ویژگی‌های بافتی و شیمی کانی در مجموعه‌ی پلوتونیک قروه (کردستان): شواهدی بر پدیده آمیختگی/ اختلاط ماکمایی

اشرف ترکیان

groove زمین‌شناسی، دانشکده‌ی علوم زمین، هنمان

چکیده: منطقه‌ی مورد بررسی در بخش جنوبی مجموعه‌ی پلوتونیک قروه قرار دارد. بررسی شواهد بافتی و شیمی کانی در سنگ گرانیت‌نوازی میزانی با ترکیب گرانیتودورینت، گرانیت، موتونیت کوارتزند و پلوتونیهای زیردانه‌ای مافیک (MME) نشان دهندهٔ آمیختگی بوده یا ترکیب کوارتزدورینت با ماتریک مافیک تأثیر برجسته‌ای دارد. این سنگ‌ها به‌طور کلی در میانه‌ی سلولی باشند. نتایج این بررسی نشان می‌دهد که در این نواحی گروه‌های پلوتونیک به‌طور کلی به‌طور گسترده‌ای در شیمی و ساختار سنگ‌های مافیکی یافت می‌شود.

واژه‌های کلیدی: گرانیتودورینت، پلوتونیهای زیردانه‌ای، اختلاط ماکمایی، قروه، کردستان.

مقدمه

اصطلاح اختلاط ماکمایی (magma mingling) به‌طور کلی شامل دو ماکمای مافیک و فلسیک و در نتیجه حالت شدن ماکمایی همگن با ترکیب حذفی‌گر می‌شود و لی ام‌ختی (magma mingling) نتیجه‌ی تقابل‌کننده‌ای در ماکمایی می‌باشد که هنوز ویژگی‌های دو ماکمای مخلوط شده اثره‌ی خود را حفظ کرده‌اند.

این مقاله سعی دارد تا شواهد و استنباط به‌طور کلی اختلاط ماکمایی را در این مجموعه بررسی کند. نتایج بدست‌آمده از روایت‌های صحرایی، شواهد بافتی و داده‌های جنبه‌رزي‌برداری الکترونی پلاژیوکلازها و آمپلونیهای در پلوتونیهای کوارتزند و میزان مهم‌ترین مداخله‌ی مورد پرسی در این مقاله‌نامه.

a-torkian@basu.ac.ir

نویسندگان مسئول: تلفن - تاریخ: 6787381460 (111200)، پست الکترونیکی: a-torkian@basu.ac.ir

پلیت فلز‌یابی و کون‌نورت: ایران

Downloaded from ijcm.ir at 16:17 +0430 on Saturday June 5th 2021
روش بررسی

با هدف بررسی های سنتنگاری 75 مقطع نازک از پروتوپاها و میزان تهیه و به منظور بررسی ترکیب شیمیایی و شیویات ترکیبی، پلاژیولارها و انفیسالی انتخاب و با استفاده از یک رزپکوئندهی الکترونی Cameca SX50 در دانشگاه اکلاهما (آمریکا) تجزیه شدند. ولتاً شتاب‌دهنده دستگاه 15 kV بود. 

جدول 1- پایه گرفته شده است. مینپت

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO₀₁₀</th>
<th>MgO</th>
<th>MnO</th>
<th>CaO</th>
<th>SrO</th>
<th>BaO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>Ba</th>
<th>Ca</th>
<th>Sr</th>
<th>Ba</th>
<th>Ca</th>
<th>Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

جدول 2- پایه گرفته شده است. مینپت

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeOᵢ₀</th>
<th>MgO</th>
<th>MnO</th>
<th>CaO</th>
<th>SrO</th>
<th>BaO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>Ba</th>
<th>Ca</th>
<th>Sr</th>
<th>Ba</th>
<th>Ca</th>
<th>Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>
جدول ۲ نتایج تجزیه ریز‌پدیداری کترونی از آمپلیفیر‌های از منطقه‌های اختلاط ماکائی میانی گرانیت‌واردی و پترونوم. برای دستیابی به فرمول

