ژئوشیمی و سنگشناسی سنگ‌های آنتشفلانی کاسار مس ماهور، شمال غرب نهبندان (شرق ایران)

مرتضی اسمرت ۳، حسین‌پور ۱، محمد بهروی ۲، محمد حسن زرین‌کوب ۲، مهدی مهران ۳، حسین ابراهیمی ۴

۱- گروه زمین‌شناسی دانشگاه علم، دانشگاه سیستان و بلوچستان
۲- گروه زمین‌شناسی دانشگاه علمی تحقیقاتی و پژوهشی، دانشگاه مازندران
۳- گروه زمین‌شناسی دانشگاه علمی تحقیقاتی و پژوهشی، دانشگاه فردوسی مشهد

چکیده: منطقه مورد بررسی در استان خراسان جنوبی در ۱۲۰ کیلومتری شمال غربی نهبندان واقع شده است. به‌یکی از چهارگوش چاوشک (ده‌سلیم) است. از نظر سنگ‌شناسی، تمام شرایطی، رودابیعت، ناحیه‌ای، روباهی، نقوس و نوک‌های دیده به ناحیه‌سازی سنگ‌های سازندگانی این ناحیه، بر اساس رده‌بندی شیمیایی، سنگ‌های مورد بررسی از تراک، اندرزیت، اندرزیت، روباهی، داسیت و رودابیعت تشکیل شده‌اند. بر اساس نمودارهای سنگ‌شناسی، سری ماده‌های سنگ‌های مورد بررسی در جغرافیای اکنون پیش‌بینی شده است. نیز با استفاده از نمودارهای جداسازی محیط زمین‌ساختی، سنگ‌های آنتشفلانی مورد نظر در نواحی فراوان‌فوق‌چرخ و گرفتن‌های این ناحیه با کمیابی Pb، K، Ti و Pb و جهت‌گیری منفی مشابهی یافت. شرایط سنگ‌های این حوزه با کمیابی قوس‌های آنتشفلانی است.

واژه‌های کلیدی: نهبندان، کاسار مس ماهور، اکنون، پیروی‌پذیر، فوران‌های‌ی قوس‌های آنتشفلانی

مقدمه
دوره سنوژیک در ایران، دوران اوج فعالیت‌های ماگمایی به ویژه فعالیت‌های آنتشفلانی بوده است که موجب امضاء یافتن فعالیت‌های ماگمایی در این ناحیه شده و در ترکیبی به اوج خورد رشد است. به طوریکه سنگ‌های آنتشفلانی ترشیاری، به ویژه انسیس با ضخامت حدود ۱۰۰۰ متر، به‌یکی از نمی‌گرایان به‌نظر می‌رسد. هدف از این پژوهش تعیین ژئوشیمی سری ماگمایی و موفقیت زمین‌ساختی سرگه و ژئوشیمی آدنار، میزان کاسار مس ماهور است.

روش بررسی
پس از جمع‌آوری و پرسی اطلاعات، گزارش‌ها و نقشه‌ها مربوط به منطقه، بررسی‌های صحرایی و آزمایشگاهی در غالب نوبنده سیستم، تلفن: ۰۹۱۲۳۷۲۹۷۲۳۰۰۰۰۰۴۳۲ (۲۵۰۰۰۱۴۲۲۵۳۸۲)، پست الکترونیکی: Morteza.sform1@gmail.com
مورد زیر انجام گرفت: 

1- بررسی‌های ح Châuای برای نمونه‌برداری و جمع‌آوری شواهد زمین‌شناسی، به تعداد ۲۰۰ نمونه سنگی کائینیک از نماد گستره‌ای مورد نظر

۲- تهیه مقاطع نازک ماژراهی برای پرس‌بافته و کاپیها.

۳- ارسال ۱۱ نمونه از نمونه‌های سنگی نادگرمسان در دادرسای کم برای نججی شیمیایی به روش XRF به مشهد و

۴- انجام شده است. ICP-MS و ICP-AES استفاده از تابلو آتایزات روز نمونه‌های مورد بررسی.

