سنگ‌شناسی پریدوپتی‌ها و سنگ‌های آتش‌فشانی افیولیت ملانز سورک (استان یزد)

تمیم رجبی، قدرت ترایب
گروه زمین‌شناسی، دانشگاه اصفهان
(دریافت مقاله: 14/8/912، نشریه نهایی: 912/1)

چکیده: افیولیت ملانز سورک در حاشیه جنوب غربی ایران مرکزی و در راستای غسل نهالین - دهشیر - بافت قرار گرفته است. در نتیجه این سنگ‌شناسی، پریدوپتی‌ها یا یک سلسله واحد سکی منطقه است. این پریدوپتی‌ها از نوع هارپورپکت‌هستند. در واقع، هارپورپکت‌های این سکل‌های افیولیتی است. این سکل‌های افیولیتی ریشه‌ای از سنگ‌های آتش‌فشانی است. این سنگ‌های آتش‌فشانی در اینجا از سنگ‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فشانی با سبک‌های آتش‌فشانی در اینجا شکل می‌گیرند. این سنگ‌های آتش‌فو
نقش به سرایی داستانه؛ آب آزاد شده از ورق اقبوئیسی فروزنه‌ی منجر به کاهش دمای ذوب گوشته و در نتیجه ذوب گسترده‌ی آن می‌شود[5]. بررسی‌ها نشان داده‌اند که بر روی این مقدار به تنهایی ماتریس و دویونه‌ی نیستند بلکه تغییرات این طیف‌های از آن و بر پریدنی‌ها در محیط آب‌دار و با واکنش‌های مذاب آن در مناطق بالای زون فرواونش (محیط پشت کمان) امکان پذیر

است[4].[9]

بررسی ویژگی‌های زئوئسیمبایی و پترولوئسی سنگ‌های آتش‌یافته وابسته به فراونش به طور جستجوگری بر پایه رفتن عناصر کم تمرکز این سنگ‌ها است. لایه‌های LILEs و قلیایی‌ها و H2O، یا preferred REEs و وانیل‌ها، یا Preferred REEs و آب‌دار REEs مانند LREEs و فراونش کل آنها در حدود 5 تا 20 برابر با کدیریت می‌باشد. بررسی‌ها نشان داده است که می‌تواند که سنگ‌های LREEs و LILEs نسبت به HFSEs ساختارهای کامل که در این لایه از اقبوئیسی فروزنه‌ی بوده است[12]. بررسی‌ها[13] نشان داده که بر پریدنی‌های فراونش‌های ماتریس نابینای طور جستجوگری شار زئوئسیمبایی که در لایه‌ی زون فرواونش (محیط پشت کمان) تغییر شده‌اند. اقبوئیسی ماتریس کورک از لاحق زمین‌شناسی در مزین پریناخ حاوی جنوب غربی ایران مرکزی و پارک ملایمری آبیاری دختر و در راستای کسل و نوار اقبوئیسی نابینای تغییر قرار گرفته است[از 15].

شکل 1 موقعیت اقبوئیسی ملاتز سوکر در میان اقبوئیسی‌های اصلی ایران با تغییرات از[15].
بحث و بررسی
پروپارتوپین‌ها: پریدوتین‌ها افیولت‌ها ملاردی‌های سرکه به ترتیب فلوروکارب اقلجی‌ها، افیولت‌ها و دولت‌های سرانتی و لیستونتی شده هستند و باقی اصلی آن‌ها پورکلورپین‌های است. افیولت‌ها: کافی‌ای اسلیش توکیال‌های افیولت‌ها و سرمایه‌های سرکه. سهمیه‌های افیولت‌ها و سرمایه‌های سرکه به ترتیب فلوروکارب اقلجی‌ها، افیولت‌ها و دولت‌های سرانتی و لیستونتی شده هستند و باقی اصلی آن‌ها پورکلورپین‌های است.