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>خانه‌بروی‌های طغیان</th>
<th>خانه‌بروی‌های طغیان</th>
<th>خانه‌بروی‌های طغیان</th>
<th>خانه‌بروی‌های طغیان</th>
<th>خانه‌بروی‌های طغیان</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>5.83</td>
<td>28.92</td>
<td>24.68</td>
<td>24.88</td>
<td>24.10</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.58</td>
<td>1.12</td>
<td>1.49</td>
<td>1.49</td>
<td>1.36</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.63</td>
<td>4.03</td>
<td>4.04</td>
<td>3.61</td>
<td>3.64</td>
</tr>
<tr>
<td>MgO</td>
<td>11.88</td>
<td>12.75</td>
<td>12.57</td>
<td>12.61</td>
<td>12.04</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
</tr>
<tr>
<td>K₂O</td>
<td>8.39</td>
<td>1.26</td>
<td>1.40</td>
<td>1.44</td>
<td>1.26</td>
</tr>
<tr>
<td>CaO</td>
<td>10.36</td>
<td>1.20</td>
<td>1.24</td>
<td>1.23</td>
<td>1.03</td>
</tr>
<tr>
<td>FeO</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>MgO</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Si</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td>Al (iv)</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>T</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
</tr>
<tr>
<td>Al (vi)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Ti</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>Cr</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Fe(ii)</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Fe(ii)</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Mn</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Mg</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>C</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Ca</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>Na</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>B</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Na</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>K</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>A</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Mg#</td>
<td>55.95</td>
<td>55.95</td>
<td>55.95</td>
<td>55.95</td>
<td>55.95</td>
</tr>
</tbody>
</table>
زمین شناسی منطقه مورد بررسی و روابط صحرایی

به‌طور کلی، سنگ‌های تریاس-ژوراسیک، شیشه‌ای که به اعتقاد [111] مربوط است. امکان‌پذیری، شیست و قلبیت می‌تواند آن‌ها هستند.

سنگ‌های وسیع‌ترین توده‌های نفوذی میزان

واحد میزان در رده مالتوئیم‌های فلکسیک و دارای ویژگی‌های ژوراسیک، های ژوراسیک‌های نوع 1 است [100]. ترکیب سنگ‌هایی از گل‌پوشی و توده‌های نفوذی کوارتز‌دار متغیر و متنوع تا درشت‌دار هستند. دانشیی متغیر کالایی این واحد موجب شد تا مجموعه‌ای سنگ‌هایی با ترکیب مختلف در کنار یکدیگر باشد. واحد میزان بیشتر از پلاژیوکلار (40%)، قلب‌سپاره‌های قطبی (20%)، و کوارتز به میزان 10 تا 15 درصد ساخته شده که با کانی‌های فلزی جزئی بیوئیک، زیگن، اسفن، آپایت و کانی‌های فلزی همراه می‌شوند.

باتچ غلاب دانه‌ای نمی‌شکل‌دار است ولی گاهی بالاتر برف‌پوشیده نیز مساحت نشسته در بافت اکثر بورها، درشت پلاژیوکلار عموماً به شکل صفحه‌ای (نابلور) نمی‌شکل- دار تا شکل‌دار هستند. پلاژیوکلار از منطقه‌بندی تانابی و بارانی، عادی و بی‌جدید و نیز مالک‌های کارلسپار و آلیت و با ناگهان این دو مالک در برخوردارند. فلدسپارهای قطبی از نوع ارتوکل و برنتی و میکروکلین است.

شکل 1 (الف) موقعیت منطقه نسبت به شهرستان قروه و جایگاه آن در زون سنگ‌های سیلیکانی: پنجاهم (ب) نقشه زمین‌شناسی 1:100000، 1:100000 و 1-11. سن توده‌های نفوذی در شرق منطقه مورد بررسی (برای مثال در میهم بالا) 149-152 میلیون سال برآورد شده است.
کوارتر می‌شکل و فلدوسیارهای قلبانی فواصل بین پلاژیوکاژی‌ها را بر می‌کند. آمپیول، ممتنین کاتی می‌باشد. گیاه‌زایی است که به صورت بلوره‌ای متغیر و تمام‌شکل‌دار وجود دارد. فرآیند آن در هر دو هاله سكی مختلف پاکسین نیست و کاهش با بیوتین همراه می‌شود، در این صورت فرآیند امپیول به کمتری که هنوز درصد می‌رسد.

سنگ‌شناسی و سنگ‌پذیری شناسی برپویه‌ها رزدانه مافیک (MMEs)

برپویه‌ها رزدانه مافیک منطقه‌ی مورد بررسی نظر نمایی برپویه‌ها رزدانه مافیک بطور قابل ملاحظه‌ای ریزتر و تیزتر از سنگ‌های پلوتونیک درگیر گردیده و خود هستند. ان‌ها در گراندیوربکته‌ها فرآیند را سنگ‌های وراثی‌گرای فواکانت می‌شود. به علاوه در بخش‌های مافیکی نسبتاً نرمال‌تر، تیزتر و ریزتر دانه هستند.

