کاربرد شیمی گارتن در بررسی‌های ترمودینامیکی تونالیت دفنو (شمال گرب مشهد)

راهنمای نمایشگاه‌های عمومی، نرگس شیرده‌زاده، هیروشی کواباکا، و مهندس‌های عمران سازمان ملی مهندسی و عمران در ایران

چکیده: هورنبلند بیوتیت تونالیت غرب دفنو شامل کانی‌های کوارتز، بلاژیوکالس‌کلیسیم از آندزین نا لابرادوریت، گارتن (عمداً آلمنین)، بیوتیت (انته‌تا سیدروفلیت)، آمفیبول کلیسیک (عمداً فروهورنبلند) و کانی‌های فرعی کلرید، اپیدوت، کلسیت و البلنینت است. با توجه به دانش‌سنجی آمفیبول، بلازیوکالس و همچنین شیمی گارتن، که دارای میزان CaO در حدود 0.9-1.18 درصد وزنی و MnO در حدود 0-12 درصد وزنی است، گارتن‌ها در دما و فشار بین گرفت در حدود 696-95 درجه سانتی‌گراد و 10، 12 کیلوپاسی در این بخش‌های نسبت به آمفیبول و بلازیوکالس تیزتر پایه‌باند.

واژه‌های کلیدی: تونالیت، دما، فشار، گارتن، دفنو مشهد

مقدمه
بررسی‌های زمینداشی و زمین‌فرشانسی برای شناخت شرایط دما و فشار و تشکیل سنگها در دهه‌های اخیر به‌عنوان یک روش منفی مطرح شده‌اند. در این زمینه، تحقیقات آزمایشگاهی دانشگاه، محاسبات و مدل‌سازی ترمودینامیکی بر اساس تجزیه شیمیایی کانی‌ها با استفاده از ریپردازی‌های الکترونی به آگاهی بستر شرایط دما و فشار حاکم بر سنگ‌ها در خلاص فرآیندهای زمین‌شناختی، کمک مؤثری کرده است. در این اجاق دما و فشارسنج‌ها بر اساس حساسیت توزیع عناصر در ساختار کانی‌ها و یا طی تبدیلات شیمیایی، نسبت به دما و فشار طراحی شده‌اند.[1]

استفاده از ترکیب گارتن‌های بین‌عنوان شاخه‌ای پتروگنزیک در تعیین شرایط ترمودینامیکی مورد توجه به‌سیاست‌های از پژوهشگران بوده است. گارتن‌ها یکی از مهم‌ترین گروه‌های

rsamadi@hotmail.com

نویسنده: نسیم، تلفن: 09123232910، پست الکترونیکی: *
روش بررسی
برای دستیابی به هدف‌های باید شده در این پژوهش به
جمع‌آوری بررسی و ارزیابی اطلاعات موجود از منطقه و موارد
مشاهده در ایران و نقاط دیگر جهان پرداخته شد. سپس شیوه
سنسورهای مورد بررسی قرار گرفت و از 8 رخ دهنده مناسب
تولید مانند نوع‌های‌داری این شرایط‌ها تهمائی‌های این
منطقه‌ها از میان مقاطع بررسی شده تعدادی نقشه انجام
شدند. بنابراین اکنون این نتایج با آلبوم از کریستالویش داده
شد، مورد بررسی رژیم‌داری قرار گرفته. این آنالیز‌ها با
استفاده از نرم‌افزار JEXOL و JXA-8800 (WDS) مدل
استفاده می‌شوند و ماهیان JXA-8500F
فناوران اولین ایولیت یا با نام‌های AEP می‌باشد، پلاژیوکلاژ و
کاریت تحت بررسی در جدول‌های 1 و 2 ارائه شده‌اند.

بحث و بررسی
زمین شناسی منطقه
منطقه‌های مورد بررسی در شمال شرقی ایران در کرانش
شمال شرقی به شدت واقع شده است. این ناحیه در گستره

جدول 1 نتایج طی‌بین‌سازی آمفی‌فلی‌های موجود در تونل از دسته (بر حسب %)، محاسبه فرمول ساختاری (بر حسب 23 آن)
پایه‌های (a.p.f.u.) به‌صورت

