ژئوشیمی و سنگ‌شناسی سنگ‌های آتشنشانی کانسار مس ماهور، شمال غرب نپهندان (شرق ایران)

مرتضی اسفراری، حجیب پیانگر، محمد بومری، محمد حسن زرین‌کوب، محمد مهران و حیدر ابراهیمی

۱-گروه زمین‌شناسی دانشگاه علوم، دانشگاه سیستان و بلوچستان
۲-گروه زمین‌شناسی دانشگاه علوم، دانشگاه پیشگیرانه
۳-گروه زمین‌شناسی دانشگاه علوم، دانشگاه فردوسی مشهد

چکیده: منطقه مورد بررسی در استان خراسان جنوبی در ۱۳۰ کیلومتری شمال غربی نپهندان قرار شده است و بخشی از جهان نپهندان در این منطقه از کوه‌های جاده‌ای و غیره تشکیل شده است. بر اساس نمودارهای سنگ‌شناسی سری مارگینال سنگ‌های مورد بررسی در این منطقه مورد توجه قرار گرفته‌اند. نیز از این منظره در این منطقه دو دسته از سنگ‌های آتشنشانی، سنگ‌های کلیکی و سنگ‌های کانسار ماهور مطرح شده است.

 واژه‌های کلیدی: نپهندان، کانسار ماهور، آتش‌نشانی، قلب‌پیم، فلورانش، قوس آتش‌نشانی

مقدمه
دوران سنوزوئیک در ایران، دوران اوج فعالیت‌های ماهک‌های به ویژه فعالیت‌های آتش‌نشانی بود که محصول این فعالیت‌ها سنگ‌های آتش‌نشانی و آذرآوری‌ها در مناطق مختلف ایران است [1]. فعالیت آتش‌نشانی انسان، یکی از مهم‌ترین بی‌دیدگی‌های زمین‌شناسی ایران در زمان انسان است که اثر آن در اقلیم مناطق ایران غربی از زاگرس چین‌خورده و کاهشی به جهش می‌خورد [2]، و مردم در این منطقه از کوه‌ها و جنگل‌ها بهره می‌برند. در این منطقه، کوه‌های مهران، کوه‌های ازبک و کوه‌های زاگرس، کوه‌های نپهندان واقع شده است [3] که در محدوده آتش‌نشانی‌های زمین‌شناسی در زون لوت و در

روش بررسی
پس از جمع‌آوری و بررسی اطلاعات، گزارش‌ها و نقشه‌ها مربوط به منطقه بررسی‌های صحرایی و آزمایشگاهی در غالب

Morteza.sform1@gmail.com

نویسنده مسئول، تلفن: ۰۹۱۲۷۶۵۸۴، تلفن رسمی:

*
مورد زیر انجام گرفت:
1- بررسی‌های صحرایی یک نمونه برداری و جمع‌آوری شواهد زمین‌شناسی به تعداد ۲۰۰۰ نمونه سنگی و کانسیگ از تمام گستره‌های مورد نظر.
2- تهیه مقاطع نازک برای بررسی بافت‌ها و کانی‌ها.
3- ارسال ۱۱ نمونه از نمونه‌های سنگی ناحیه اندرکا پر از دوی درگسایی کم برای تجزیه شیمیایی به روش XRF به منظور و نتایج آزمایشگاه شرکت کانسیگان بینالود.
4- استفاده از نتاژ آنالیز ICP–MS و ICP–AES روی نمونه‌های مورد بررسی.
5- ترسيم نمونه‌های مختلف سنگ‌شناسی با استفاده از نرم– آفزایه GCDkit و Minpet، Igpet اندازه‌گیری می‌باشد و محیط زمین‌شناسی منطقه‌ی مورد بررسی.

بحث و بررسی
زمین‌شناسی
منطقه‌ی مورد بررسی در گستره‌ی طول‌های جغرافیایی شرقي ۵۸۳۰ تا ۵۹۳۱ و عرض‌های جغرافیایی شمالی ۲۰۰۰ تا ۳۱۴۵ قرار گرفته و بخشی از چهارگوش چاه‌گوک (دهسیم)
شکل ۲ موضعیت نمونه‌های برداشت شده و واحدهای سنگی منطقه ی کاسار مس ماهور.