اندازه‌برپویه‌ها پس از رخنمون، از چند سانتی‌متر تا چندین دسی‌متر در نوسان است. حداکثر قطر آن‌ها حدود 40 سانتی‌متر و به صورت مدیر، با طول و کشیده به دیه می‌شوند. وجود زیست‌های بی‌خوره در گونه‌های مختلف با یونید و این‌ها با یونید گونه‌های مختلف در طول سطحی با یونید بافت کلیش‌های منطقه‌ای مورد بررسی حاوی اجتماعات فرآیند از پلودیورهای مافیکی می‌باشد از شناسایی مکانیابی می‌باشد.

سنگ‌های میزبان آن‌ها یافته‌می‌شوند (شکل 2-الف). ب) شکل 2 (الف) نمودن سنگ‌های میزبان کالکتیوی حاوی یافت‌های غنی از آمپیول (ب) بر هر نارک سنگ (A) که در ان این‌ها امپیولی (ARC) بخوبی ناسی داده شده‌اند. (ب) تصویر میکروسکوپی از مرز بی‌خوره و سنگ‌های میزبان طول قاعدگانه تصویر می‌蓂ی‌متر است.
شیمی کاتی‌ها
داده‌های بررسی‌های ریزپردازی حاکی از آنت که پلاژیولزی در توده میزبان ترکیب آنتوریتی و آمپیولو‌ها در گستره‌های مینی‌پرونیلن و دارای (18, 45 < XmGc < 106) هستند. [1] بیانیه‌های ویاپسمان از نوع بیوتین‌ها گنی از آهن و براساس ره‌دندی (18) به بیوتین‌ها گنی از آهن گرانی‌پاده‌های اکس- قلیبیک تعلق دارند. نمونه‌ای از XRD آنلاین‌های سگ، غربالوپنتی میزبان نیز مورد تجزیه قرار گرفته که وجود 12.98 سرم، 43.5 نورم و 8.92 نانومتر (همگی در طول موج) در این آنلاین‌های میزبان دیده شد (شکل 3). این نمونه در این آنت که پلاژیولزی: داده‌های ریزپردازش الکترونی بیانگر آنت که پلاژیولزی در توده میزبان بیشتر با ترکیب آنتوریتی در گستره‌های (Anh)، (aka)، (Or) که دارد. در پلاژیولزی بررسی‌های میکروسکوپی پلاژیولزی‌ها نشان می‌دهد که این بلوهو دارای نیز به چشم‌های کلسیک (0.5) دارای منطقه‌بندی بیشتر با ترکیب آنتوریتی (Anh) نقطه از نمونه‌های درشت بلوهو (جدول 1) معلوم می‌گردد (شکل 4). اگر همگی با تغییرات جزئی ترکیب کاج‌ها، ساختار منطقه‌بندی شده‌ای دارد. با علاوه بر ترکیب کاج‌شناختی آنها با آمپیولو‌های سنگ میزبان شاهد زیادی دارد. نمونه‌ای از این کاج مورد تجزیه قرار گرفته (جدول 3) و نتایج بانگر آنت که (Mg/Fe) در ترکیب منطقه‌های هسته بالاتر از حاشیه (31) تا 22 درصد در هسته و در حاشیه‌های

سهمی‌کاتی‌ها
ماگما‌پی باشد. به سبب تغییر شرایط (شادی به سبب وجود جریان‌های هیدروتکنیک) در اثر مغماگی(1) تا رسیدن به حالت تعادل شیمیایی و دیالیتی بلوهو در حال رسیدگی پلاژیولزی به این ترکیب کلسیک‌کری و بای سیدتری بیدا کنن. در رحلت‌های تعادل ترکیب مCIDM شیمیایی از لادا پلاژیولزی‌های نیز روید رشد پلاژیولزی عادی بوده و همگام با پیشرفت تبلور حاشیه‌ها غنی از سدیم در آنها وجود می‌آید.

از سویی دیگر پلاژیولزی پلاژیولزی بافت نتی‌رایکاکی دارد (شکل 4). یک نمونه از این نوع کاپی تجزیه شده (جدول 4) و تصویر BSE (شکل 4) دیده می‌شود. تغییرات آنتوریتی از تاکلاز در این نمونه بیانگر آنت که پلاژیولزی به طور متوسط محصول 29 درصد آنتوریتی و با 1 pérdida از پلاژیولزی قلیبیک‌هنگام درک می‌گردد. نمونه از پلاژیولزی قلیبیک‌وکلیکی در حاشیه‌های (شکل 4) بود.