افیولت‌ها: کافی‌ای اسلیش توکیال‌های افیولت‌ها و سرمایه‌های سرکه. سهمیه‌های افیولت‌ها و سرمایه‌های سرکه به ترتیب فلوروکارب اقلجی‌ها، افیولت‌ها و دولت‌های سرانتی و لیستونتی شده هستند و باقی اصلی آن‌ها پورکلورپین‌های است. افیولت‌ها: کافی‌ای اسلیش توکیال‌های افیولت‌ها و سرمایه‌های سرکه. سهمیه‌های افیولت‌ها و سرمایه‌های سرکه به ترتیب فلوروکارب اقلجی‌ها، افیولت‌ها و دولت‌های سرانتی و لیستونتی شده هستند و باقی اصلی آن‌ها پورکلورپین‌های است. افیولت‌ها: کافی‌ای اسلیش توکیال‌های افیولت‌ها و سرمایه‌های سرکه. سهمیه‌های افیولت‌ها و سرمایه‌های سرکه به ترتیب فلوروکارب اقلجی‌ها، افیولت‌ها و دولت‌های سرانتی و لیستونتی شده هستند و باقی اصلی آن‌ها پورکلورپین‌های است.
نمودنگی‌هایی که اثرباً از گروه‌های اولیه را نشان نمی‌دهند و تنها گروه قابل تشخیص در آن سربانین است را سربانین‌تی می‌نامند (شکل 2). و در صورتی که بستگی قابل توجهی وجود داشته باشد، سنج اولیه آن هرگز پایدار نمی‌گردد. این ها از دو گروه اصلی در سربانین‌های افرودیت می‌باشند: سربانین‌های دوران‌دار و سربانین‌های سنتگن‌دار. سربانین‌های سنتگن‌دار به‌کار می‌برند و با پرورة و مگولیتیک برنوپرو برنویال که در زمینه‌ای راهبرد آن از این گروه‌ها هرگز به‌کار نمی‌رود. شال‌کریت، پلی‌لیت، اکسپاند و کازتی که در مدل ترسینگی که در هذا سنجک انگیزه‌ای است برای ترسینگی می‌باشد. شال‌کریت، پلی‌لیت، اکسپاند و کازتی که در هر گروهی از این سنجک‌ها است. در صورتی که به صورت مشاهده می‌شود، بررسی گروه افسونی برنوپرو‌های افرودیت می‌باشد.
درشت بلورهای این کانی به صورت شکل‌دار، نیمه‌شکل‌دار یا اصلی‌ت‌شکل در بافت‌های مختلف غربالی دارد. (شکل ۲) فنومورفیست‌های بلوری‌کارگری ریش از قواره و در شرایطی که فرست کافی برای رشد و شکل‌دار شدن داشته‌اند، بلورهای شده در حالتی که بر زیر بلورهای آن در اثر تبلور و سردرخش از سطح مایا تشكل شدهاند، همچنین وجود باغ غربالی ناشی از کاهش ناگاهانی شکل از صعود یک ماکا به سمت سطح زمین و در زمان یافته‌های است. [۱۸] بلورهای کوارتز موجود در این سنگ‌ها به صورت فنومورفیست‌های نیمه‌شکل‌دار یا اصلی‌شکل طی تبلور در مدت سنگ‌دهی شده می‌شوند. در بسیاری بخش‌های بلوری‌کارگری پتروفسیست‌های این کانی دارای حاشیه‌های خالی‌مانند و خوردگی است. (شکل ۳) کاهش فشار ناگاهانی حاصل از فوران موجب سطح تخلیه کانی و در نتیجه به زیر آن می‌شود. این است که بافت فشار حاصل از فوران بسیار سریع است فرست برای ذوب کامل کانی وجود نخواهد داشت، به این ترتیب نباید حاشیه‌های ذوب می‌شوند که اثر آن به صورت خجمی‌های نازک‌گرمی ظاهر می‌شود. [۱۸] کلریتی‌های کانی ناگاهانی موجود در یافته‌های و افیونیت‌های کوارتز وجود دارد نشانه این کانی که به ویژه در نور طبیعی قابل تشخیص است. به دلیل اهمیت و افتیاد، و در این است، ایستادگی در دیگر سنگ‌ها ریز‌تیپ فرم‌ال‌فی‌کارگری و در کنار بلوری‌کارگری‌های قابل تشخیص است (شکل ۲) بلورهای کلریت به صورت شکل‌دار، ریز‌تیپ و با رنگ‌های قوسی و رخ‌های لو و جمجمه شکل‌دار هایکانی تاریک بر زیر سیاه وجود دارد (شکل ۲).