شکل ۳ بلورهای پلاژیوکلاز با بافت غربالی و کربناتی شدن آن (الف)، بافت بی‌سنتنیک (ب)، منطقه‌بندی در بلور پلاژیوکلاز (ج) و حاشیه‌های خارجی اطراف بلور پلاژیوکلاز (د).
زنوشیمی

به منظور تعیین دقیق نوع سنگهای آتشنشانی منطقه‌های مورد بررسی، پس از بررسی‌های میکروسکوپی و شناسایی کلیه‌ها از ردیابی شیمیایی نیز استفاده شد، البته منظور سعی شد تا نمونه‌های انتخاب شده سالم و کمتر درگیر نشده باشند، نتایج حاصل از تجزیهٔ زنوشیمی نمونه‌های مختلف سنگه‌های آتشنشانی در جدول ۱ ارائه شده است.

در سابقه‌های مورد بررسی، سنگی مغز و در پایان جداسازی با پیشرفته سری پیوستهٔ پلاژیوکلازهای در فلدسیات‌های قلیایی متمرکز می‌شود، میزان این اکسید در نمونه‌های مورد بررسی از ۱۵ تا ۴۸ درصد وزنی متغیر است. از همانند هیمالند Ca است. از آنجا که Mg عناصر Ca و Mg از عناصر در گروه محسوب شده و نسبت آن‌ها به یکدیگر در این نوع سنگ به شدت کاهش می‌یابد، میزان MgO در سنگ‌های مورد بررسی از ۱۶ تا ۳۷ درصد وزنی متغیر است. از آنجا که در مراحلی جداسازی نمایندگان دارد وارد Fa به میزان نسبی بیشتری از با مانند کانی‌های مافیک و پلاژیوکلازهای کلسیم‌دار شود، به سبب تری این اکسید به خروج این کانی غلظت این اکسید با امکان روند جداسازی کلیه‌ها، نمونه‌های مورد بررسی را با مشابهت کاهش خواهد یافت. که این امر می‌تواند به شکل یک ترکیب پلاژیوکلازهای از کلسیم‌دار که سنگی حين تبلور به میانها وابسته به شدت میزان Na۲O در CaO از عناصر متریک‌کننده. میزان Na۲O در این نمونه‌ها ۰،۱۵ تا ۰،۵۱ درصد وزنی متغیر است. عناصر Na۲O به میزان متغیر K۲O از ۱۵ تا ۴۸ درصد می‌باشد، در سنگ‌های سنگه‌های منطقه‌های در گروه مورد بررسی و رپودسیت- داسیت قرار می‌گیرد (شکل ۵). در نمونه‌های مورد بررسی با افرایش Na۲O غلظت

نمونه‌های انتخاب نمونه‌های مختلف سنگه‌های آتشنشانی در جدول ۱ ارائه شده است.

به منظور تعیین دقیق نوع سنگهای آتشنشانی منطقه‌های مورد بررسی، پس از بررسی‌های میکروسکوپی و شناسایی کلیه‌ها از ردیابی شیمیایی نیز استفاده شد، البته منظور سعی شد تا نمونه‌های انتخاب شده سالم و کمتر درگیر نشده باشند، نتایج حاصل از تجزیهٔ زنوشیمی نمونه‌های مختلف سنگه‌های آتشنشانی در جدول ۱ ارائه شده است.