آمپیولو: آمپیولو در گستره‌های مینی‌پرونیلن و دارای ساختار منطقه‌بندی متفاوتی دارد. به علاوه ترکیب کاتی‌شناختی آنها با آمپیولو‌های سنگ میزبان شاهد زیادی دارد. نمونه‌ای از این کاج مورد تجزیه قرار گرفته (جدول 3) و نتایج بانگر آنت که (Mg/Fe) در ترکیب منطقه‌های هسته بالاتر از حاشیه (31) تا 22 درصد در هسته و در حاشیه‌های


<table>
<thead>
<tr>
<th>X (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

شکل 3 اکسی‌پرایز پرتو X بلوهو لاین‌ها موجود در گران‌پروتی‌های میزبان.
شکل ۴ (الف) تصویر BSE درشت بلوری از پلازیوکلازهای برونیوم‌ها. یکتا مسر تجزه را از هسته تا حاشیه بلور نشان می‌دهد. (ب) نمودار نشان دهنده تغییرات منطقه‌بندی در بلور این پلازیوکلاز است: نقطه ۱ تا ۲۳ کاهش فاصله در میزان آنورتیت و سپس افزایش آن به بیش از مقدار اولیه (نقطه ۴ و نشان دهنده منطقه‌بندی مکوس) و معنی‌دار آن روند کاهشی آنورتیت و ایجاد حاشیه‌ای با ترکیب سدیکتر. (ب) در تصویر برونیوم‌های بیش از پلازیوکلاز که با پرتویی از پلازیوکلازی اصلی در برگرفته شده است را نشان می‌دهد. (ت) وجود بافت منطقه‌بندی در بلور پلازیوکلازی از برونیوم‌ها. نمودار نشان دهنده تغییرات منطقه‌بندی پلازیوکلازی با منطقه‌بندی به‌هنجار در هسته و سپس بهترین کاهش، افزایش، و به دنبال آن روند کاهشی آنورتیت (منطقه‌بندی از نوع به‌هنجار).

شکل ۵ تصویر امفسولی با ساختار منطقه‌بندی. داده‌های آنالیز بالاگر آنست که BSE در ترکیب منطقه‌های هسته این کانی بالاتر از Mg# حاشیه آن است. این شاهد بافت بر اختلال ماکمی دالات دارد.

بحث و بررسی

خاستگاه برونیوم‌ها رستیت با اختلال ماکمی؟
برداشت‌های صحرائی (شکل‌های ۶ الف-ب)، بررسی‌های دقیق سگن‌گزاری و تجزیه‌ی ریزپیشگی الکترونی کاتی‌ها نشان می‌دهد که برونیوم‌ها خاستگاه ماکمی (آذرین) دارد و حاشیه باکتری‌مای در اثر یک یا دو میکروآرای مخصوص درون‌بسته (دگره‌پاد) موضعی نیستند. دلالات زیر از مهم‌ترین این ویژگی‌های است.
این جدول بخشی از مطالعه نظریکی در آپنیتها

در مورد سرد و بروده‌های آن‌ها، نیز با خود کره‌است. از طریق وجود بروده‌هایی با حاشیه‌های گل‌کلمه‌ای کگره‌ای بر اثر بودن نه چندان زیاد فاکتور اخلاق‌محیطی (A) که در محل نام‌گذاری برند میزان مواد آفتاب‌گیری، پیش‌تر به‌پایان بر می‌رود.

با توجه به طبقه‌بندی بروده‌هایی (B) مربوط بود که این نشان می‌دهد که بروده‌های آپنیتهای مرتبط با دمای کهیس و بلند برخورد با بهترین مقدارя (C) نشان می‌دهد که طبقه‌بندی بروده‌ها با دمای کهیس و بلند برخورد با بهترین مقداری است. این نتایج از شواهد بالقوه حاکی از پیدایش پیدا می‌شود. اخلاق‌محیطی در مقیاس محلی است.

ضمن سرده کردن بروده‌ها آن‌ها را نیز با خود کره‌است. از طریق وجود بروده‌هایی با حاشیه‌های گل‌کلمه‌ای کگره‌ای بر اثر بودن نه چندان زیاد فاکتور اخلاق‌محیطی (A) که در محل نام‌گذاری برند میزان مواد آفتاب‌گیری، پیش‌تر به‌پایان بر می‌رود.

با توجه به طبقه‌بندی بروده‌هایی (B) مربوط بود که این نشان می‌دهد که بروده‌های آپنیتهای مرتبط با دمای کهیس و بلند برخورد با بهترین مقدارя (C) نشان می‌دهد که طبقه‌بندی بروده‌ها با دمای کهیس و بلند برخورد با بهترین مقداری است. این نتایج از شواهد بالقوه حاکی از پیدایش پیدا می‌شود. اخلاق‌محیطی در مقیاس محلی است.

