. سپس در مرحله شاره‌های درگیر نوع A حاکی از ورود آب‌های جوی در محیط کانترایی است و نشان می‌دهد که در محیط‌های کانترایی سپسی ریزهای بیابانی که در مرحله B شاره‌های نوع B سردرک شده شاره‌های نوع A بیشتری از محلول‌های گرمایی را تشکیل می‌دهند. درجی عبور به آب‌های سبز در مرحله B شاره‌های نوع A بیشتری از محلول‌های گرمایی را تشکیل می‌دهند. درجی عبور به آب‌های سبز در مرحله B شاره‌های نوع A بیشتری از محلول‌های گرمایی را تشکیل می‌دهند. درجی عبور به آب‌های سبز در مرحله B شاره‌های نوع A بیشتری از محلول‌های گرمایی R گزارش شده است.
شکل ۹ نمونه درجه شوری نسبت به درجه همکاری همکاری در کانونی کوآسی در کرانتر همراه با کانتیزای در کیپروکو گری [۱۷]

دمای کمتر از ۵۰ درجه تشکیل شدیدان و با توجه به همراهی آن‌ها با کیلوپوروس‌هایه که حاوی ۵۵ مول درصد هدثزایت هستند، می‌توان شرایط تشکیل آن را محدودیت B در شکل ۱۰ در نظر گرفت. برای تشکیل گرانی و پروکس در سیستم‌های اسکانی و اکسیژنژیار زیادی ارائه شدند [۱۸،۱۹] که بعضاً از آن‌ها در شکل ۱۰ در دو طرف خطوط تعادلی آورده شده است.

از آنجا که اکسیژنژیار اسکانی پایه شده به صورت محلول جامه هستند، ثابت نمی‌شود، نباید آن‌ها تابع شرایط فیزیک‌شیمیایی محدود ترکیب است به طوریکه محلول آهن دوطرفی در کیلوپوروس‌ها گریزندگی اسکیزئی را بلافاصله ارزن دارد، در نتیجه تشکیل شعله‌ای آستنی و گالیا در گریزندگی اسکیزئی و گروگرده گیرنده در شرایط و ۲۰ درجه این نمونه اسکانی در شمال غربی کیپروکو می‌تواند شعله‌ای و محلولی دیوپسیس نسبت به هدثزایت در آن‌ها بیشتر است. در گریزندگی اسکیزئی بالاتری تشکیل می‌شود، همچنین کیلوپوروس‌هایی که کسر مولی دیوپسیس نسبت به هدثزایت در آن‌ها بیشتر است نمی‌توانند در گریزندگی اسکیزئی بالاتری تشکیل می‌شوند [۱۸،۱۹] با توجه به ترکیب کیلوپوروس‌ها اسکانی پیشروند از بالا و به دلیل عدم وجود آهن کربن (به طریق سنتی) در شاره‌های درگیر مورد بررسی غفلت آن‌ها و برای ۲۰ درجه از ترکیب محلولی می‌تواند نسبت به دمای بررسی مشابه شده در دمای بالاتری تشکیل شده و ۱۰ درجه از ترکیب است. همچنین از بیشتر سیستم‌های محبوب می‌شود که در دمای بالاتری تشکیل شده و در خالص محسوب می‌شود در مرحله اسکانی پیشروند و در
پیروی از زمره‌ای به‌سهابهای کلرید آهن دار بیشتر، شمش و سبب نشست کانه‌های اکسیدی (مگنتیت) شده است. مگنتیت به‌طوری هم‌بستگی و افزودنی کانه‌ی گستردگی دهنده‌ی کپربور است، در این باب جاشینی وتاق جاشینی و حاوی دوگری و جاشینی گازنت اندراز است.