در سابقه‌های مورد بررسی، سنگی مغز و در پایان جداسازی با پیشرفته سری پیوستهٔ پلاژیوکلازهای در فلدسیات‌های قلیایی متمرکز می‌شود، میزان این اکسید در نمونه‌های مورد بررسی از ۱۵ تا ۴۸ درصد وزنی متغیر است. از آنجا که Mg عناصر Ca و Mg از عناصر در گروه محسوب شده و نسبت آن‌ها به یکدیگر در این نوع سنگ به شدت کاهش می‌یابد، میزان MgO در سنگ‌های مورد بررسی از ۱۶ تا ۳۷ درصد وزنی متغیر است. از آنجا که در مراحلی جداسازی نمایندگان دارد وارد Fa به میزان نسبی بیشتری از با مانند کانی‌های مافیک و پلاژیوکلازهای کلسیم‌دار شود، به سبب تری این اکسید به خروج این کانی غلظت این اکسید با امکان روند جداسازی کلیه‌ها، نمونه‌های مورد بررسی را با مشابهت کاهش خواهد یافت. که این امر می‌تواند به شکل یک ترکیب پلاژیوکلازهای از کلسیم‌دار که سنگی حين تبلور به میانها وابسته به شدت میزان Na۲O در CaO از عناصر متریک‌کننده. میزان Na۲O در این نمونه‌ها ۰،۱۵ تا ۰،۵۱ درصد وزنی متغیر است. عناصر Na۲O به میزان متغیر K۲O از ۱۵ تا ۴۸ درصد می‌باشد، در سنگ‌های سنگه‌های منطقه‌های در گروه مورد بررسی و رپودسیت- داسیت قرار می‌گیرد (شکل ۵). در نمونه‌های مورد بررسی با افرایش Na۲O غلظت

نمونه‌های انتخاب نمونه‌های مختلف سنگه‌های آتشنشانی در جدول ۱ ارائه شده است.
جدول 1 نتایج تجزیه‌شیمی سیگه‌های آتش‌نشانی کاسارس مس بامه به روش XRF

<table>
<thead>
<tr>
<th>sample</th>
<th>S37</th>
<th>S29</th>
<th>S19</th>
<th>S7</th>
<th>S94</th>
<th>S52</th>
<th>MF1</th>
<th>S114</th>
<th>MS</th>
<th>BZ011</th>
<th>S130</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (wt%)</td>
<td>68.68</td>
<td>68.48</td>
<td>68.49</td>
<td>68.22</td>
<td>68.99</td>
<td>68.85</td>
<td>68.74</td>
<td>68.74</td>
<td>68.74</td>
<td>68.85</td>
<td>68.85</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.63</td>
</tr>
<tr>
<td>MgO</td>
<td>0.32</td>
</tr>
<tr>
<td>K₂O</td>
<td>11.23</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.43</td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>0.18</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.45</td>
</tr>
<tr>
<td>SO₃</td>
<td>11.77</td>
</tr>
<tr>
<td>LOI</td>
<td>6.18</td>
</tr>
<tr>
<td>Ba (ppm)</td>
<td>0.55</td>
</tr>
<tr>
<td>CO</td>
<td>38</td>
</tr>
<tr>
<td>Cr</td>
<td>31</td>
</tr>
<tr>
<td>Cu</td>
<td>31</td>
</tr>
<tr>
<td>Nb</td>
<td>28</td>
</tr>
<tr>
<td>Ni</td>
<td>9</td>
</tr>
<tr>
<td>U</td>
<td>22</td>
</tr>
<tr>
<td>Th</td>
<td>13</td>
</tr>
<tr>
<td>Ce</td>
<td>55</td>
</tr>
<tr>
<td>Cl</td>
<td>1388</td>
</tr>
<tr>
<td>Rb</td>
<td>349</td>
</tr>
<tr>
<td>Sr</td>
<td>178</td>
</tr>
<tr>
<td>V</td>
<td>81</td>
</tr>
<tr>
<td>W</td>
<td>21</td>
</tr>
<tr>
<td>Y</td>
<td>0.21</td>
</tr>
<tr>
<td>Zr</td>
<td>0.21</td>
</tr>
<tr>
<td>Mo</td>
<td>0.21</td>
</tr>
</tbody>
</table>
نمودار جدایی محلی زمین ساخته گرانیتونی به‌پیشنهادی $\text{Rb}_2\text{Y} + \text{Nb}$ است. نیز، موقعیت زمین ساخته سیگنال‌های منطقه‌ای مورد بررسی در گستردگی وابسته به قوس‌های انتشغالی و همزمان با برخورد قرار می‌گیرد (شکل 7). دیگر نمودارهای استفاده شده برای نمودارهای $\text{Hf}/3-\text{Th}$-Ta و Nb/16 با حاشیه‌ای مخرب قرار می‌گیرد (شکل 8). زمین انتشغالی سیگنال‌ها و جدایی قوس‌های انتشغالی $\text{Rb}_2\text{Y} + \text{Nb}$ استفاده کرده، که با توجه به این نمودار، نیز موقعیت منطقه‌ای در موقعیت زمین ساخته همزمان با برخورد قاره‌ای جای می‌گیرد (شکل 6). به منظور تغییر میکروبی زمین ساخته سیگنال‌های انتشغالی مورد بررسی از نمودارهای $\text{Hf}/3-\text{Th}$-Ta و Nb/16 استفاده می‌شود که عنصر کمیاب یک تحرکی نظیر Y و غیره سازندگی آن استند. این عنصر نسبت‌زا نمودارهای $\text{Zr}, \text{Ta}, \text{Hf}$ نامحرک بوده و هنگام عملکرد قرآیندهای مثل هوازدگی و دگرگانی از جوی حساسیتی نشان نمی‌دهد. با استفاده از

