تهیه‌ی نانو پودر سیلیکات منیزیم و بررسی ریز‌ساختار آن به روش ریتولد

سید روح الله عقابی‌نژاد، زهرا محمد صادقی

دانشکده فیزیک، دانشگاه علم و صنعت ایران

(دریافت مقاله: ۱۳۹۷/۰۹/۲۹، نسخه نهایی: ۱۳۹۸/۱۱/۱۰)

چکیده: در این پژوهش نانو پودر سیلیکات منیزیم (Mg₂SiO₄) بت‌های پلاکی ساختار به روش ریتولد، به‌منظور بررسی خواص و نسبت به مکانیزم تشکیل ماده را بررسی کردند. این ماده که به عنوان یکی از مهم‌ترین مواد به‌شمار می‌آید، به‌عنوان یکی از شیمی‌های داده‌ی‌های اولیه، گزینه‌ای برای بررسی تحت شرایط و گرداگرداری برای کاربردهای دامی و به‌منظور اقدامات در ساختاری مکمک‌سازی (Ringwoodite) و سپس با کامپوست‌های (γ-Spinel) گروه فضایی Fd 3m است. همچنین موش ساختار نانو و تابث شیبکه آن از a = 8.1385 Å است.

واژه‌های کلیدی: نانو پودر، روش ریتولد، ریز ساختاری، ماده‌گزینی (Forsterite) Mg₂SiO₄

مقدمه

سیلیکات منیزیم بای روش ساختاری (Forsterite) Mg₂SiO₄ از جمله سنگ‌های آذرین است که بین نازل و باف‌فناخ است. سنگ‌های آذرین از خاک‌های بلورناهیده است که در سامانه‌های راست‌گوشه‌ای در گروه فضایی Olivine پایدار می‌شود و نسبت شیبکه آن عبارت است از: a = 4.7540 Å = 5.9806 Å = 10.1971 Å = 9.5 Å.

در سال‌های اخیر برخی سرامیک‌های دارای Mg₂SiO₄ در ساخت اولیه و Si و Mg در ساخت اولیه برای ساخت مواد استخوانی مورد توجه قرار گرفته‌اند و از این روش سرامیک که به عنوان یکی از روش‌های جدید و مناسب برای ساخت مواد استخوانی نسبت به سرامیک‌های مکانیکی بالا و زیست سازگاری در ترمیم بافت‌های سخت مورد استفاده قرار گرفته‌اند.

aghdaee@iust.ac.ir

نویسنده مسئول، تلفن: ۰۲۱/۲۲۲۳۳۴۹۷ (۲۲۲۴۷۲۳۲) همراه: ۰۲۱/۳۲۲۴۷۲۳۲، پست الکترونیکی
نمونه‌ی MgO با خلوص 99.99 درصد نیز در همان شرایط، نش پراش تهیه و از آن برای تصمیح اثره‌های طبیعی استفاده شد.

تحلیل بهین شدن خطوط پراش

نمایه‌ی 3-پروپانول X مشاهده شده (R) در می‌توان پیچش نمایه‌ی فیزیکی نمونه $B(20)$ و نمایه‌ی دستگاهی ($I(20)$) دانست [1].