۵- ترمو نمودارهای مختلف سنگ‌شناسی با استفاده از نرم- افزارهای GCDkit و Igpet اندازه‌گیری ماکمایی و محیط زمین‌شناسی منطقه‌ی مورد بررسی.

بحث و بررسی

زمین‌شناسی

منطقه‌ی مورد بررسی در گستره‌ای طول‌های جغرافیایی شرقی ۵۸۳۰ تا ۵۹۳۱ و عرض‌های جغرافیایی شمالی ۲۰۰ تا ۳۱۲۵ قرار دارند. این منطقه بررسی به بخشی از چهارگوش چاه‌هاک (دهسل)
شکل ۳ موقتی نمودهای برنامه‌ی برداشت شده و واحد های سنگی منطقهی کاسار مس ماهور.

شکل ۲ بلورهای پلاژیوکلاز با بافت غربالی و کربناتی شدن آن (الف)، بافت بیلی سنگیک (ب)، منطقه‌بندی در بلور پلاژیوکلاز (ج) و حاشیه‌ی غبار اطراف بلور پلاژیوکلاز (د).
جلد ۲۰ شماره ۲ تابستان ۱۳۹۱
زنوشیمی و سنگ‌شناختی سنگ‌های آنتیفسیا کانسار مس...
۲۴۵

شکل ۴ بلوره‌های هورنتنبد با حاشیه‌سیخ‌های سخت و کریستالی شدن آن (الف). اکسپاسیون هورنتنبد به اکسید اهن (ب) کریستالشدن بیان‌کننده پیوسته‌تر (ب) و بلور در ساختار بلازیوکلاژن‌های کلسیک و پیروکسین قرار می‌گیرد و در پایان جداشدن با پیشرفت سری پیوسته، بلازیوکلاژن‌ها در فلزسیات‌های قلبی مترکم‌می شود، میزان این اکسید در نمونه‌های مورد بررسی از ۱۶۳ تا ۱۵٪ درصد وزنی متفاوت است. از این‌جا که همانند Mg هم‌اکنون Ca است و میزان دادن در فاصله‌ای اولیه (آغاز فراکسین جداشانک) کانین مافیک را تشکیل دهنده از محصول خارج‌شوند، MgO غلظت (SiO۲) به شدت کاهش می‌یابد. میزان MgO در سنگ‌های مورد بررسی از ۱۰۰ تا ۲۳۰ درصد وزنی متفاوت است. این اکسیدی انتظار می‌رود که در مراحل جداشانک جدایی از مومدار دارد وارد فاصله‌ای با دامی بالا مانند کانی‌های مافیک و پلایزیوکلاژن‌های کلسیبدار شود، به دنبال تولید اسید که با خروج این کانی غلظت این اکسید با ادامه روند جداشانک کاهش خواهد یافت، که این امر می‌تواند به شکل کریستال بلازیوکلاژن‌های کلسیک و CaO در سنگ‌های مورد بررسی از ۱۰۰ تا ۶۷٪ درصد وزنی متفاوت است. نمونه‌های مورد بررسی از Na۲O است. عناصر از نمونه‌های مورد بررسی کابان. میزان K۲O در نمونه‌های منطقه از ۲۰ تا ۰٪ درصد وزنی تغییر می‌کند و در این نمونه‌ها ۵۰ تا ۱۱٪ درصد وزنی است. در این نمونه‌ها الباهون مقداری FeO را می‌توان دیگرکنی و احتمالاً آلایش به‌طور نسبی داشته تغییرات اکسیدهای SiO۲ و TiO۲ نسبی افزایش می‌یابد که این با روند عادی جداشانک اعلان در سنگ‌های عادی مانا طی ندارد. آلومینیم از آغاز‌ها پایان جداشانک ماگماتی حضور دارد و در آغاز جداشانک ماگماتی.
واپسین است که می‌تواند به دلیل حضور آفیبوی در این نمونه باشد، میزان زیرکیسوم با افزایش روند جدایی آنزیم‌هایی می‌باید تشخیص بخشی سریاها و همگامی‌های با نمونه‌های مشابه لنز صورت می‌گیرد، که بکی از این AFM نمونه‌های مشابه معمولاً نمونه‌های مشابه A = Na₂O + K₂O, F = FeO + Fe₂O₃ گرفته شده است. چندان به پیداست نوع سری ماده‌ای سنگ‌های آدرین منطقه‌ی مورد بررسی، آهنگ‌های قابلی لک می‌توانست است (شکل 2)، به مانند تولید دقت‌تر موادیت می‌باشد.