شکل 5 موقعیت سیگنال‌های انتشغالی منطقه‌ی مورد بررسی در نمودار $\text{Rb}_2\text{Y} + \text{Nb}$.

شکل 6 نمودار $\text{Hf}/3-\text{Th}$-Ta و Nb/16 و موقعیت نمودهای منطقه‌ی مورد بررسی بر آن.
در نمودار ترسیم شده غازی کمیاب نمونه‌های مورد بررسی در کانس‌س می‌شود که نشان دهنده غنی‌تباری شدگی نمونه‌ها از عناصر خاکی کمیاب سبک (LREE) و نهی (HREE) نمونه‌های آن در جدول ۲ آورده مقداران آنالیز عناصر REE می‌باشد. شاخص میزان (La/Yb)_N در نمونه‌های مورد بررسی بین ۱۴ تا ۱۲.۵۲ به دلیل این‌که غنی‌تباری کمیاب خاکی کمیاب در نمونه‌های را نشان می‌دهد. غنی‌تباری نمونه‌های مورد بررسی کانس‌س می‌شود که نشان دهنده غنی‌تباری شدگی نمونه‌ها از عناصر خاکی کمیاب سبک و نهی شدگی آنها از عناصر خاکی کمیاب سنگین و نیز غنی‌تباری نمونه‌های که در نمونه‌های ترسیم شده نشان دهنده غنی‌تباری این عنصر می‌باشد. برای غنی‌تباری شدگی HREE نسبت به REE می‌باشد.

شکل ۷ قرارگیری نمونه‌های منطقه‌ی مورد بررسی در فوسه‌های انسان‌سانی و محیط زمین ساختی هرمان با پرخورده [۱۲].

شکل ۸ نمودار زمین ساختی ماکم‌های سنگ‌های کانس‌س می‌شود که در گستره‌ی CABC شکل‌های مخرب قرار می‌گیرند. [۱۳].

نمودار

![نمودار](https://example.com/image.png)
جدول ۲ نتایج تجزیه شیمیایی عناصر خاکی کمیاب (PPM) به روش ICP-MS

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lu</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-172</td>
<td>0.29</td>
<td>0.21</td>
<td>0.11</td>
<td>0.16</td>
<td>0.28</td>
<td>0.27</td>
<td>0.24</td>
<td>0.21</td>
<td>0.19</td>
<td>0.16</td>
<td>0.14</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>4-173</td>
<td>0.28</td>
<td>0.21</td>
<td>0.10</td>
<td>0.14</td>
<td>0.20</td>
<td>0.23</td>
<td>0.19</td>
<td>0.16</td>
<td>0.13</td>
<td>0.10</td>
<td>0.09</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>MH2d-43</td>
<td>0.23</td>
<td>0.17</td>
<td>0.10</td>
<td>0.09</td>
<td>0.16</td>
<td>0.18</td>
<td>0.16</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>MH2d-40</td>
<td>0.22</td>
<td>0.16</td>
<td>0.09</td>
<td>0.08</td>
<td>0.14</td>
<td>0.16</td>
<td>0.14</td>
<td>0.11</td>
<td>0.09</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>BZ011</td>
<td>0.17</td>
<td>0.12</td>
<td>0.08</td>
<td>0.06</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>BZ017</td>
<td>0.17</td>
<td>0.12</td>
<td>0.08</td>
<td>0.06</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>GI</td>
<td>0.20</td>
<td>0.15</td>
<td>0.09</td>
<td>0.08</td>
<td>0.12</td>
<td>0.14</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
</tr>
</tbody>
</table>

جدول ۳ محاسبه نسبت Eu/Eu* نمونه‌های مورد مطالعه در کانسار سه ماهور.