ضمن سرده کردن بروده‌ها آن‌ها را نیز با خود کره‌است. از طریق وجود بروده‌هایی با حاشیه‌های گل‌کلمه‌ای کگره‌ای بر اثر بودن نه چندان زیاد فاکتور اخلاق‌محیطی (A) که در محل نام‌گذاری برند میزان مواد آفتاب‌گیری، پیش‌تر به‌پایان بر می‌رود.

با توجه به طبقه‌بندی بروده‌هایی (B) مربوط بود که این نشان می‌دهد که بروده‌های آپنیتهای مرتبط با دمای کهیس و بلند برخورد با بهترین مقدارا (C) نشان می‌دهد که طبقه‌بندی بروده‌ها با دمای کهیس و بلند برخورد با بهترین مقداری است. این نتایج از شواهد بالقوه حاکی از پیدایش پیدا می‌شود. اخلاق‌محیطی در مقیاس محلی است.
هرشیدی پلورهای اسفنجی و فلدسپار

در مقطع تازه پرونده‌ها نوعی هرمیتی به صورت تقیاً عدسی شکل از پلورهای و فلدسپار وجود دارد. پلورهای اسفنج معمولاً به عنوان افتینی تیغه‌ای فلدسپارها یا کلیس (پلورکلاز) را در برومی گیرند (شکل 7، پ. 191) ضمن انتقال به نادریند. آنها صورت مدل دو مرحله‌ای از آزمایشات امکان می‌پذیرد.

بافت پونی کلینیک در کورتارز و فلدسپار قلبی

برخی از پرونده‌ها نسبتاً بهتر را به این بابت پونی کلینیک از جنس کورتارز و فلدسپار قلبی‌های دارد که پلورهای کوچکتر پلورکلاز، هورنیتلند، برونیت و آنانی را در برگرفته‌اند. چنین هرهشیدی‌های شاهدی بر پهنای سرعت سردشدن پرونده‌ها حامل این کاپ‌ها و ماهک‌های گرانیتی در برگیرنده آنها است. یک کاپ از داده‌های بسیار شری و هسته‌سازی می‌کند و شیب کاپ‌های ماهک‌های گرانیتی دیگر در برگیرنده، دارای سرعت هسته‌سازی نسبتاً کمتر و سرعت رشد زیادتری هستند.

آزمایش‌های منطقه‌ای بنده شاهدی

عفیده [34]؛ برخورد و یا یافتن ماده‌های مافیک به درون ماده‌های فلسیک بعد از لوله‌زنی ماده‌های فلزیک صورت می‌گیرد و لذا اختلاف چسبندگی و دما کمتر ماده‌های دزدریزی‌های اسیدی سبب می‌شود ماده‌های مافیک به شکل گلوله‌های مافیک بر روی ماده سرد شود. در تانید این مطلب به عفیده [35] چسبنده به بررسی‌های فیزیکی فراورده‌های اختلال ناکامی بین ماده‌های (مافیک و فلزیک) منشأ‌ی هستند که همچنان ویژگی‌های خود را حفظ کرده‌اند. نیود آثاری از فضاهای زیرین و زیرینت‌های یافته‌های این مجمومه بر بالا بردن دامی ماده‌های مافیک دالف دارد. این فرضیه با اختصاصات زئونیسم‌های مجمومه پلوتوتایک و مهیج زمین، ساخت جاهی که یک اثر منحصربه‌فرد حاصل نمایندگی شد. همکلاسی دارد. در نتیجه به خاطر همکلاسی شوایه‌های و داده‌های شیمی کلی نظریه‌های [36] را در خصوص می‌پذیرم که در این منطقه کلیل‌های از ماده‌های مافیک و منفی‌زایان گریزتندی حداکثر طی یک فرآیند اختلال ماده‌ای به‌کنون آمیخته شدند.

مراجع


[33] [تکریکان ا.، طهماسبی ز.، تروی-بورمتری تئوده گرانودیوریتی مجموعه گرانیتولیدی قروه (جنوب ترکیه استان کردستان)، مجله فایندهای نوین زمین‌شناسی کاربردی، دانشگاه بومیان سینا همدان (1388) ص. 33-41.

[34] Barbarin B., “Mafic magmatic enclaves and mafic rocks associated with some granitoids of the Central Sierra Nevada Batholith, California: nature, origin and relations with the hosts”, Lithos 80 (2005) 155-177.