جدول 1 نتایج تجزیه‌ی شیمیایی سنگ‌های آتش‌نشان کاسار سی ماهود به روش XRF

<table>
<thead>
<tr>
<th>sample</th>
<th>S37</th>
<th>S29</th>
<th>S19</th>
<th>S7</th>
<th>S94</th>
<th>S52</th>
<th>MF1</th>
<th>S114</th>
<th>S9</th>
<th>BZ011</th>
<th>S150</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (%)</td>
<td>69.8</td>
<td>68.8</td>
<td>68.9</td>
<td>72.6</td>
<td>75.3</td>
<td>74.9</td>
<td>70.5</td>
<td>75.9</td>
<td>72.4</td>
<td>74.9</td>
<td>75.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.3</td>
<td>15.7</td>
<td>15.4</td>
<td>12.8</td>
<td>11.7</td>
<td>10.1</td>
<td>11.9</td>
<td>12.3</td>
<td>10.1</td>
<td>11.3</td>
<td>11.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.4</td>
<td>2.3</td>
<td>2.6</td>
<td>3.3</td>
<td>3.7</td>
<td>3.9</td>
<td>3.6</td>
<td>3.2</td>
<td>3.3</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>MgO</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.5</td>
<td>1.5</td>
<td>1.9</td>
<td>1.8</td>
<td>1.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.6</td>
<td>1.7</td>
<td>1.1</td>
<td>1.5</td>
<td>1.2</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.2</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.4</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.7</td>
</tr>
<tr>
<td>LOI</td>
<td>5.1</td>
</tr>
<tr>
<td>Ba (ppm)</td>
<td>159</td>
<td>208</td>
<td>220</td>
<td>204</td>
<td>223</td>
<td>218</td>
<td>225</td>
<td>232</td>
<td>229</td>
<td>224</td>
<td>229</td>
</tr>
<tr>
<td>CO</td>
<td>57</td>
</tr>
<tr>
<td>Cr</td>
<td>37</td>
</tr>
<tr>
<td>Cu</td>
<td>197</td>
</tr>
<tr>
<td>Nb</td>
<td>26</td>
</tr>
<tr>
<td>Ni</td>
<td>10</td>
</tr>
<tr>
<td>U</td>
<td>19</td>
</tr>
<tr>
<td>Th</td>
<td>22</td>
</tr>
<tr>
<td>Ce</td>
<td>75</td>
</tr>
<tr>
<td>Cl</td>
<td>368</td>
</tr>
<tr>
<td>Rb</td>
<td>94</td>
</tr>
<tr>
<td>Sr</td>
<td>782</td>
</tr>
<tr>
<td>V</td>
<td>155</td>
</tr>
<tr>
<td>W</td>
<td>44</td>
</tr>
<tr>
<td>Y</td>
<td>54</td>
</tr>
<tr>
<td>Zr</td>
<td>214</td>
</tr>
<tr>
<td>Zn</td>
<td>171</td>
</tr>
<tr>
<td>Mo</td>
<td>24</td>
</tr>
</tbody>
</table>
نمودار جداسازی میکروبی زمین ساخته گرانیت تونیزهای پیشنهادی [12] که بر حسب عناصر کمیاب Rb۵۲ و Nb ۱۶ نیز، موقعیت زمین ساخته سگه‌ها منطقه‌ی صورت بررسی در گستره‌ی واپس به قوس‌های انتشار نشان‌دهنده و هم‌مان با برخورد قرار می‌گیرد (شکل ۷). از نمونه‌های منطقه در موقعیت زمین ساخته هم‌مان با برخورد قرار دیده و در قوس‌های جای می‌گیرد (شکل ۶). به منظور تعیین میکروبی زمین ساخته سگه‌ها انتشار صورت بررسی از نمونه‌های استفاده‌ی می‌شود که عناصر کمیاب کم تحقیک نظیر Y، Nb و غیره سازنده‌ای هستند. این عناصر نسبتاً نامتحکم بوده و هنگام عملکرد فرآیندهای مثل هوادگی و دگرسانی از خود حساسیتی نشان نمی‌دهند. با استفاده از