<table>
<thead>
<tr>
<th>Sample</th>
<th>MCD-۴-172</th>
<th>MCD-۴-173</th>
<th>MCD-MH۲d۴۸</th>
<th>MCD-MH۲d۴۰</th>
<th>MCD-BZ۰۱۱</th>
<th>MCD-BZ۰۱۷</th>
<th>MCD-GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu</td>
<td>0.77</td>
<td>0.76</td>
<td>0.75</td>
<td>0.73</td>
<td>0.74</td>
<td>0.73</td>
<td>0.75</td>
</tr>
<tr>
<td>Gd</td>
<td>0.25</td>
<td>0.25</td>
<td>0.23</td>
<td>0.20</td>
<td>0.22</td>
<td>0.23</td>
<td>0.25</td>
</tr>
<tr>
<td>Sm</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.08</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>EuN</td>
<td>10.47</td>
<td>10.44</td>
<td>10.43</td>
<td>10.40</td>
<td>10.41</td>
<td>10.42</td>
<td>10.44</td>
</tr>
<tr>
<td>GdN</td>
<td>0.33</td>
<td>0.32</td>
<td>0.31</td>
<td>0.29</td>
<td>0.30</td>
<td>0.29</td>
<td>0.31</td>
</tr>
<tr>
<td>SmN</td>
<td>14.06</td>
<td>14.05</td>
<td>14.04</td>
<td>14.01</td>
<td>14.02</td>
<td>14.03</td>
<td>14.05</td>
</tr>
<tr>
<td>Eu*</td>
<td>0.88</td>
<td>0.86</td>
<td>0.84</td>
<td>0.82</td>
<td>0.83</td>
<td>0.81</td>
<td>0.82</td>
</tr>
</tbody>
</table>
های هگمونی که پوشش رسوبی روی پوشش اقیانوسی فروزانه می‌شود، عنصر Ba به سیلیسی شاهدهای مشتق شده از رسوب‌های آباد و پوشش اقیانوسی به گوشه‌گی می‌کند.

ای منطق شده و تولید ماده‌های با LILE/HFSE ماگمای تشكیل دهنده آن سنگ‌ها از پوشش اقیانوسی

فروپاش میزان Th در نمونه‌های منطقه‌ای از 20/3 تا 319/9 تا 145/0 تا 30/9 در نمونه‌ها اشاره به تاثیر رسوب‌ها در

بدایه ماگما دار [210/]. به همچنین عنصر Ti به مسیرهای کاتیو فناهجاها مانند اسفن، البانسیا، رومیلی و فناهجاگیریتی

و بعضی از آن‌ها که در شاهدهای آباد که در نمونه‌ها از 219/3 تا 207/8 قرار گرفته به همراه فناهجاها و کاتیو فناهجاها و

پوشش به ابعاد یکی از 30 کیلومتر به صورت فراهای

برخی باقی مانند و باعث ایجاد یک توده TF می‌شود.

[211]. نتایج تئوری‌نگاری از عنصر مولکولی در نمونه‌های

بررسی در جدول 4 دیده می‌شود. مقادیر Ti در نمونه‌ها از

1/00 تا 1/18 تا 28/8 تا 78/4 و مقادیر Nb از 1/00 تا 28/2 تغییر می‌کند.

ظاهر این نوع پوسته به بین‌نگاری بی‌شده به گوشه‌گی اولیه [18].