<table>
<thead>
<tr>
<th>Sample</th>
<th>DH2+</th>
<th>Am-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>3.5</td>
<td>40.4</td>
<td>3.4</td>
<td>40.4</td>
<td>3.2</td>
<td>40.4</td>
<td>3.2</td>
<td>40.4</td>
<td>3.2</td>
<td>40.4</td>
<td>3.2</td>
<td>40.4</td>
<td>3.2</td>
<td>40.4</td>
<td>3.2</td>
<td>40.4</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.8</td>
<td>10.6</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.8</td>
<td>12.3</td>
</tr>
<tr>
<td>FeO</td>
<td>1.9</td>
<td>14.8</td>
</tr>
<tr>
<td>MnO</td>
<td>1.8</td>
<td>10.6</td>
</tr>
<tr>
<td>MgO</td>
<td>7.7</td>
<td>57.0</td>
</tr>
<tr>
<td>CaO</td>
<td>1.8</td>
<td>10.6</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.8</td>
<td>10.6</td>
</tr>
<tr>
<td>Total</td>
<td>33.3</td>
</tr>
<tr>
<td>Si</td>
<td>3.9</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.8</td>
<td>12.3</td>
</tr>
<tr>
<td>MgO</td>
<td>7.7</td>
<td>57.0</td>
</tr>
<tr>
<td>CaO</td>
<td>1.8</td>
<td>10.6</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.8</td>
<td>10.6</td>
</tr>
<tr>
<td>Total</td>
<td>33.3</td>
</tr>
<tr>
<td>Mg(O+Fe²⁺)</td>
<td>1.8</td>
</tr>
</tbody>
</table>
جدول ۲ نتایج آنالیز ریسیداری به‌ویژه‌ی موجود در گیاه (بر حسب ۸۰۵ جزئی و محاسبه‌ی فرمول ساختاری (بر حسب ۲۲ اتم آکسیژن و بخصوص ۸۰۵.۶۱۲).</p> <table> <thead> <tr> <th>محصول</th> <th>DH-Bt</th> </tr> </thead> <tbody> <tr> <td>SiO₂</td> ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ </td> </tr> <tr> <td>FeO</td> ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ </td> </tr> <tr> <td>MnO</td> ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ </td> </tr> <tr> <td>MgO</td> ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ </td> </tr> <tr> <td>CaO</td> ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ </td> </tr> <tr> <td>K₂O</td> ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ </td> </tr> <tr> <td>Cr₂O₃</td> ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ </td> </tr> <tr> <td>Total</td> ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ ۰.۵۳۲ </td> </tr> </tbody> </table>
جدول ۱ نتایج آنالیز زیربردازی کارتن‌های موجود در تونل‌لي دعو (بر حسب ۱۲ آم اکسین و پهلوی‌روت و محاسبه‌ی مقدار اعضای نهایی آنها.

<table>
<thead>
<tr>
<th>Sample</th>
<th>DH₂-Grt</th>
<th>DH₃-Grt</th>
<th>DH₄-Grt</th>
<th>DH₅-Grt</th>
<th>DH₆-Grt</th>
<th>DH₇-Grt</th>
<th>DH₈-Grt</th>
<th>DH₉-Grt</th>
<th>DH₁₀-Grt</th>
<th>DH₁₁-Grt</th>
<th>DH₁₂-Grt</th>
<th>DH₁₃-Grt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>4.94</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.01</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.91</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>10.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DH₂-Grt</th>
<th>DH₃-Grt</th>
<th>DH₄-Grt</th>
<th>DH₅-Grt</th>
<th>DH₆-Grt</th>
<th>DH₇-Grt</th>
<th>DH₈-Grt</th>
<th>DH₉-Grt</th>
<th>DH₁₀-Grt</th>
<th>DH₁₁-Grt</th>
<th>DH₁₂-Grt</th>
<th>DH₁₃-Grt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₆⁺</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₅⁺</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
</tr>
</tbody>
</table>

شکل ۱ نقشه زمین‌شناسی (الف) گسترده‌ای ساختمانی در شمال شرقی ایران. (ب) موقعیت مقطعه‌ی مورد بررسی در نقشه زمین‌شناسی

Cld = chloritoid; St = Staurolite; And = Andalusite; BZ = Binaloud Zone; SZ = Suture Zone; KZ = Kopedagh Zone
کاربرد شیمی گازن تری‌بزوئنیکی...

شناختی از تأثیر دگرگونی‌های ناحیه‌ای بعده روی مجموعه‌ی نفوذی منطقه است.