$Y(20) = B(20) \otimes I(20)$

که در آن B نابع شدت زمینه است که معمولا با چند جمله از مرتبه چهار و بالاتر شبیه‌سازی می‌شود. برای تعیین ریسپیت‌ها ماده‌ی بلوری باید نمایه‌ی فیزیکی (R) را به راه‌های از نمایه‌های مشابه به دست آورد. جند روش‌های اگر کار و اجرای نتایج نهایی استفاده از یک نمونه‌ی استاندارد است. نمونه‌ی استاندارد به نمونه‌ی گفته می‌شود که برکلی در آن به اندامی کافی بزرگ (ترزتر) از نمونه‌ی تحلیلی بهین شده و نمایه‌ی بهین شدن در آن ناجی باشد. برخی از این نمونه‌ها با توجه به MgO در‌LaB$_6$ و KCl به عبارتی بهتر است نمونه‌ی استاندارد را از همان ماده در دست بررسی انتخاب و با عملیات هم‌مرحله انجام دهند. پس این نمونه‌ای استاندارد تبدیل کرد. نمایه‌ی بهین شدن فیزیکی، خود به پیچش نمایه‌ی بهین شده‌ی اندازه‌ی بلورکها و نمایه‌ی بهین شده‌گی کرنگ است. این دو اثری با $1 - \frac{\cos \theta}{\lambda} = \frac{b}{D^2} + 2 e \sin \theta \lambda$ مناسب است. بر این پایه دو اثر را می‌توان از یک‌دیگر جدا کرد اگر نمایه‌ی بهین شدن گی ناشی از اندازه‌ی بلورکها و کرنگ، هر دو لازم فرض شوند، به‌عنوان انتقال‌گر نمایه‌ی فیزیکی β^* (از جمع پیچش اندازه‌ی نمونه) در فضاهای وارون، رابطه‌ی بالا را می‌توان به صورت زیر نوشت:

$\beta^* = \frac{1}{D^2} + 2e D^2$
دهندگی سهم گاوئسی پهن‌شیبی ناشی از اندازه بلوک‌ها

\[\beta_S = \frac{\lambda}{D_V \cos \theta} \] (6)

طول موج کار رفتگی (\(\lambda\)) سهم لورنتسی پهن‌شیبی ناشی از اندایه بلوک‌ها و سهم لورنتسی پهن‌شیبی ناشی از کرنش است. جمله‌کن که در رابطه (5) با برآورد \(\tan \theta\) و اماده‌اند تعیین و استوکس (8) از کرنش شیبکه است:

\[e = \frac{\beta_D}{4 \tan \theta} \] (7)

حد بایاد کرنش و پهن‌شیبی اینگال‌های نمایی کرنش است \(\beta_D\) از این روابط اصلی معادله (4) و (5) با پهن‌شیبی X و Y و پهن‌شیبی ناشی از اندایه بلوک‌ها و X و U با پهن‌شیبی ناشی از کرنش ارتباط دارد.

به‌نتیجه دستگاهی

همهی پراه سنجی موجب پهن‌شیبی می‌شود که این پهن‌شیبی با پشتیبانی به‌دقت تعیین و در محاسبات منظور شود تا اطلاعات ریزساختاری به‌دست آمد. این امر قابل اعتماد باید با برآورد ناشی از بلوک‌های X و پهن‌شیبی طول موج و شکاف‌های سولونی به‌نتیجه پهن‌شیبی نشته‌اند [6].

\[\beta_L = \frac{2 \Delta \lambda}{\lambda} \tan \theta, \quad \beta_G = cte. \] (8)

بانبراین بر اساس تقسیم، پهن‌شیبی دستگاهی Rای می‌توان با پهن‌شگی X و Y شیب سازی کردن [12]. با وجود این پهن‌شگی X و Y، به‌نتیجه است پارامترهای دیگر را نیز پالایید.

پهن‌شگی فیزیکی

برای تعیین سهم پهن‌شگی فیزیکی پارامترهای U 1 (4) و (5) با پالایش و سپس با روابط ناوبری با رابطه نابیندی X و Y پلاش‌های دستگاهی تصحیح می‌شوند:

\[U_{eff} = U - U_S \] (9-a)

\[X_{eff} = X - X_S \] (9-b)

\[\cos \theta \] (10)

\[\Gamma_G = U \tan^2 \theta + V \tan \theta + W + Z \cos^2 \theta \] (11)

\[\Gamma_L = X \tan \theta + Y \cos \theta \] (12)

به‌نتیجه است که برای توصیف نمایه‌های پرآتش نورتون با رابطه تقسیم گاوئسی محاسبه شده است. جمله Rای یا دیسای [12] با آن رابطه افزوده و نشان