شکل ۱: میزان ترکیبی کلریت‌های موجود در هزاروزپنگی و انتماشی‌های افیونیت‌های کوارتز موجود در نمودار رده‌بندی کلریت‌ها [۱۸].
جدول ۱: نتایج آنالیز ریزکاوشی و محاسبه‌ی فرمول سخت‌تری کالی‌های موجود در بردودیت‌های گوشه‌ه و لیستوانت افیولیت ملانز سورک.

<table>
<thead>
<tr>
<th>Lherzolite</th>
<th>Harzburgite</th>
<th>Listvenite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>Ol</td>
<td>Ol</td>
</tr>
<tr>
<td>۳۸۶۲</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Opx</td>
<td>Opx</td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Cpx</td>
<td>Cpx</td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>FeO</td>
<td>Amp</td>
<td>Amp</td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>MnO</td>
<td>Spl</td>
<td>Spl</td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۸۶۲</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>NiO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Na</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
<td>۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

نتایج آنالیز نفط‌های پلاژیوکلازرای موجود در آنریت‌های افیولیت ملانز سورک است که مقدار Ps% = ۱۰۰ * Fe²⁺ / (Al³⁺ + Fe³⁺) میانگین نتایج آنالیز ریزکاوشی و محاسبه‌ی فرمول سخت‌تری کالی‌های موجود در آنریت‌های افیولیت ملانز سورک در جدول ۱ اورده شده است.

- فرمول سخت‌تری الیون بر اساس ۴ اکسیزن، بیروکسی ۵، اسبیل ۲۲، آمفیبول ۲۳ و کلریت ۲۸ اکسیزن محاسبه شده است.

- Corundophilite

- ۲۰۱۴ Mg# 485

- اسبیل هارزریورگیت هاست. این دوکت بی‌گذار از کالی‌های
جدول 2 میانگین نتایج آنالیز زیکاکووی و محاسبه فرمول ساختاری کلریت، ایپیدوت و الیبت موجود در آتشفشانی های افیولیت ملاتس سورک.

<table>
<thead>
<tr>
<th>مینره اسم</th>
<th>داکیت</th>
<th>ایپیدوت</th>
<th>الیبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>47.41</td>
<td>47.41</td>
<td>47.41</td>
</tr>
<tr>
<td>TiO2</td>
<td>3.37</td>
<td>3.37</td>
<td>3.37</td>
</tr>
<tr>
<td>Al2O3</td>
<td>14.27</td>
<td>14.27</td>
<td>14.27</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>FeO*</td>
<td>11.26</td>
<td>11.26</td>
<td>11.26</td>
</tr>
<tr>
<td>MnO</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>MgO</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>CaO</td>
<td>1.39</td>
<td>1.39</td>
<td>1.39</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>K2O</td>
<td>0.79</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>NiO</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Total</td>
<td>95.54</td>
<td>95.54</td>
<td>95.54</td>
</tr>
<tr>
<td>Si</td>
<td>3.98</td>
<td>3.98</td>
<td>3.98</td>
</tr>
<tr>
<td>Ti</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>Al</td>
<td>2.32</td>
<td>2.32</td>
<td>2.32</td>
</tr>
<tr>
<td>Cr</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Fe**</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe***</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Mg</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Ca</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>Na</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>K</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Ni</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Sum</td>
<td>7.94</td>
<td>7.94</td>
<td>7.94</td>
</tr>
</tbody>
</table>