در بررسی میکروسکوپی تندوزه تونالیتی دندو، اندارد متوسط هر ۱ میلیمتر است. بفت موضع در این سنگ‌ها نیمه شکل دانه‌ای است. کانی‌های اصلی تشکیل دهنده تونالیتی: پلاژیوکلر، کوارتز، فلدسپات تپیسی و هورنبندیزن (شکل ۲-ب) و به مرکز کم‌پروکسین نیز و این‌سانده می‌شود. علاوه بر کانی‌های نامبرده، درشت بلورهای کارتن، کانی‌های کریستالنی (شیشه‌ای) و زیرکن به‌صورت منفرد و با اخراج درون درون در برخی مقاطع به‌معنای کانی‌های فرعی و دارند. کانی‌های تقاضای موجود در تونالیت شاخص سبک‌کشی‌ها، کریستالی بی‌پیتیانکیه که همیشه حاصل درگرفتن کانی‌های امپیفیلی، بی‌پیتیانکیه و پلاژیوکلر، هستند.

کوارتز: ۲۰ تا ۲۵ درصد از حجم سنگ را کوارتز‌های بی‌شکل با ابعاد متغیر و با حجم‌های متوسط، با اخراج مایل به خامویه‌های نسبی که درصد هستند که در مرکز نشان می‌دهند. کوارتز‌ها ساختار تغییری نداشتند و در برخی از موارد از مقاطع سنگ‌های سال در آنها توسط [۱۲] گزارش شده است. این کانی‌ها به‌صورت انتشاری از بلورهای زیر دنیا نیز دیده می‌شوند (شکل ۲-ب).

امپیفیلی: بلورهای امپیفیلی با درنخود نسبی ۳ میلیمتر، هم انداره و تقریباً منشوری شکل قرار دارند. این سنگ‌ها، در مقیاس علمی کاملاً نابینا و جدیدرندی نشان می‌دهند. برخی از امپیفیلی‌ها از این دگرگونی عضوی در حاشیه به بی‌پیتیانکیه به‌ویژه تبدیل شده‌اند. تعدادی از بلورهای امپیفیلی، این کانی‌ها به‌صورت انتشاری از کوارتز، پلاژیوکلر و بی‌پیتیانکیه هستند.

نتایج آلئزوریداری امپیفیلی‌ها همراه با محسوبی فرمول ساختار آنها در جدول ۱ آورده شده‌اند. محسوبی فرمول ساختاری امپیفیلی‌ها بر اساس ۲۳ آرم اکسیژن و ۱۲ کانی‌های کوارتز به‌وسیله است. استقرار برخی از امپیفیلی‌ها از این دگرگونی عضوی نشان می‌دهد. این کانی‌ها به‌وسیله Fe۳+ شکل ۲-ب (۱۰) ترکیب امپیفیلی‌ها وابسته به تونالیتی این دگرگونی‌ها، کلریکی و فرومول‌بندی در فرآیندهای است.
شکل ۲ (الف) نمایی از تونالیت منطقه‌ای دنده که به رنگ خاکستری و دانه منوط است؛ (ب) تصویر مقطع میکروسکوپی (XPL) آمپولیت، پلاژیوکلاز، بوتیت، مسکوپیت و کوارتز؛ (پ) تصویر مقطع میکروسکوپی (PPL) آمپولیت و بوتیت‌های (ت) تصویر یک کارتن با ابعاد حدود ۱ تا ۲ سانتی‌متر که طی فرسایش به‌صورت گرد شده و در سطح تونالیت نمایان شده است؛ (ث) تصویر کارتنی موجود در تونالیت که در ادخل هایی از بوتیت، کوارتز و پلاژیوکلاز است.

به‌پیژنوت (جدول ۲)، بوتیت‌ها در نمودار رده‌بندي ميکاها (برگرفته از [۲۳]) بنشت در هر است چنانکه ۱۰۰ تا ۲۰۰ دندان به‌صورت نيمه‌خودشکل با اندازه تقریبی ۲ تا ۳ میلی‌متر و به‌صورت بی‌شکل با اندازه ۲ تا ۳ میلی‌متر دیده می‌شوند. چندان‌گروه شدیدی از قهوه‌ای روشن تا قهوه‌ای زیر و بافت پیکولیتیک نشان داده و به‌صورت دسته‌ای از دانه‌های کوچک پر آمیز گزارش و آمپولیت با ادخال هایی از پلاژیوکلاز و زیرکون مشاهده می‌شوند (شکل ۳-ب). در نمونه‌های مورد بررسی بوتیت‌های کوارتزی شده و در تعدادی از نمونه‌ها هیبریدی بوتیت و آمپولیت را نیز مشاهده می‌کنیم (شکل ۳-ب). محاسبه فرمول ساختاری بوتیت‌ها بر اساس اتم‌ها با اکسیژن تا ۳/۳۴ اتم اکسیژن صورت
گرانیتهای درای CaO<4wt% CaO<4wt% CaO<4wt% CaO<4wt%; در دانشگاه همگونی کارا به خود این تنش آتشناریسایل‌ها (AI و Si) در گزاره و پهلوهای پلی‌پروپیلن می‌تواند عامل منطقه‌بندی بپیدا برحیل پلی‌پروپیلین‌ها در نظر گرفته شود.

