تئیهی نانو بودر سیلیکات منزیز و بررسی ریز ساختار آن به روش ریتولد

سید روح الله عقیقی،* زهرا محمد صادقی

(دراویذ مقاله: 89/11/30، نسخه نهایی: 4/90)

چکیده‌: در این پژوهش نانو بودر سیلیکات منزیزی (Mg2SiO4) به روش سلس-زلز هیپ و با پلاستیم ساختار به روش ریتولد، ریز ساختار آن در حدی مداوم باز پخت تطبیق و گزارش شده است. این بررسی نشان می‌دهد که روش سلس-زلز به کار رفته در این پژوهش منجر به تولید نانو بودری شیمیایی آشتی می‌گردد. MgO و Mg2SiO4 می‌شود در دهکده آنها به ترتیب در حدود 25 درصد و 5 درصد است. تخلخل پهن‌شکل خطوط ریزش منجه در شکل بلورگرهای سیلیکات منزیزی تقریباً گروه است و مایل‌گی اندازه حجمی این بلورگرهای پس از بازپخت در گستره 8000 تا 11000 nm 10 تا 12 nm تغییر می‌کند. پژوهش بیشتر با فرض ناهماهنگی بودن پهن‌شکل خطوط ریزش ثابت می‌کند که ریز شیب‌های مایل و ناهنجاریاندگی بلورگرهای هر دو فاز، به مشخصه میلر و است. ولی این وابستگی برای ریز شیب‌های نمایانتر از وابستگی اندازه بلورگرهای بلورگرهای ژل ایجاد می‌کند به روش ریتولد است.

واژه‌های کلیدی: نانو بودر، روش ریتولد، ریز ساختار، دمای پخت

شیرینی خویی حنی در دمایه باز است. دما نیز نسبتاً بالای این ماده (C1800)، باعث می‌شود که شیمیایی، گازمانگی بسیار خوبی به عنوان یک ماده‌ای دیرگردب برای کاربردهای دما باشد. با مشاهده از سیلیکات منزیزی، (Ringwoodite) در سامانه مکمی (g-Spinel) با ساختار گروهی-اسپینل (Fd 3m) می‌شود و ثابت شیب‌های آن عبارتند از: a = 8.1385 Å است [3] و b = 10.1971 Å. A

مقدمة

سیلیکات منزیزی می‌باشد که از ماده شیمیایی Mg2SiO4 ساخته شده از جمله Forsterite ساخته می‌شود که به عنوان شیمیایی Mg2SiO4 است که با نام پرمچ و نیز Olivine شناخته شده است. این ماده نادر از خاویارهای بلورگرهای Pbmm است که در سامانه‌ی راست گوشه‌ای در گروه فضایی گروه فضایی گروه فضایی 3m می‌شود و ثابت شیب‌های آن عبارتند از: a = 4.7540 Å[l]. c = 5.9806 Å و b = 10.1971 Å. A

در سال‌های اخیر برخی سرامیک‌های دارای MgSiO3 تر و در نتیجه چگالی (p = 3.27 g/cm3) و سختی بالاتر نسبت به سیلیکات‌های همانند دیگر دارد. این ماده را می‌توان با عنوان یک زیر‌لایه‌ای ایجاد در کاربردهای الکترونیکی تهیه کرد. چرا که دارای رسانش الکتریکی پایین‌تر و پایداری

*نویسنده مشاور، تلفن: 021 73224777، پست الکترونیک: aghdaee@iust.ac.ir، دانشکده فیزیک، دانشگاه علم و مهندسی ایران

*به وسیله مسئول، تلفن: 021 73224777، نمایر: 021 73224777، پست الکترونیک:
$Y(20) = B(20) \otimes I(20)$

(1)

$\frac{1}{\cos \theta} = \frac{1}{Dv} + 2e \frac{\sin \theta}{\lambda}$

(2)

$\beta = \frac{1}{Dv} + 2ed^*$

(3)

3- Profile
4- Convulsion

1- Annealing Temperature
2- Aged

در همیشه سهم گاز‌یک پهن‌سپیدی ناشی از اندازه‌بندی برکنرا

\[\beta_s = \frac{\lambda}{D \cos \theta} \]