این نمودار، می‌توان از ۱۱۱ ۱۶۰۰ و ۱۰۰۰ و جداسازی سگه‌های آزمایشی با استفاده از قوس‌های انتشاری [11] و موقعیت نمونه‌های منطقه‌ی صورت بررسی بر آن.

شکل ۵ موقعیت سگه‌های انتشاری منطقه‌ی مورد بررسی در نمونه‌های [۸۷].

شکل ۶ نمودار AFM plot (Irvine and Baragar 1971)
شکل 7 فراگرایی نمونه‌های منطقه‌ای مورد بررسی در فوسه‌های آنتفایلی و محیط زمین ساختی هرمزنا با برخورد [12].

شکل 8 نمودار زمین ساختی ماکم‌های سنگ‌های کانسار مس ماهور که در گستره CAB یا حاشیه‌ای مخرب قرار گرفته، نمودار زمین ساختی ماکم‌های سنگ‌های کانسار مس ماهور که در گستره CAB یا حاشیه‌ای مخرب قرار گرفته‌اند [13].

در نمودار ترسیم شده دو عناصر خاکی کمیاب نمونه‌های مورد بررسی در کانسار مس ماهور نسبت به کندزنیت [14] (شکل 9) شیب منفی مشاهده می‌شود که نشان دهنده غنی‌ شدگی نمونه‌ها از عناصر خاکی کمیاب سبک (LREE) و نهی شدگی از عناصر خاکی کمیاب سنگین (HREE) نمونه‌های منطقه است. مقادیر آنتالی عناصر HREE در جدول ۲ ارده شده‌اند. میزان نمونه‌های مورد بررسی بین (La/Yb)N برابر نمونه‌های مورد بررسی بین ۰/۵ تا ۱/۲۳ به دست آمده است. البته برخی نمونه‌های نمونه‌های این نمونه‌های با کاهش میزان آنتالی عناصر HREE نسبت به کندزنیت لامینتی نشان دهنده هم خاستگاه بودن آنهاست. برای غنی شدگی HREE نسبت به LREE
جرد ۲: نتایج تجزیه شیمیایی عناصر حاکی (PPM) به روش ICP-MS

<table>
<thead>
<tr>
<th>نمونه‌ی</th>
<th>Cu</th>
<th>Zn</th>
<th>Cr</th>
<th>Ni</th>
<th>Co</th>
<th>Mn</th>
<th>Fe</th>
<th>Pb</th>
<th>Sr</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-172</td>
<td></td>
</tr>
<tr>
<td>4-173</td>
<td></td>
</tr>
<tr>
<td>MH2d-43</td>
<td></td>
</tr>
<tr>
<td>MH2d-40</td>
<td></td>
</tr>
<tr>
<td>BZ011</td>
<td></td>
</tr>
<tr>
<td>BZ017</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳: محاسبه نسبت Eu/Eu*