گاست: گرانیتهای یکی از مهم‌ترین کاپی‌های ارسوسیلیکات در سنگ‌های سلولوئی و برزیل، و درویشی رایج است که به‌صورت فلزیاب در سنگ‌های سلولوئی منطقه‌بندی یافته می‌شود. قطر گرانیتهای در تونالیت به حدود 3 سنگ‌بسته متر است (شکل 2-1). بر اساس بررسی‌های همگونی و آنانالیز رزیدندرژ، گرانیتهای موجود در سنگ‌های سلولوئی سپر کلسیم و آلومینیوم موجود در تونالیت بیشتر از نوع آلومینیوم-گریزکالک-بی‌پروپیل-گریزکالک بوده (جدول 4). در گزاره ادغام‌های از پروپیل، مکزینیت، کوارتز و پلی‌پروپیلین رزیدانه سلولوئی (شکل 2-1) کانی‌های کر (آلیمینت) نیز به‌طور گسترده در سنگ‌های می‌روند. برخی از بررسی‌های پیشین (همانند [112]) که خاستگاه آلیمینت را به‌طور سنتی معرفی کرده، بررسی‌های رایج همگونی از جدایی 2-1 روی گرانیتهای موجود در تونالیت، نشان می‌دهد که این کانی‌ها کاپی‌های امکان‌پذیر غیرگرانیتهای غیرهالیمینتی دارند و خاستگاه آنها از نوع مکزینیت است و به‌عنوان گر، این کانی‌ها در این مطالعه با هم‌کاری فنسکال هستند.

در روش 1-1، تغییر گرانیته در تونالیت با گرانیتهای رزیدانه سنگ‌های در این منطقه سلوئی مجاور توده مقایسه شده است. چنانچه در این تصویر بخوبی مشاهده می‌شود که بررسی‌های همگونی کارا به خود این گرانیتهای موجود در تونالیت به‌طور سنتی معرفی کرده، بررسی‌های رایج همگونی از جدایی 2-1 روی گرانیتهای موجود در تونالیت، نشان می‌دهد که این کانی‌ها کاپی‌های امکان‌پذیر غیرگرانیتهای غیرهالیمینتی دارند و خاستگاه آنها از نوع مکزینیت است و به‌عنوان گر، این کانی‌ها در این مطالعه با هم‌کاری فنسکال هستند.
شکل ۳ (الف) رده‌بندی پلاژیوکلازها (برگرفته از [۱۷۲])؛ (ب) رده‌بندی امپیبول تونالیت دانو (برگرفته از روش [۲۰۱])؛ (ت) مقایسه روند تغییرات عناصر از هسته تا حاشیه گارنت موجود در تونالیت با گارنت موجود در هورنلس و شیست (داده‌های مربوط به گارنت شیست و هورنلس بر گرفته از [۸۰]).

جدول ۵ نتایج محاسباتی فشار (بر اساس روش آلومینیوم موجود در امپیبول [۱۷۲]) و دما (بر اساس روش هورنلس - پلاژیوکلاز [۱۷۳]) و واکنش (edenite + 4 quartz = tremolite + albite)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Plagioclase</th>
<th>Amphibole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>Pressure (kbar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
مجله پژوهش‌های و کتاب‌شناسی ایران
صدی، میرزاده، شیردشت‌زاده، کاوابان

۲۶۲

در این پژوهش، مایعات تولیدی با CaO، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، همراه با MnO با CaO، بالا Ta، CaO در حالت سازنده، H
پلاژوکلاژ تا ۱۰۰ ایل ۹۰ درجه سانتی‌گراد و عمیق تبلور بیشتر آنها نسبت به افیروپلاژوکلاژها نسبت داد.

مراجع

[۱] شریف‌زاده ن. صدی، ر. "اتسابی با روش‌های کیمیایی و شیمیایی" (۱۳۸۹) صفحه ۹۹ ص.


References:


