ویژگی‌های بافتی و شیمی کانی در مجموعه‌ی پلوتوتئین قره (کردستان): شواهدی بر پدیده آمیختگی/اختلاط ماگمایی

اشرف ترکیان
گروه زمین‌شناسی، دانشگاه بوشهر، همان

چکیده: منطقه‌ی مورد بررسی در بخش جنوبی مجموعه‌ی پلوتوتئین قره قرار دارد. بررسی شواهد بافتی و شیمی کانی‌ها در سنگ‌های کارون‌آسیاب دید می‌شود که مورد این مطالعه است. کوارتز‌ربوتات مورد توجه این مطالعه است. این مطالعه در سنگ‌های کارون‌آسیاب و پلوتوتئین‌های میزبان (MME) انجام شده و نتایج آن، با ترکیب کوارتز‌ربوتات به کارنودورت، میزبانی کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربوتات میزبانی بر ترکیب کوارتز‌ربوتات و پلوتوتئین‌های ریزدانه مافیک (MME) مورد این مطالعه است. کوارتز‌ربو...
جمالی و جریان روش 10 نانومتر (nm) بوده است. برای تعیین مقدار Fe³⁺ از روش [4] استفاده و نتایج داده در جدول 1 تهیه شده‌اند. با استفاده از آن میزان نیز تجزیه XRD موجود در سنج گراندیوریوت میزان نیز مورد تجزیه قرار گرفته است.

جدول 1 نتایج تجزیه ریزپداس‌شیمیایی برای دسته‌بایی بر سرفلایکلاژ روتومی براساس 8 اکسیژن از قرار گرفته شده است. [11] MINPET

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>SrO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>BaO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Cl</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>An%</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ab%</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Or%</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

جدول 2 نتایج تجزیه ریزپداس‌شیمیایی برای دسته‌بایی به فرمول ساختاری در پلاژیکلاژ های از قرار گرفته شده است. [11] MINPET

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>SrO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>BaO</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Cl</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>An%</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ab%</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Or%</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
جدول 2 نتایج تجزیه ریزپردازش الکترونی از آمپیل هایی از منطقه ا خلات ماکائی میزان مغناطیسی گرانیت‌ونده و برونیوم. برای دستیابی به فرآیند

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>خاصله بروی نظارت</th>
<th>خاصله بروی نظارت</th>
<th>خاصله بروی نظارت</th>
<th>خاصله بروی نظارت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>5.83</td>
<td>4.85</td>
<td>4.83</td>
<td>4.88</td>
</tr>
<tr>
<td>TiO2</td>
<td>4.88</td>
<td>1.15</td>
<td>1.14</td>
<td>1.17</td>
</tr>
<tr>
<td>Al2O3</td>
<td>3.20</td>
<td>3.20</td>
<td>3.21</td>
<td>3.21</td>
</tr>
<tr>
<td>FeO</td>
<td>1.92</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>CaO</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>SrO</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>T</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Cr</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>FeO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>SrO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>T</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Cr</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>FeO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>SrO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>T</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
زمین شناسی منطقه مورد بررسی و روابط صحرایی

یه‌نهی سنجش-سیرجان با استفاده از ابزارهای پوسته اقیانوسی توتینس به همراه ارائه کلیه و درب ان برخورد بین ورقه‌های آفریقایی و خرد ورقه‌ای ایران شکل گرفت‌اند (برای مثال [4(30 ردیف شود). در این بهانه، مجموعه‌های نفوذی این بستر زنجیره‌ای از جمله باقلای کراننده قره‌باغراند (شکل 1 اف. و ب.). در هر یک از آنها کمک‌هایی به حضور بریتوئومیای با خاتمه‌سازی کویوگون (برای مثال [4(38 اشاره گردیده است.

همبافت گرانیتوئید جنوب شرقی کردستان، بر مبنای داده‌های جغرافیایی، [237-48] تا 30 درجه‌های شرقی و 35 تا 100 درجه‌های شمالی در برگرداندن نفوذ‌های سیاه‌پوشی‌های متفاوت این هست که به سپاه فن‌سازی ماکا‌ها با تکیه‌گاه‌های مختلف در نواحی خاوری و غربی (شکل 1 اف. و ب.) به صورت یک مخلوط ملایمی در ادامه و به گرانیتوئید سری اهکی-قیلاقی تعلق دارد (شکل 1 اف. و ب.) در بررسی‌های کمالی‌ترین تحقیق و تحقیق‌های شناسایی ماهی‌های زنده بودن در این ارگانیسم در نواحی بزرگ‌تریشی و بزرگ‌ترین شیر و سایر شکاف‌های منطقه مشخص نمی‌شود. در نتیجه، باقلای کراننده واقع در روسایی، بخش‌های شدید از آن، آخرین دنباله‌های روسایی به ظاهر پیوسته مسؤولیت-ترشیری، شیل‌ها و ماسه‌های سیاه‌پوشی خاوی عدس‌های اسکار همراه با سیاه‌پوشی آتش‌سوزی هستند که طوری فعال می‌باشد روی بریتوئومیای کراننده

شکل 1 (اف) موقعیت منطقه نسبت به شهرستان قروه و جایگاه آن در زون سنجش-سیرجان ب. نشان‌گرداندن 16000:1، نقطه‌گیری مورد بررسی (با کمی تغییر، مربوط به براساس [11]) و [12] سین توده‌های نفوذی در شرق منطقه‌ای مورد بررسی (برای مثال در می‌باشد 149-150 میلیون سال برآورد شده است.

شکل 2 (اف) نفوذ‌های سیاه‌پوشی‌های کراننده در نواحی سنجش-سیرجان ب. نشان‌گرداندن 16000:1، نقطه‌گیری مورد بررسی (با کمی تغییر، مربوط به براساس [11]).
کوارتز بی‌شکل و فلسفی‌سازه‌ای قلبانی قاچاق بین پلازموکلاژها را در می‌کند. مهم‌ترین کانی فرمزینی است که به صورت بلوره‌های منفرد و تمام شکل‌دار وجود دارد. فراوانی آن در واحدهای سنگی مختلف پیکان نیست و کاملاً با بیوتین همراه می‌شود. در این صورت فراوانی بی‌پاتر می‌شود به کمتر در هر صورت رسید.

سنتژناسی و سنگ‌کاری بر روی‌های ریزدانه‌ای ماکیف
(MMEs)
برونویوم‌های ریزدانه ماکیف منطقه‌ای مورد بررسی نظیر تمامی برونویوم‌ها ریزدانه ماکیف به‌طور قابل ملاحظه‌ای ریزتر و تیمارتر از سنگ‌های پلازموکلاژ دریگریندی خود هستند. این‌ها در گروان‌های زنده‌ی فراوانی سنگ‌های دیگر بی‌پاتر می‌شوند، به علاوه در باخش‌های ماکیف‌تر نسبتاً بی‌پاتریکتر، تیمارتر و ریزتر دانه‌های ریزدانه‌ای و یوکس‌های پس از نخستین اندکی دسی‌متر در نواده‌است. حداکثر قطر آنها حدود ۴۰ سانتی‌متر و به صورت دوباره یا طولی و کشیده دیگه می‌شوند.

روی‌های پشتیبانی که از هر آن‌ها در برونویوم‌های ماکیف ساخته و آنها که نسبتاً غنی از میزبان و احتمالاً پیوسته داده‌های به روند کند و بی‌پاتر بوده و به میزانی که به‌طور قابل ملاحظه‌ای شیب‌ها را در این‌ها بعضی جانب‌های می‌شوند. این‌ها به‌طور عمومی از برونویوم‌های منطقه‌ای مورد بررسی حاوی اجتماعات ساخته شده و در این‌ها کنترش و حاوی‌شکن‌شدن سنگ‌های جامد، باعث پدیده‌ای می‌شوند که در کارایی به‌صورت ذکر در حالی به، یا شرایط

جبش‌ها باید ماکامات ایجاد کرد.

برونویوم‌های ماکیف که داشتن مرز میزان بی‌پاتریک و مشخص و

نیز تنها یافته‌ها به‌صورت جامد و یا کنترش‌ها، فقط بی‌پاتریکی بی‌پاتر می‌شوند. جا کردن تمام آنها از سنگ‌های میزان

بنابراین نمایش داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.

شکل ۲ (الف) نمایش سنگ میزان بی‌پاتریکی حاوی یافته‌های غنی از امیفیل. (ب) بررسی نازک سنگ (۸) که در این‌ها امیفیلی

(ARC) به‌صورت نازک داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.

شکل ۳ (الف) نمایش سنگ میزان بی‌پاتریکی حاوی یافته‌های غنی از امیفیل. (ب) بررسی نازک سنگ (۸) که در این‌ها امیفیلی

(ARC) به‌صورت نازک داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.

شکل ۴ (الف) نمایش سنگ میزان بی‌پاتریکی حاوی یافته‌های غنی از امیفیل. (ب) بررسی نازک سنگ (۸) که در این‌ها امیفیلی

(ARC) به‌صورت نازک داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.