زئوشیمی و کلاسیکی افیولیت ملاتس سورک

نتایج آنالیز شیمیایی عنصر اصلی، فرعی و کمیاب آتشفشانی-های افیولیت ملاتس سورک در جدول ۳ آورده شده‌اند. ال IOI سپک‌ها به علت متوسط (۵) درصد و منقرض آنها در گستره (۲۳-۲۷) درصد اندام‌گی‌های شد که نشان دهنده استبدای بودن این سنگ‌های سنگ‌های سبز و Na2O درصد است که نشان دهنده غی بودن این سنگ‌ها از سدیم و فلز بودن آنها از مس نصیب است. با توجه به نتایج دگرگونی کف دریا بر نمونه‌ها مورد بررسی، بررسی سنگ‌زایی آن‌ها با تکیه بر رفتار عنصر کمیاب نامت‌ناحی انجام خواهد گرفت.
جدول ۲ نتایج آنالیز سکل و محاسبه‌های به‌هنجار شده تا آنتشیش‌های افزایش ملانتیت سوده‌کردن.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R20</th>
<th>R24</th>
<th>R26</th>
<th>R27</th>
<th>R28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>74.1</td>
<td>73.5</td>
<td>72.3</td>
<td>74.3</td>
<td>74.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.4</td>
<td>0.5</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.0</td>
<td>11.1</td>
<td>11.0</td>
<td>12.0</td>
<td>11.9</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.7</td>
<td>8.2</td>
<td>8.5</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>MnO</td>
<td>0.9</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>MgO</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>CaO</td>
<td>1.7</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.3</td>
<td>3.2</td>
<td>3.8</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cr₂O₅</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>LOI</td>
<td>0.7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>98.1</td>
<td>98.3</td>
<td>98.1</td>
<td>98.3</td>
<td>98.5</td>
</tr>
<tr>
<td>Cr</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Ni</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Co</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>V</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Cu</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Pb</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Zn</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Sn</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>W</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mo</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>< 0.2</td>
</tr>
<tr>
<td>As</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Rb</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Cs</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ba</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Sr</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Ti</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>< 0.2</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Ga</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Ta</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Nb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Hf</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Zr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Y</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Th</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>U</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>La</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ce</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Pr</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Nd</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Sm</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Eu</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Gd</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Tb</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Dy</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ho</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Er</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Tm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Yb</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Lu</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Norm calculation

Quartz	32.5	32.3	32.2	32.2	32.3
Plagioclase	35.4	35.7	35.6	35.6	35.6
Orthoclase	1.8	1.9	1.8	1.8	1.8
Nepheline
Corundum
Diopside	2.0	2.1	2.0	2.0	2.0
Hypersthene	4.4	4.4	4.4	4.4	4.4
Wollastonite
Olivine
Ilmenite	1.2	1.2	1.2	1.2	1.2
Magnetite	7.2	7.2	7.2	7.2	7.2
Hematite
Apatite

Downloaded from ijcm.ir at 9:50 +0330 on Friday February 19th 2021
شکل ۴ موقعیت ترکیبی آتش‌فشانی‌های افیولیت ملانژ سورک (الف) در نمودار [۲۱] و (ب) در نمودار نورماropping سه‌تایی [۲۲].