5- Rietveld Method
6- Structure Refinement
7- Voigt Function
تشان داده که تأثیر این متغیرها بر بهبود مؤلفه‌خاکی و
لورنتسی نمایه‌ای فیزیکی به صورت زیر خواهد بود [15]:
\[\Gamma_2 = U \tan^2 \theta + V \tan \theta + W + (1 - \xi)^2 \Gamma_2(A_{hkl}) \]
\[\Gamma_1 = X \tan \theta + \frac{Y}{\cos \theta} + \xi \Gamma_1(A_{hkl}) \]
که در آن \(\xi \) مقدار اپتیمی‌شده این متغیر است.
و باعث می‌شود تا دامنه‌های نمایه‌ای از تأثیر متغیرهای باشد.
\[\sigma^2(M_{hkl}) \text{ و } \Gamma_A = \left[\sigma^2(M_{hkl}) \right]^{1/2} \text{ tan } \theta M_{hkl} \]
در آن \(\Gamma_A \) مقدار اپتیمی‌شده این متغیر است.
\[\beta_h = \frac{\lambda}{D_h \cos \theta} \sum_{l \neq m} \frac{a_{lmp} P_{lmp} (\cos \Theta) h}{\sin \Phi_h} \left[\cos m \Phi_h \right] \]
\[\beta_{SL}^* = \frac{\pi^2}{360 \lambda} X_{eff} \text{ و } \beta_{SG}^* = \frac{\pi^2}{360 \lambda} \left(\frac{Z_{eff}}{\pi \ln 2} \right)^{1/2} \]
\[\beta_{DL}^* = \left(\frac{2 \beta_{DL}^* + 9 \beta_{DG}^*}{2} \right)^{1/2} \]
\[\beta_D^* = \left(\frac{\pi^2}{360 \lambda} \frac{U_{eff}}{\pi \ln 2} \right)^{1/2} \]
\[\langle e^2 \rangle^{1/2} = \frac{\beta_D^*}{4} \]
\[\frac{1}{d_{hkl}} = M_{hkl} = A_h \text{h}^2 + B_k \text{k}^2 + C_l \text{l}^2 + D \text{kl} \]
\[+ E \text{hl} + F \text{hk} \]
\[Y_{eff} = Y - Y_S \]
\[Z_{eff} = Z - Z_S \]

مقادیر فشرده (FWHM) مقدار پهن‌شدن انتخابی تبدیل و سپس با به کارگیری رابطه (10) و (15) می‌باشد.

\[\beta_{SL}^* = \frac{\pi^2}{360 \lambda} \text{ و } \beta_{SG}^* = \frac{\pi^2}{360 \lambda} \left(\frac{Z_{eff}}{\pi \ln 2} \right)^{1/2} \]
\[\beta_{DL}^* = \left(\frac{2 \beta_{DL}^* + 9 \beta_{DG}^*}{2} \right)^{1/2} \]
\[\beta_D^* = \left(\frac{\pi^2}{360 \lambda} \frac{U_{eff}}{\pi \ln 2} \right)^{1/2} \]
\[\langle e^2 \rangle^{1/2} = \frac{\beta_D^*}{4} \]
\[\frac{1}{d_{hkl}} = M_{hkl} = A_h \text{h}^2 + B_k \text{k}^2 + C_l \text{l}^2 + D \text{kl} \]
\[+ E \text{hl} + F \text{hk} \]

\[Y_{eff} = Y - Y_S \]
\[Z_{eff} = Z - Z_S \]

مقادیرهای Ss، Xs، Xs，
که در آن \(S \) سطح ماهاده شده و محاسبه شده در گام \(\Delta a \) ونی است که به هر یک از شدت‌ها داده می‌شود.

با روش ریتولد، درصد هر یک از دو فاز در نمونه تعیین شد.

در روش ریتولد رابطه‌سازی بین عامل‌های مقياسی \(g \) هر یک از فازها از رابطه‌ی زیر به دست می‌آید:

\[
W_i = \sum_j S_j (ZMW_1)_i
\]

که در آن \(S \) سطح ماهاده، \(Z \) انرژی، \(M \) جرم مولکولی و \(V \) حجم پایه‌ای یک است [18]. برای محاسبه آنتالپی\(\Delta H \) مقدار انتقال سطحی به دست آمده، نیاز به تعریف شدت \(S \) و مولکولی \(M \) سیستم نویسیده و سپس به طور خلاصه نتایج حاصل از رابطه‌ی زیر (1) و (2) نمونه‌گیری کریش و اندازه‌ی بلورکه‌ها با حسب دمای بازیخت برای هر دو فاز، در شکل‌های (2) و (3) نشان داده شده است.