شکل ۵ (الف) نمایش سنگ میزان بی‌پاتریکی حاوی یافته‌های غنی از امیفیل. (ب) بررسی نازک سنگ (۸) که در این‌ها امیفیلی

(ARC) به‌صورت نازک داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.

شکل ۶ (الف) نمایش سنگ میزان بی‌پاتریکی حاوی یافته‌های غنی از امیفیل. (ب) بررسی نازک سنگ (۸) که در این‌ها امیفیلی

(ARC) به‌صورت نازک داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.

شکل ۷ (الف) نمایش سنگ میزان بی‌پاتریکی حاوی یافته‌های غنی از امیفیل. (ب) بررسی نازک سنگ (۸) که در این‌ها امیفیلی

(ARC) به‌صورت نازک داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.

شکل ۸ (الف) نمایش سنگ میزان بی‌پاتریکی حاوی یافته‌های غنی از امیفیل. (ب) بررسی نازک سنگ (۸) که در این‌ها امیفیلی

(ARC) به‌صورت نازک داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.

شکل ۹ (الف) نمایش سنگ میزان بی‌پاتریکی حاوی یافته‌های غنی از امیفیل. (ب) بررسی نازک سنگ (۸) که در این‌ها امیفیلی

(ARC) به‌صورت نازک داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.

شکل ۱۰ (الف) نمایش سنگ میزان بی‌پاتریکی حاوی یافته‌های غنی از امیفیل. (ب) بررسی نازک سنگ (۸) که در این‌ها امیفیلی

(ARC) به‌صورت نازک داده شده‌اند. (ب) تصویر میکروسکوپی از بر روی‌های پلازموکلاژ سنگ میزان طول قاعد ایجاد ۴ میلی‌متر است.
شیمی کانی‌ها داده‌ها بررسی‌های ریزپدومراتی حاکی از آنت که پلاژیوللازها در توده میزان ترکیب آورزشی و آمپیولیها در
گستره میکروسکوپی ملزند و دارای (18 70<) هستند [1]. پروپتی‌ها و نسیج میزانی از نوع پروپتی‌های
گنی از آهن و برایتکه میزند [18] به پروپتی‌های غنی از
آهن گرافیت‌های آهنی - قلیایی تعلق دارند. نمونه‌ای از
XRد‌های سنج گرافیتی میزند نیز مورد تجزیه
قرار گرفته که وجود ۱۳۹ سریم، ۲۳۵ ترومی و ۸۹۳ لانتئیوم
همگی به درصدوزی (در ترکیب آن‌ها نشان می‌دهد (شکل ۳). در برونتو، ریزپدومراتی کنترا که
پلاژیوللازها در توده میزان بیشتر با ترکیب آورزشی در
۲–۳ درصد با میانگین ۲۳ درصد. آدرس: -1\(\text{ab}_{5-1}\)
\(\text{Or}_{0.0-3}\) هستند. اولیکولاز
برخوردارند. در برونتو، ریزپدومراتی میکروسکوپی پلاژیوللازها
شناس می‌ده که این بلورها دارای دو نسیج دارند: نسل اول
پلاژیوللازیا هستند که درشت‌بلور و هسته‌کلیسیک (شکل ۳)
دارای مرحله‌بندی هستند. بررسی تجزیه‌های ۹
نقطه از نمونه‌ای ازین درشت بلورها (جدول ۳) معلوم می‌دارد
(شکل ۱) که همگی به پروپتی‌های جزئی ترکیب، با ترکیب،
ساختار مرحله‌بندی شده‌ای دارند. به‌علاوه ترکیب کانی‌شناسی
نشان‌گرفته‌ها و بنیانه شهرت‌های زیادی دارد. نمونه‌ای
در گام‌های در حالت رشد، مقدار کلسیم متمایز صورت را به کاهش می‌گذارد. به دلیل این بلورها با افزایش فشار کلسیم (در
نقطه ۳) مواجه شده، سیس بر دیگر کلسیم افزایش می‌یابد.

cالی‌های پروپتی موجود در گرافیتی میزند.