این پیشوند در کپربور است، به‌طوری که در تعدادی از نمونه‌های وابسته به منطقه‌ی اپیدو استکاران به ویژه در منطقه‌ی کپربور غربی تقریباً تمام گازنتها به اپیدو و به مقدار کمتر به کانه‌های کپر (مگنتیت) شناخته می‌شود. در محدوده اکسپانس و بیرا شده با آب، اپیدو فراوان است و در دسته‌ی گازنت به اپیدو در دمای بالا شروع می‌شود (400 تا 450 درجه سانتی‌گراد).[۱۸] در همان اپیدو اندراز از استکاران، هایم اکسپانسیون افزوده معمولاً تروست و واکنش گازنت به اپیدو به شرح زیر [۱۸] است.

\[
\begin{align*}
3\text{Ca}_2(Mg, Fe)_5\text{Si}_8\text{O}_{22} &+ 2\text{Ca}_2\text{Al}_3\text{Si}_3\text{O}_{12} + 10\text{CO}_2 + 8\text{H}_2\text{O} = \text{Al}_2(\text{Mg, Fe})_2\text{Si}_3\text{O}_{11} + 10\text{CaCO}_3 + 2\text{SiO}_2
\end{align*}
\]

در این مرحله ناباید از همبستگی کلرید آهن دار بیشتر، شمش و سبب نشست کانه‌های اکسیدی (مگنتیت) شده است. مگنتیت به‌طوری هم‌بستگی و افزودنی کانه‌ی گستردگی دهنده‌ی کپربور است، در این باب جاشینی وتاق جاشینی و حاوی دوگری و جاشینی گازنت اندراز است.

آب‌سکوت و کلینوژنتزی نیز هر دو با اپیدو هست در مرحله‌ی پیش‌روی اکسپانس و بیرا شده با آب، اپیدو فراوان است و در دسته‌ی گازنت به اپیدو در دمای بالا شروع می‌شود (400 تا 450 درجه سانتی‌گراد).[۱۸] در همان اپیدو اندراز از استکاران، هایم اکسپانسیون افزوده معمولاً تروست و واکنش گازنت به اپیدو به شرح زیر [۱۸] است.

\[
\begin{align*}
3\text{Ca}_2(Mg, Fe)_5\text{Si}_8\text{O}_{22} &+ 2\text{Ca}_2\text{Al}_3\text{Si}_3\text{O}_{12} + 10\text{CO}_2 + 8\text{H}_2\text{O} = \text{Al}_2(\text{Mg, Fe})_2\text{Si}_3\text{O}_{11} + 10\text{CaCO}_3 + 2\text{SiO}_2
\end{align*}
\]

در این مرحله ناباید از همبستگی کلرید آهن دار بیشتر، شمش و سبب نشست کانه‌های اکسیدی (مگنتیت) شده است. مگنتیت به‌طوری هم‌بستگی و افزودنی کانه‌ی گستردگی دهنده‌ی کپربور است، در این باب جاشینی وتاق جاشینی و حاوی دوگری و جاشینی گازنت اندراز است.

آب‌سکوت و کلینوژنتزی نیز هر دو با اپیدو هست در مرحله‌ی پیش‌روی اکسپانس و بیرا شده با آب، اپیدو فراوان است و در دسته‌ی گازنت به اپیدو در دمای بالا شروع می‌شود (400 تا 450 درجه سانتی‌گراد).[۱۸] در همان اپیدو اندراز از استکاران، هایم اکسپانسیون افزوده معمولاً تروست و واکنش گازنت به اپیدو به شرح زیر [۱۸] است.

\[
\begin{align*}
3\text{Ca}_2(Mg, Fe)_5\text{Si}_8\text{O}_{22} &+ 2\text{Ca}_2\text{Al}_3\text{Si}_3\text{O}_{12} + 10\text{CO}_2 + 8\text{H}_2\text{O} = \text{Al}_2(\text{Mg, Fe})_2\text{Si}_3\text{O}_{11} + 10\text{CaCO}_3 + 2\text{SiO}_2
\end{align*}
\]
بررسی چگونگی تشکیل اسکارن شمال غربی کیبرکوه ...

[۱] سازمان زمین‌شناسی و اکتشافات معدنی کشور، "بروزه بی‌‌زاوی" از دگرگونی مجموعه کانال‌های بالا به یوزه وگنیت، اکسیده‌ای آهن ابزار از جمله همانیت و لیموطب تشکیل شده‌اند. همانیت و لیموطب، محصول فرآیندهای آکسیدی است.

[۲] زمین‌شناسی و اکتشافات معدنی کشور، "تفهیم کیبرکوه (مغناطیسی‌های)"، گزارش‌های ۱۲۰۵۰/۱۶.