چنانکه از شکل (2-الف) پیدا می‌شود، برای فاز \(\text{Mg}_2\text{SiO}_4 \) تغییرات کریش تابعی خطي از دما بوده و با افزایش دمای بازیخت کاهش می‌یابد ولی بایانگی اندازه‌ی بلورکه‌ها در بازه‌ی دمایی 800\(^\circ\)C تا 1000\(^\circ\)C می‌باشد. گروهی می‌باشد که غیر عادی محاسبه شده با توجه کریش و بی‌کره‌ها \(\text{Mg}_2\text{SiO}_4 \) با بیانگی اندازه‌ی مولکولی\(\text{Mg}_2\text{SiO}_4 \) با بیانگی \(\text{Mg}_2\text{SiO}_4 \) مادن پوسته‌ای، بلورکه‌های 49.7 nm اندازه‌ی اینه‌ی 31.4 nm را در بر گرفته و موجب کریش بیشتر آنها شوند.

\[
R_{wp} = 100 \times \left[\frac{\sum_{i=1}^{n} w_i (I_{obs,i} - I_{calc,i})}{\sum_{i=1}^{n} w_i Y_i} \right]^2 \]
با مقادیر به دست آمده از پلاش داده‌های پراش نمونه‌ها
نمودار ویلیام‌سو - هال [19] رسم شد. این نمودار نشان
می‌دهد که تغییرات β بر حسب d^* کاملاً خطی است.
بنابراین پهن شدگی کم و پیش ناهماهنگی است (شکل 4). از

جدول 1 میانگین اندوزی حجمی بلورک‌ها $<Dv>$، کرنش شبکه $<e^*>$، درصد وزنی فازها و کمیت پراش به دست آمده از پلاش داده‌ای

| دمای
<table>
<thead>
<tr>
<th>Mg$_2$SiO$_4$</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>باریکت (°C)</td>
<td>درصد فاز</td>
</tr>
<tr>
<td>800</td>
<td>31.9(1)</td>
</tr>
<tr>
<td>900</td>
<td>31.6(2)</td>
</tr>
<tr>
<td>1000</td>
<td>31.1(1)</td>
</tr>
<tr>
<td>1100</td>
<td>49.4(2)</td>
</tr>
</tbody>
</table>

شکل 2 نمودار تغییرات کرنش بر حسب دمای باریکت به فاز MgO. Mg$_2$SiO$_4$ فاز d^*. (ب) فاز MgO.

شکل 3 نمودار تغییرات میانگین اندازه بلورک‌ها بر حسب دمای باریکت به فاز Mg$_2$SiO$_4$. MgO فاز به درصد فاز. (ب) فاز MgO.
جدول ۴ اندازه‌گیری بلورگرهای و کرنش شکل‌های فاز \(\text{Mg}_2\text{SiO}_4 \) به‌طور تابعی از (مومیئ) بین‌مصرفی، حسب /۱۵/ به‌دوره می‌شود.

<table>
<thead>
<tr>
<th>hkl</th>
<th>(\theta) (°C)</th>
<th>(\varepsilon) (% 10^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>11.5</td>
<td>11.8</td>
<td>11.8</td>
<td>11.4</td>
<td>11.4</td>
</tr>
<tr>
<td>210</td>
<td>12.5</td>
<td>13.1</td>
<td>13.1</td>
<td>12.7</td>
<td>12.7</td>
</tr>
<tr>
<td>112</td>
<td>13.2</td>
<td>13.8</td>
<td>13.8</td>
<td>13.4</td>
<td>13.4</td>
</tr>
<tr>
<td>111</td>
<td>14.1</td>
<td>14.7</td>
<td>14.7</td>
<td>14.3</td>
<td>14.3</td>
</tr>
<tr>
<td>110</td>
<td>15.0</td>
<td>15.5</td>
<td>15.5</td>
<td>15.1</td>
<td>15.1</td>
</tr>
<tr>
<td>101</td>
<td>15.9</td>
<td>16.5</td>
<td>16.5</td>
<td>16.1</td>
<td>16.1</td>
</tr>
<tr>
<td>010</td>
<td>16.8</td>
<td>17.3</td>
<td>17.3</td>
<td>16.9</td>
<td>16.9</td>
</tr>
<tr>
<td>002</td>
<td>17.7</td>
<td>18.2</td>
<td>18.2</td>
<td>17.8</td>
<td>17.8</td>
</tr>
</tbody>
</table>

\(R_{WP} \)
جدول 3 اندازه‌های بلورکه‌ها و کرنش شبکه‌های فاز MgO به صورت تابعی از hkl، خورش محاسبه‌ی کمیته‌ها کمتر از $/2$ برآورد می‌شود.

<table>
<thead>
<tr>
<th>hkl</th>
<th>$\delta (nm)$</th>
<th>$\phi (%)$</th>
<th>$\delta (nm)$</th>
<th>$\phi (%)$</th>
<th>$\delta (nm)$</th>
<th>$\phi (%)$</th>
<th>$\delta (nm)$</th>
<th>$\phi (%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>21.3</td>
<td>156</td>
<td>24.8</td>
<td>6.6</td>
<td>30.3</td>
<td>8.7</td>
<td>25.6</td>
<td>13.5</td>
</tr>
<tr>
<td>200</td>
<td>14.1</td>
<td>0</td>
<td>21.3</td>
<td>0</td>
<td>35.4</td>
<td>3.0</td>
<td>40.0</td>
<td>3.1</td>
</tr>
<tr>
<td>220</td>
<td>24.0</td>
<td>13.5</td>
<td>25.0</td>
<td>8.3</td>
<td>29.0</td>
<td>13.3</td>
<td>23.0</td>
<td>11.1</td>
</tr>
<tr>
<td>311</td>
<td>14.8</td>
<td>10.7</td>
<td>18.4</td>
<td>6.6</td>
<td>23.1</td>
<td>1.0</td>
<td>22.4</td>
<td>8.9</td>
</tr>
<tr>
<td>222</td>
<td>21.3</td>
<td>156</td>
<td>24.8</td>
<td>6.6</td>
<td>30.3</td>
<td>8.7</td>
<td>25.6</td>
<td>13.5</td>
</tr>
</tbody>
</table>

R_{wp}

از شکل (4 و جدولهای 2 و 3)، می‌توان به چنین گفته کرد: اندماشگر ناهفصانگرده بوده و اندازه‌های بلورکه‌ها و کرنش به شاخه‌های میل و استناد و اندازه‌گرده به دمای پایه در حد دارند. میزان ناهفصانگرده مناسب پایین‌تر از ناهفصانگرده کله‌ای فاز اندامی است.

نقطه‌های پاریس مشاهده شده و محاسبه‌ی پاره‌ای در شکل 5. می‌توان به اختلاف ناپایین بین این نقطه‌ها و مقادیر نسبتاً پایین R_{wp} پایایی کم در دمای 1100 °C و 29 درصد است که متناقض با دمای پایه

![نمایش گرافیک](https://via.placeholder.com/150)

$\text{MgO} \quad \text{به برش 5 نگاشت فوریه کرنش نمونه‌ی فاز MgO از مایع MgSiO}_3$ (فاز MgSiO_3) با دمای 1000 °C، میل به استری نه

![نمایش گرافیک](https://via.placeholder.com/150)

$\text{MgO} \quad \text{به برش 6 نگاشت فوریه اندازه‌بندی بلورکه‌های نمونه‌ی فاز MgO از مایع MgSiO}_3$ (فاز MgSiO_3) با دمای 1000 °C، میل به استری نه

![نمایش گرافیک](https://via.placeholder.com/150)

$\text{MgO} \quad \text{به برش 7 نگاشت فوریه اندازه‌بندی بلورکه‌های نمونه‌ی فاز MgO از مایع MgSiO}_3$ (فاز MgSiO_3) با دمای 1000 °C، میل به استری نه
شكل 7 نفوذهای پرتاب مشاهده شده و محاسبه شده در دماهای بالا (الف) (800، 900، 1000، و 1100 درجه سانتی‌گراد).