به اعتقاد [19-۲۰] این تغییرات می‌تواند ناشی از اختلاط

شکل ۳الگوی پراش پرتو X بلور آلینت موجود در گرافیتی میزند.
شکل ۴ (الف) تصویر BSE درشت بلوری از پلاژیوکلازهای برنوبوم‌ها. پیکان‌های سیبی تجزیه‌گر آن‌ها از هم‌پوشانی بلور لنگر می‌دهد (ب) نمونه نشان دهنده تغییرات منطقه‌بندي در بلور این پلاژیوکلاز‌ها. از نقطه ۱ تا ۲ گاهی قبل تغییرات در میزان آن‌ها دیده شد و سپس افزایش آن به پیش از مقدار اولیه (نقطه ۴) نشان دهنده این منطقه‌بندی مکوس و متعاقب آن روند کاهش آن‌ها در هنگام افزایش و اتحاد منطقه‌بندی با تکمیل Sدیکتری. (ب) در تصویر BSE پلاژیوکلازی که با پوششی از پلوهای فلسفی‌الباینی درگیر شده است، روانگیه شده است. (ت) وجود بافت منطقه‌بندی در بلور پلاژیوکلازی از برنوبوم‌ها نمودار نشان دهنده تغییرات منطقه‌بندی پلاژیوکلازی با منطقه‌بندی به‌نهایت در هسته و سپس به‌ترین کاهش افزایش و به دنبال آن روند کاهش آن‌ها در هنگام افزایش (منطقه‌بندی از توپ‌هنجار).

شکل ۵ تصویر BSE امپیسی با ساختار منطقه‌بندی داده‌های آنالیز بیانگر آنست که BSE فیزیولوژی جنس‌هایی هستند که در ترکیب منطقه‌های هسته‌ای این کانی بافت در حاشیه آن است. این شاهد بافتگی بر اختلال ماگمایی دالات دارد.

بحث و بررسی

خاستگاه برنوبوم‌ها رستیت با اختلال ماگمایی؟ برداشت‌های صحراپی (شکل‌های ۶ اف ـ ب) بررسی‌های دقیق سگ‌سگ‌گاری و تجزیه ریزپوردار اکت‌تروپی‌های ناشن‌می‌دهد. که برنوبوم‌ها خاستگاه ماگمایی (آذرین) دارد و حاصل واکنش مشابه در اثر یک پدیده مناسوباتیسم (دگ‌پاه‌دی) موضوعی نیستند. دلایل زیر از مهم‌ترین این ویژگی‌های است:
منطقه و برتونومهای درون آن واپس‌آمد هر یک جدایانه مورد توصیف قرار می‌گیرد.

برخی شناسی سوزنی در آیات‌های مقاطع نازک میکروسکوپی برتونومهای و سنگ میزان آن‌ها نشان می‌دهد که برتونومهای آیاتی به‌تشکیل برتونومهای کشبند و بلند (پلیمر متوسط با نسبت طول به قطر قاده‌ای 1/10) می‌باشد. این اتفاق از شواید بافت از اختلال ماگماتیک [22] است. تبلور سریع گلسائی از ماگماتیک مافیک که در ماگماتیک نسبتاً سردرت میکروفلسیک بندگی اتفاق، باعث می‌شود آیاتی‌ها پیش از آن به صورت بلورهای مشوری و قطره‌ای درآیند. شکل سوزنی به خود گیرنده (شکل 2) به علت در سریع برتونومهای آپاتزیت سوزنی ناشی از رشد سریع ماگماتیک حامل است. در این آیاتی بک‌کاتی رودمینشکش شده است و لذا به نظر می‌رسد نظربه آمیختگی ماگماتیک مافیک با ماگماتیک فلزیک (اختلال ماگماتیک) قابل قبول تر باشد.

3- بالژیوکلازهای سلولی دارای بافت غربالی (sieve texture)

یکی از شواید مهم ناشان‌دهنده دو رگه‌های شدن (سوزنی) میکروفلسیک و بازی و وجود رشد پوششی جمجمه‌ای به‌کمک برخی از اینهای زمینه است [24]. در برتونومهای بالژیوکلازهایی وجود دارد که در حاشیه‌های رورشیدی انتهای بلورهای از آمیختگی کورتر، فلدسراری در برگرفته شده‌اند. انتقال برخی از این‌ها کوچک‌تر با برابر اندازه‌گیری کاهش زمینه و ترکیب- ی شان نیز مشابه ترکیب آن‌هاست (شکل 4).

شکل A (الف) تصویری از انبوه‌های برتونومهای در درون سنگ میزانگ برنابوتفودی (ب) تصویری از برتونومه (C) دستخوش تغییر ترکیب سه‌گانه-شناخته شده است. شواید بافت‌های در منطقه مورد بررسی حاکی از تبدیل پیداکننده اختلال ماگماتیک در مقیاس محلی است.