![شکل 10 نمودار عنکبوتی بهبین‌نگاری بی‌شده به گوشه‌گی اولیه](https://example.com/image10.png)
جدول 2 تناجع آلی تعدادی از عناصر موجود در نمونه‌های سنگ مورد مطالعه

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cs (PPM)</th>
<th>Ba (PPM)</th>
<th>Hf (PPM)</th>
<th>P (PPM)</th>
<th>Ti %</th>
</tr>
</thead>
<tbody>
<tr>
<td>N5</td>
<td>0.09</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>N6</td>
<td>0.33</td>
<td>0.35</td>
<td>0.5</td>
<td>0.7</td>
<td>0.06</td>
</tr>
<tr>
<td>S86180</td>
<td>0.56</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.07</td>
</tr>
<tr>
<td>S86181</td>
<td>0.37</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>0.08</td>
</tr>
<tr>
<td>S86182</td>
<td>0.52</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.07</td>
</tr>
<tr>
<td>S86183</td>
<td>0.63</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.07</td>
</tr>
<tr>
<td>S86184</td>
<td>0.27</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>S86185</td>
<td>0.67</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.07</td>
</tr>
<tr>
<td>BZ012</td>
<td>0.19</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.02</td>
</tr>
<tr>
<td>BZ013</td>
<td>-</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.03</td>
</tr>
<tr>
<td>BZ016</td>
<td>0.54</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>0.07</td>
</tr>
<tr>
<td>BZ018</td>
<td>0.75</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.07</td>
</tr>
<tr>
<td>BZ019</td>
<td>0.51</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>0.07</td>
</tr>
<tr>
<td>G1</td>
<td>0.68</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.07</td>
</tr>
<tr>
<td>S4-172</td>
<td>0.28</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>MH2d-43</td>
<td>0.26</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.05</td>
</tr>
</tbody>
</table>

برداشت

بر اساس ردیدنی شیمیایی، سنگ‌های مورد بررسی عبارتند از آندزیت، تراکی آندزیت، آندزیت‌پرولیت، پرولیت، داسیت و پروپراتس. بر اساس نمونه‌های سنجش‌شناختی، سری مکانیکی سنگ‌های مورد بررسی دارای ماهیت آهکی-قلیایی پیتروپیله‌ای هستند، و به استفاده از نمونه‌های جواکنندی محيط زمین ساختی، سنگ‌های انطباعی منظور در نواحی فوران‌ها و کاهی در نواحی منطقه‌های دارای گرفتن‌های و بالا باودن جزء ناشانه‌های LREE/HREE و LILE/HFSE نسبت‌های و FV/FH مناسب می‌شوند. به‌طوری‌که در این سنگ‌ها نشان دهندهٔ تشکیل‌ریشه‌های شیمیایی این سنگ‌ها با ماگماتیسم قوس-نبیکی دیگری از مهم‌ترین به‌هنجاری منفی به عنصر Nb که در این سنگ‌ها رواسته است. رویینسون (1993) اعتقاد دارد که تهی‌صدگی از نonen‌های سنگ‌های قاره‌ای است و ممکن است نشان دهندهٔ شکست پوسته در فرآیندهای ماگماتیک باشد [26].

جایگاه (1999) معتقد است که شاره‌ای و گدارهای ناشی از پوستهٔ اقیانوسی فرور و دگرگونی‌های این منطقه در مورد به‌طوری‌که در این سنگ‌ها به شاره‌های آزاد شده از صفحه وارد نمی‌شود. به همکاری (2007) معتقد است که تمام ماگماتیک‌های قوسی این سنگ‌ها از گذشته به‌طوری‌که در این سنگ‌ها به شاره‌های آزاد شده از صفحه وارد نمی‌شود. به همکاری (2007) معتقد است که تمام ماگماتیک‌های قوسی این سنگ‌ها از گذشته به‌طوری‌که در این سنگ‌ها به شاره‌های آزاد شده از صفحه وارد نمی‌شود.

مراجع

[1] بهاری‌نژاد ن، تراوی‌نژاد، ج.، احمدپور، ج.، مولانا، و.، "مطالعه‌ی شیمیایی سنگ‌های شیمیایی ابتدایی در نواحی غربی‌وسان کیفر (شکم‌سنگ‌های اصلی)،" مجلهٔ بلور شناسی و کانی‌شناسی ایران، شماره 1 (1387)، ص 99-112.
[2] موسی نژاد مهاجر، تراوی‌نژاد، ج.، احمدپور، ج.، مولانا، و.، "مطالعه‌ی شیمیایی سنگ‌های شیمیایی ابتدایی در نواحی غربی‌وسان کیفر (شکم‌سنگ‌های اصلی)،" مجلهٔ بلور شناسی و کانی‌شناسی ایران، شماره 1 (1387)، ص 99-112.