(6)

طول موج به کار رفته و \(\theta \) زاویه با راه است. رابطه به نمای

\(Y \) سهم لورنتزی پهن‌سپیدی ناشی از انداره‌بندی برکنرا و \(Y \) سهم لورنتزی پهن‌سپیدی ناشی از کرنش

است. جمله‌که که در رابطه (5) با \(\tan \theta \) تغییر می‌کند. بر

امده از تعریف ونسیلو و استوکس [8] از کرنش شکه:

\[e = \frac{\beta_D}{4 \tan \theta} \]

(7)

\(\beta_D \) حد بالایی و \(\beta_0 \) پهن‌سپیدی انگرالی نمایی کرنش است.

از این رو به اساس می‌توان درفت که در معادله‌های (4) و (5) پارامترهای Y و Z به پهن‌سپیدی ناشی از انداره‌بندی برکنرا و

و U به پهن‌سپیدی ناشی از کرنش ارتباط دارد.

پهن‌سپیدی دستگاه‌های

همه‌ی باشند سنجن موج سپیدی می‌شود که این پهن-\n
شگی باستی بهدقت تعیین و در محاسبات متفاوت ده‌تی اطلاعات ردیابی‌بردی بهدست آمده قابل استفاده‌باید. در

براش سنج برکنرا X، باشندگی طول موج و شکاف‌های سرعت

به‌ترتیب به پهن‌سپیدی نش می‌برد [6]:

\[\beta_L = 2 \frac{\Delta \lambda}{\lambda} \tan \theta \]

(8)

بان‌براین‌ها در اولین تقییب، پهن‌سپیدی دستگاهی را می‌توان با

شیبی سازی کرد [126] با وجود این که سنج برکنرا دیگر را نیز پالایید.

پهن‌سپیدی فیزیکی

\[Z = Y \times X \]

(9-الف)

\[X_{eff} = X - X_S \]

(9-ب)

\[U_{eff} = U - U_S \]

با رسم \(\beta \) حسب \(\phi \) و پر از خط راست (نموند

ویلیامسون - هال) می‌توان کرنش و میانگین اندازه‌بندی

بلورکرا را بدست آورد. اگر \(\beta \) حسی از \(\phi \) نباشد، باید

مقادیر \(\beta \) با کمک باندل پهن‌سپیدی مسکنگ بهبود و تغییر

از شاخص‌های \(h k l \) است. در این صورت دیگر می‌توان از

نموند ویلیامسون-حال، ریز ساختار را محاسبه کرد.

روش ریتوولد

روش ریتوولد در آغاز برای پالایی ساختن [9] پیش‌هدهاد شد ولی در

سال‌های بعد به طور فراوانی برای تعیین ریزساختار مواد

بلوری به کار رفته شده است. برای نمونه اصلی ریتوولد در سال

1969 [9] برای نقشه برای نمایی با نان جداسازی (تفکیک)

کم‌نمایشی شده بود. شکل خطوط برای یک نان گوسی توصیف

می‌کند که تابع مناسب بود. با بهترین نمایی جداسازی

(تفکیک) پالایی سنجن در ویژه برای سنج برکنرا X،

و T گوسی‌گری‌کننده‌ی نمایی از تابع گوسی، برای توصیف نمایی

ی برای پرتره گرفته. امور برای بیشتر برای سنجن‌های ریتوولد، از تابع

ونت \(\gamma \) که پهن‌سپیدی تابع گوسی و لورنتزی است، استفاده می‌شود

و به طور ذیل خوشه‌ای شده است که نمایی‌های مشاهده شده از

نوع ویت هستند [10].