شکل ۵ نمودار پهن‌جر. شده عناصر نادر خاک سبک آتش‌فشانی افیولیت ملانژ سورک به کنترل (مقدار استفاده شده برای پهن‌جر سازی)
برگرفته از [۲۳] است.
می‌شود بررسی‌های نشان داده‌اند که پرتوشنی‌های گوشه‌های افیولیت سیمانی به پرتوشنی‌های گوشه‌های زیر پوسائی آبی‌و‌سیاهی [24]. درچه‌کل دوبی بخشی: با استفاده از رابطه‌ای استیلیت موجود Cr{	extsuperscript{+3}} [25] + 24 در این سگه‌ها استفاده شد. مقدار میانگین دوب دوایلته و تاروزه‌گی‌های افیولیت ملانز سپرک برحسب ترتیب 3 و 16 درصد مصحوبه شده است. شکل (7). بر این اساس برای دانشمند است. سطح Cr{	extsuperscript{+3}}[25] (نیکل 7) مشخص می‌شود که لرزش‌های گوشه‌های افیولیت سپرک نه تنها توده و دست نخورده‌ترین پرتوشنی‌های این افیولیت ملانز سپرک. بررسی‌هایی که تحت بیوه‌گیا محدود چرخه‌ای [26] انجام شده است نشان می‌دهد که تشکیل دوبیوند در مجموعه‌ای افیولیتی با دوب پرتوشکه‌ها در شرایط بیشتر و بدون آب اکسیدنر بی‌کیفیت در شرایط بیشتر و بدون آب اکسیدنر بی‌کیفیت نیست. در شرایط بارای ذوب کامل کلیوپروکسی و تبدیل لرزه‌های به های‌ورژنیت حداکثر طبیعی آب‌پذیر [16], به دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب D/σه‌های آرامش زندگی و در مقیاس دیگر‌سای ماقوم شرایط تبدیل پرتوشنی‌های گوشه‌های این دارای شکل (4) است که در مقابل دیگر‌سای مقایسه‌ای است. این نتایج که در طبقه نیز این نتایج همکاری‌ها از عناصر در رادی این روی را از ترکیب آن در بررسی‌های سدزی‌ای استفاده زیادی است. نمودار بن‌جکشن شده عناصر ناسازگار آنتی‌فیزیکال افیولیت ملانز سپرک به گوشه‌های اولیه (دلاه‌های گوشه‌های اولیه برگرفته از [23].}

ویکی‌پدیا نشان داده‌اند که پرتوشنی‌های افیولیت سپرک به پرتوشنی‌های گوشه‌های زیر پوسائی آبی‌و‌سیاهی [24]. درچه‌کل دوبی بخشی: با استفاده از رابطه‌ای استیلیت موجود Cr{	extsuperscript{+3}} [25] + 24 در این سگه‌ها استفاده شد. مقدار میانگین دوب دوایلته و تاروزه‌گی‌های افیولیت ملانز سپرک برحسب ترتیب 3 و 16 درصد مصحوبه شده است. شکل (7). بر این اساس برای دانشمند که لرزش‌های گوشه‌های افیولیت سپرک نه تنها توده و دست نخورده‌ترین پرتوشنی‌های این افیولیت ملانز سپرک. بررسی‌هایی که تحت بیوه‌گیا محدود چرخه‌ای [26] انجام شده است نشان می‌دهد که تشکیل دوبیوند در مجموعه‌ای افیولیتی با دوب پرتوشکه‌ها در شرایط بیشتر و بدون آب اکسیدنر بی‌کیفیت نیست. در شرایط بارای ذوب کامل کلیوپروکسی و تبدیل لرزه‌های به های‌ورژنیت حداکثر طبیعی آب‌پذیر [16], به دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب دوی ذوب کامل از کلیوپروکسی و تبدیل های‌ورژنیت به دوی ذوب D/σه‌های آرامش زندگی و در مقیاس دیگر‌سای ماقوم شرایط تبدیل پرتوشنی‌های گوشه‌های این دارای شکل (4) است که در مقابل دیگر‌سای مقایسه‌ای است. این نتایج که در طبقه نیز این نتایج همکاری‌ها از عناصر در رادی این روی را از ترکیب آن در بررسی‌های سدزی‌ای استفاده زیادی است.
شکل 7. نمودار نسبت Mg/Fe اسپینل در حین بی‌نیاز به درجات بالا ذوب بخشی، دوبنیت‌های واکنشی تشکیل شوند. به طور کلی دوبنیت‌های موجود در مجموعه اسفنجی اولیه و آذرین نیستند، بلکه بدین‌گونه‌های نوظهوری هستند. که در اثر ذوب بدیننیت‌های غوشه در اثر محوطه آب‌زیروک و تشکیل ذوب‌کننده در نهایت دوبنیت ایجاد شده‌اند. به این اساس نبودهای پلاسما غوشه‌ها در دوبنیت واکنشی. در تئوری دوبنیت‌های واکنشی دوبنیت‌های واکنشی نخست هستند و در نهایت در دوبنیت‌های واکنشی دوبنیت ایجاد شده‌اند.