 ضمن سرد کردن برتونومهای آن‌ها را نیز با خود حمل کرده است. از طرفی وجود برتونومهای با حاشیه‌های گل‌لکی تا کنترل‌برهای مرغوب بودن به جانبداران زیاد فرآیند اختلال ماگماتیک که در اینجا دیده می‌شود.

ب) وجود بلژیوکلازهایی که به‌صورت پلیمریست و هم‌زمان در انتقال برتونوم از ماکستان و منطقه‌بندی میکروبی و رورشیدی می‌باشد. این‌ها با تبلور در حالات ماگما سازگاری و شاهد دیگری بر خاصیت آذرین برتونومهای سیستمیک (ب) بلورهای کشیده و به‌همراه بالژیوکلازهایی که به‌صورت پلیمریست و هم‌زمان در انتقال برتونوم شکل داده می‌شود. از طرف دیگر، بافت‌های گل‌لکی که با شاخص خاص سبب کردن نرمال بودن برتونوم‌هاست. در آن‌ها مشاهده شده است. حضور بلورهای کورتر از آن‌ها و فقیدان بافت‌های کوموتیونی ریز دانه اولیتی بودن برتونومهای را منتفی می‌سازد.

اختلال ماگماتیک

پرسیب‌های دقتی و جزئی تر در مرز تمام برتونومهای با سنگ میزان، نشان می‌دهد که ترکیب سکنگ‌شناختی تعیین‌کننده و یک منطقه‌ای باکشی متعلق به دو ترکیب برتونوم و میزان‌های ایجاد کرده‌است. این‌ها با شاید آب ترکیب کورتر می‌باشد و با تغییرات ناهمگن (شکل‌های 6) دارد که در این‌جا بم‌ها همگانی است. اختلال ماگماتیک در اندام‌ها، شکل‌ها و ترکیب‌های متنفات توزیع شده‌اند به اعتقاد‌های [26] این ویژگی بر انتقال ماگماتیک دلایل دارد. شواید بافت‌های که همگی به این
پلاژیوکلازهای با زونینگ و بافت

نتایج پیماشی عرضی تجزیه ژئورادارشی الکترونی در پلاژیوکلازهای برونوپیسته مافیک و گرانودیوریت، بینگر و جوی منطقه‌بندی است (شکل‌های ۴ و ۷ ب). به انتقاد [۲۴] پیچیدگی‌ها و ناپیوستگی‌های منطقه‌بندی مشاهده شده در الگوی فنوریسته‌های هنگام بروز عده‌ای محل تغییر ترکیب ناشی از اختلال ماکمی است. [۲۵] نیز انحلال حاشیه‌های پلاژیوکلاز را مانند از عصر تاکسیی دما با ارتفاع اندازه طولانی (کپونه) آب و کاهش فشار تلقی کرده‌است. بنابراین چنین پیش‌بینی به سبب ناتوانی‌های گرماپی و شیمیایی بین برونوپیسته مافیک و گرانودیوریت می‌باشد. این اشتباهات در دستگاه‌های دادار، ماندکاری و نگهداری علامت ناتوانی مستلزم تبلور سریع و اختلال ناکام است [۲۸].

پلاژیوکلازهای با ورودی‌هایی از فلزسپار قلبانی

چنانکه گفته‌اند شد برخی پلاژیوکلازها بافت آنتی‌پایکوی درادن و بطور پلاژیوکلاز با فلزسرپ قلبانی احاطه شده‌اند. این بافت در فهرست بافت‌های حاصل از اختلال ماکمی است [۲۹، ۱۹].

شکل ۷: شواهد بافتی و کانی‌شناسی میکروسکوپی از اختلال ماکمی در منطقه‌ی مورد بررسی. (الف) پلاژیوکلاز گریزی (ب) پلاژیوکلاز بافت ژنرالیستیک کوارتز و فلزسرپ قلبانی.

[12] Stepshen W.E., “Polycrystalline amphibole aggregates (clots) in granites as potential I-type restite: an ion microprobe study of rare-earth

[33] [تکیان ا.، طهماسبی‌ز، ترمزورتی‌توودگراندیورتی مجموعه گراندیورتی فرو (جنوب شرقی استان کرمان)، مجله پترولئوم‌های نوین زمین‌شناسی کاربردی، دانشگاه بلوطی سینا همدان (1388) (231-4).]

[34] Barbarin B., “Mafic magmatic enclaves and mafic rocks associated with some granitoids of the Central Sierra Nevada Batholith, California: nature, origin and relations with the hosts”, Lithos 80 (2005) 155-177.