چون پهن‌سپیدی هر تعویض لایه که تابع ویت است،

رابان‌یکه زیر می‌توان برای پهن‌سپیدی گوسی و پهن‌سپیدی

لورنتزی نمایی‌های مشاهده شده‌می‌توان:

\[\Gamma_{\theta} = U \tan^2 \theta + V \tan \theta + W + \frac{Z}{\cos^2 \theta} \]

(4)

\[\Gamma_L = X \tan \theta \cos \theta \]

(5)

که در آن \(\Gamma \) به‌پهنه‌ای نمایی در نم‌پیش‌نهی خلق برای

پارامترهای پالایی X و Y و X ، W، V و U (FWHM)

پذیرفته، و \(\Gamma \) به ترتیب عبارتند از: نمایی‌های لورنتزی و

Cagliotti (4) همان رابطه معرفی همکارانه [11] است که برای توصیف نمایی‌های پالایی نمایی

با رعایت تقییب گوسی، محاسبه شده است. جمله، \(\Gamma \)

را یا ویت و دسای [12] یا به آن رابطه افزوده و نشان

8- Scherrer Formula
9- Soller Slits
نامی‌هایی به شکل ویت پهن‌شگی نامه‌سازانگری را توصیف کرده است که با وارد کردن در تابع ویت می‌توان ناحیه‌ای در ناحیه‌ای پهن‌شگی انجام‌داده و به‌طور کلی پهن‌شگی انجام‌داده برای کردن ناحیه‌ای در نقطه‌ی شکت خطی می‌تواند گروه فرآیند نوید مورد کاربرد باشد

\[
\beta_h = D_h \cos \theta \sqrt{\frac{\lambda}{\cos \theta \cos \phi}} \sum_{l m p} a_{l m p} P_{l m p} (\cos \Theta) \left(\frac{\cos m \Phi_h}{\sin m \Phi_h}\right)
\]

به‌تونی باعث شده که یکی از ناحیه‌ای‌ها یکی از شکل‌های PDF باشد که به‌عنوان یکی از مدل‌های مشابه شناخته شده است.

\[
\frac{1}{d_{h k l}} = M_{h k l} = Ah^2 + Bk^2 + Cl^2 + D kl + E hl + F hk
\]
به دنبال آن با فرض‌های دیگری بالایی ساختار تکرار شد ویلی MgsiO₄ می‌تواند به MgO فرض جوهر مهندسی دو فاز می‌شود.

\[
W_i = \frac{S_i (Z MW_i)}{\sum S_i (Z MW_i)}
\]

\[
10 - \text{Scale Factor}
\]

\[
11 - \text{Unit Cell}
\]

\[
\text{نماد و مودار تغییرات کریش و اندازی بلورکها با حسب دما با ویژه از دست داشت. است.}
\]

\[
\text{شکل 1 فاز پراش مشاهده شده و محاسبه شده نمونه MgsiO₄ تک فاز با دمای باز یخ.}
\]

\[
\text{به منظور تهیه و نمونه باز یخ شده در دمای} \ 800 \degree \text{C را }\]

\[
\text{دراسته اسناد آن، همین‌طور که ممکن است. تشخیص مستقیم خطوط پراش}
\]

\[
\text{می‌شود. }
\]

\[
R_{wp} = 100 \times \left[\frac{\sum_{i=1}^{n} w_i |I_{obs,i} - I_{cal,i}|^2}{\sum_{i=1}^{n} w_i Y_i} \right]^{1/2}
\]

\[
\text{شکل 1-بق. به همین روش پرود K.P.Sanosh و همکارانش [5], به همین‌طور.}
\]

\[
\text{پرایز سازگاری و همکاری بسیار خوب میان نقش مشاهده شده و نقش محاسبه شده گردید (شکل 1-بق.)}
\]

\[
\text{MgsiO₄، برسی کرده، وی به وجود فاز دیگری اشاره نکرده‌اند. شاید}
\]

\[
\text{در روش ریتون، بازی پلاک مشاهده شده و محاسبه}
\]

\[
\text{شده با ضریب سازگاری می‌شود که مهم‌ترین آنها ضریب سازگاری وزن‌دار شده، است که به صورت زیر}
\]

\[
10 - \text{Scale Factor}
\]

\[
11 - \text{Unit Cell}
\]
این روش پاپایش داده‌های پراش با فرآیند ناهماهنگ شدید اندازه- با مقادیر به دست آمده از پاپایش داده‌های پراش نموده‌است. نمودار ویگلسون - هال [19] رسم شده است. این نمودارها نشان می‌دهند که تغییرات ب‌در حسب d* کاملاً خطی نیست، بنابراین پهن شدگی کم و بیش ناهماهنگی است (شکل 3). از جدول ۱ میانگین اندام‌های جرمی پلورک‌ها Dv< کرنش شبکه ۲/£<، درصد وزنی فازها و کیفیت پراش به دست آمده از پاپایش داده- های پراش به روش رنولد با فرآیند ناهماهنگی پدیده شدگی.