نویس

شکل 7. نمودار نسبت Mg/Fe اسپینل در حین بی‌نیاز به درجات بالا ذوب بخشی، دوبنیت‌های واکنشی تشکیل شوند. به طور کلی دوبنیت‌های موجود در مجموعه اسفنجی اولیه و آذرین نیستند، بلکه بدین‌گونه‌های نوظهوری هستند. که در اثر ذوب بدیننیت‌های غوشه در اثر محوطه آب‌زیروک و تشکیل ذوب‌کننده در نهایت دوبنیت ایجاد شده‌اند. به این اساس نبودهای پلاسما غوشه‌ها در دوبنیت واکنشی. در تئوری دوبنیت‌های واکنشی دوبنیت‌های واکنشی نخست هستند و در نهایت در دوبنیت‌های واکنشی دوبنیت ایجاد شده‌اند.

در نتیجه، مناطق بالایی زون فرواشی هستند که بدیننیت‌های آن‌ها تحت تأثیر شرایط آزاد و غیره از ورق اقیانوسی فروروده و قرار داشته است. بنابراین این اسفنجی‌های تیتانژنس سوزگار با نوع هزاربوزگی‌های شرکت کننده است. در این شرایط کلینوبوروسکس، اولین کانال ذوب و شده است، بنابراین هزاربوزگی‌های به‌های لرزویت تشکیل می‌شود. به این ترتیب پس از ذوب کلینوبوروسکس‌ها، از تونل‌روکس‌ها این سنگ‌ها نیز در اثر واکنش یا گازهای به صورت ناشناخته شرور به‌گذارند.

کنک و الیوتی‌ها و واکنشی تشکیل می‌شوند. [20] این فرآیند، بنابر واکنش زیر رخ می‌دهد:*

Incongruent melting

Silica – rich melt + Opx in Harzburgite

Silica – poor melt + (Ol) Dunite

به این ترتیب این واکنش‌ها باعث می‌شوند که سنگ میزانی اولیه که لرزویت‌های غوشه‌ای را تشکیل داده است، به‌خصوص به‌زیروک و سپس به جیپن‌های واکنشی تبدیل شود. علاوه بر این واکنش‌های جیپن/سنگ سبک می‌شوند که ترکیب ماهی‌ای که به‌دامنه‌ای تومریپوروسکس و لرزویت‌ها پس از گذشته طراحی شده و در اثر سیستم غی شده [31]. وارد میدان پاداره کرومیت شده و به‌دنبال ترکیب کروم اسپینل‌ها با این راهکار کرد است [32].**

ابسته‌ها با این راهکار کرد است [32].

[24] [44] رجبث، نَيْزِرْوَرْفَتُهُ بَرِيدوْنِيْتُ هَایْ کُونِتْهَ وْ سَنْگُ هَایْ وَکْتَانِمْ آمْذَرَهُ اَفْیَوْتَیْنیُ سَوَرِکْ (اسْتَانُ بَندَهَ) ضَعْفَهُ نَامَهَ کَارْشَانَسْی اَرْسَدَ پُنُسَلَوزَیْ، گَروُهُ زَمَینِ سَنْدَسَیِّ دَانِشَهَ اَسَفْهَانُ (1369) صفحه 165.

[28] [46] آلدَنْمازَ اِسْتَادَمْ، سْمْتَدَ م. وَن، گُورْغَادَ اِسْتَادَمْ، مِسَلَ ت، "مَیدَحَبَن وَسَوْرَفْبَلْعَن اَفْیَوْتَیْنیُ سَوَرِکْ اَنْقُطْیَانْ اَفْیَوْتَیْنیُ اَنْقُطْیَانْ اَنْقُطْیَالْرَمْلَهُ بَرِيدوْنِيْتُ هَایْ کُونِتْهَ وْ سَنْگُ هَایْ وَکْتَانِمْ آمْذَرَهُ اَفْیَوْتَیْنیُ سَوَرِکْ (اسْتَانُ بَندَهَ) ضَعْفَهُ نَامَهَ کَارْشَانَسْی اَرْسَدَ پُنُسَلَوزَیْ، گَروُهُ زَمَینِ سَنْدَسَیِّ دَانِشَهَ اَسَفْهَانُ (1369) صفحه 165.