<table>
<thead>
<tr>
<th>دمای باریکت (°C)</th>
<th>Mg2SiO4</th>
<th></th>
<th>MgO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><Dv>iso (nm)</td>
<td><e>iso ^1/2 x10^-4</td>
<td>درصد فاز</td>
<td><Dv>iso (nm)</td>
</tr>
<tr>
<td>800</td>
<td>31.9(1)</td>
<td>78.5(4)</td>
<td>15.5(1)</td>
<td>40.7(2)</td>
</tr>
<tr>
<td>900</td>
<td>41.2(2)</td>
<td>47.3(1)</td>
<td>21.2(1)</td>
<td>23.4(1)</td>
</tr>
<tr>
<td>1000</td>
<td>32.1(1)</td>
<td>74.7(5)</td>
<td>14.7(1)</td>
<td>49.3(1)</td>
</tr>
<tr>
<td>1100</td>
<td>42.8(2)</td>
<td>47.3(1)</td>
<td>31.4(2)</td>
<td>10.4(1)</td>
</tr>
</tbody>
</table>

شکل ۲ نمودار تغییرات کرنش بر حسب دمای باز پردازش (الف) فاز MgO. Mg2SiO4. پ) فاز MgO

شکل ۳ نمودار تغییرات میانگین اندازه‌های پلورک‌ها بر حسب دمای باز پردازش (الف) فاز Mg2SiO4. پ) فاز MgO
جدول ۱ اندازه‌گیری بلورک‌ها و کرنش شبکه‌ی فاز Mg₃SiO₇ به صورت تابع از hkl. معادله کیفیت‌دار که در مجموع ۱۰۰ خط برای مشاهده شده، به‌طور تقریبی به‌دست آمده است.

<table>
<thead>
<tr>
<th>hkl</th>
<th>۱۰۰ °C</th>
<th>۹۰ °C</th>
<th>۸۰ °C</th>
<th>۷۰ °C</th>
<th>۶۰ °C</th>
<th>۵۰ °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁₀₀ (nm)</td>
<td>c₁₀₀</td>
<td>D₁₀₀ (nm)</td>
<td>c₁₀₀</td>
<td>D₁₀₀ (nm)</td>
<td>c₁₀₀</td>
<td>D₁₀₀ (nm)</td>
</tr>
<tr>
<td>۱۰۱</td>
<td>۱.۵۷</td>
<td>۱۲.۴</td>
<td>۱۵.۱</td>
<td>۱۷.۸</td>
<td>۱۹.۶</td>
<td>۲۱.۲</td>
</tr>
<tr>
<td>۱۱۰</td>
<td>۱.۹۵</td>
<td>۸.۴</td>
<td>۱۰.۵</td>
<td>۱۲.۳</td>
<td>۱۳.۹</td>
<td>۱۵.۷</td>
</tr>
<tr>
<td>۱۳۰</td>
<td>۲.۳۵</td>
<td>۲.۴</td>
<td>۲.۷</td>
<td>۳.۰</td>
<td>۳.۳</td>
<td>۳.۶</td>
</tr>
<tr>
<td>۱۴۰</td>
<td>۲.۷۸</td>
<td>۲.۹</td>
<td>۳.۲</td>
<td>۳.۴</td>
<td>۳.۶</td>
<td>۳.۸</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>۳.۱۹</td>
<td>۳.۳</td>
<td>۳.۵</td>
<td>۳.۷</td>
<td>۳.۹</td>
<td>۴.۱</td>
</tr>
<tr>
<td>۱۶۰</td>
<td>۳.۶</td>
<td>۴.۰</td>
<td>۴.۳</td>
<td>۴.۶</td>
<td>۴.۹</td>
<td>۵.۲</td>
</tr>
<tr>
<td>۱۷۰</td>
<td>۴.۰</td>
<td>۴.۴</td>
<td>۴.۷</td>
<td>۵.۰</td>
<td>۵.۳</td>
<td>۵.۶</td>
</tr>
<tr>
<td>۱۸۰</td>
<td>۴.۴</td>
<td>۴.۸</td>
<td>۵.۱</td>
<td>۵.۴</td>
<td>۵.۷</td>
<td>۶.۰</td>
</tr>
<tr>
<td>۱۹۰</td>
<td>۴.۸</td>
<td>۵.۲</td>
<td>۵.۵</td>
<td>۵.۸</td>
<td>۶.۱</td>
<td>۶.۴</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۵.۲</td>
<td>۵.۶</td>
<td>۵.۹</td>
<td>۶.۲</td>
<td>۶.۵</td>
<td>۶.۸</td>
</tr>
</tbody>
</table>

\(\text{میزان نسبت} \, R_{WP} = \frac{9.7}{9.9} \)
جدول ۳ اندازه‌گیری بلورکه‌ها و کرتش شبکه‌های فاز MgO به صورت تابعی از هکل‌های محاسبه‌ی کمیت‌ها، کمتر از ۱/۵ برآورد می‌شود.

<table>
<thead>
<tr>
<th>hkl</th>
<th>α = ۸۰۰ °C</th>
<th>α = ۹۰۰ °C</th>
<th>α = ۱۰۰۰ °C</th>
<th>α = ۱۱۰۰ °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_{max} (nm)</td>
<td>$\langle D \rangle_{\text{max}} / \times 10^4$</td>
<td>D_{max} (nm)</td>
<td>$\langle D \rangle_{\text{max}} / \times 10^4$</td>
</tr>
<tr>
<td>۱۱۱</td>
<td>۲۱۳</td>
<td>۱۵۴</td>
<td>۲۴۸</td>
<td>۹۶</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۱۴۶</td>
<td>۰</td>
<td>۲۱۳</td>
<td>۰</td>
</tr>
<tr>
<td>۲۱۱</td>
<td>۲۰۰</td>
<td>۱۴۵</td>
<td>۲۵۰</td>
<td>۸۴</td>
</tr>
<tr>
<td>۳۱۱</td>
<td>۱۸۴</td>
<td>۱۲۶</td>
<td>۱۸۶</td>
<td>۶۶</td>
</tr>
<tr>
<td>۲۲۲</td>
<td>۲۴۸</td>
<td>۱۵۶</td>
<td>۳۰۹</td>
<td>۸۷</td>
</tr>
</tbody>
</table>

R_{WP} ۹۱ ۱۲۶ ۱۲۳ ۱۲۹

از شکل (۴) و جدول‌های (۲) و (۳)، چنین بر می‌آید که پهن‌شده‌گی ناهسپانگری برنامه‌ای ساده و کرون بالای مایل، اندازه‌گیری بلورکه‌ها و کرتش شبکه‌های فاز MgSiO۳ در اندام‌های بلورکه‌ها نخستین ناهسپانگری MgSiO۳ بیشترین ناهسپانگری در اندام‌های بلورکه‌ها تقریباً ۱۰۰٪ و در حالی که در دماهای بالای ۱۱۰۰ °C ناهسپانگری مقدار ۳۵ درصد و ۴۹ درصد است که ممکن است با دماهای پایین}

![MgO Mg2SiO4 ab تگ‌های فرمی کرتش نمونه‌بندی پایین دمای ۱۰۰۰ °C](https://example.com/MgO.png)

![MgO Mg2SiO4 ab تگ‌های فرمی کرتش نمونه‌بندی بالا دمای ۱۰۰۰ °C](https://example.com/MgO.png)
Bravais

In the Bravais lattice, a point is considered to be a lattice point if it is the center of a Brillouin zone.

References