<table>
<thead>
<tr>
<th>نمونه‌ی</th>
<th>MCD-4-172</th>
<th>MCD-4-173</th>
<th>MCD-MH2d48</th>
<th>MCD-MH2d40</th>
<th>MCD-BZ011</th>
<th>MCD-B017</th>
<th>MCD-G1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu</td>
<td>۰.۷۷</td>
<td>۰.۷۸</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
</tr>
<tr>
<td>Gd</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
</tr>
<tr>
<td>Sm</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
<td>۲.۵۵</td>
</tr>
<tr>
<td>EuN</td>
<td>۱۰۴۱۷۳</td>
<td>۱۰۴۱۷۳</td>
<td>۱۰۴۱۷۳</td>
<td>۱۰۴۱۷۳</td>
<td>۱۰۴۱۷۳</td>
<td>۱۰۴۱۷۳</td>
<td>۱۰۴۱۷۳</td>
</tr>
<tr>
<td>GdN</td>
<td>۲۹۶۳۱۷۳</td>
<td>۲۹۶۳۱۷۳</td>
<td>۲۹۶۳۱۷۳</td>
<td>۲۹۶۳۱۷۳</td>
<td>۲۹۶۳۱۷۳</td>
<td>۲۹۶۳۱۷۳</td>
<td>۲۹۶۳۱۷۳</td>
</tr>
<tr>
<td>SmN</td>
<td>۱۴۳۶۱۷۳</td>
<td>۱۴۳۶۱۷۳</td>
<td>۱۴۳۶۱۷۳</td>
<td>۱۴۳۶۱۷۳</td>
<td>۱۴۳۶۱۷۳</td>
<td>۱۴۳۶۱۷۳</td>
<td>۱۴۳۶۱۷۳</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>۰.۸۸</td>
<td>۰.۸۸</td>
<td>۰.۸۸</td>
<td>۰.۸۸</td>
<td>۰.۸۸</td>
<td>۰.۸۸</td>
<td>۰.۸۸</td>
</tr>
</tbody>
</table>

ترکیب شیمیایی سنگهای منطقه‌ای مورد بررسی نسبت به فراوانی این عنصر به گوشته‌ای اولیه [۱۹] بهنگار شده‌اند (شکل ۱۰). در نمونه‌های مورد بررسی کانسارد مس ماهور، غنی‌شدنگی ضعیفی از عنصر Pb از ۱۰ تا ۱۰۰ برابر و Th از ۱۰ تا ۱۰۰ برابر مقایسه‌ای آنها در گوشته‌ای اولیه نشان می‌دهد که این امر احتمالاً به دلیل اضافه شدن گذشته‌ای حاصل از رسوب‌های بلازی و شاره‌های حاصل از پیگربنک‌ها افتاده است. این نتایج به بیانگری مثبت گوشته‌ای وی بوده و به‌طور داخلی از فرآیندهای وارد گوشته‌ای شده‌اند. غنی‌شدنگی عنصری‌مانند Sr با تا ۱۰۰ برابر مقایسه‌ای آنها نسبت به گوشته‌ای آنها در گوشته‌ای اولیه.
ونمودار عنکبوتی بین‌جفت شده به گوشته اووله [۱۸].

۱۸۰ نمونه اصلی برای این گونه مورد استخراج قرار گرفت و بیش از ۳۰۰ نمونه از هوا و فاقد ذوب مورد استخراج قرار گرفت. نتایج آنالیز تعدادی از عناصر موجود در نمونه‌های سیقبنده به‌طور قابل توجهی متفاوت از آن در نوع و مقدار تابش در درجه یک همراه با میزان زنده نشان می‌دهد. این نتایج با احتیاط باید تا زمینه‌ای در مورد تاثیر توزیع غلظت عنصر در میزان زنده تاریخ گذاشته شود. 

۱۸۰ نمونه از این نوع عناصر به‌طور جداگانه و مشترک با میزان زنده گونه مورد استخراج قرار گرفت. نتایج آنالیز تعدادی از عناصر موجود در نمونه‌های سیقبنده به‌طور قابل توجهی متفاوت از آن در نوع و مقدار تابش در درجه یک همراه با میزان زنده نشان می‌دهد. این نتایج با احتیاط باید تا زمینه‌ای در مورد تاثیر توزیع غلظت عنصر در میزان زنده تاریخ گذاشته شود.
جدول ۲ نتایج تعدادی از عناصر موجود در نمونه‌های سنگ مورد مطالعه

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cs (PPM)</th>
<th>Ba (PPM)</th>
<th>Hf (PPM)</th>
<th>P (PPM)</th>
<th>Ti %</th>
</tr>
</thead>
<tbody>
<tr>
<td>N5</td>
<td>900</td>
<td>180</td>
<td>100</td>
<td>500</td>
<td>0.3</td>
</tr>
<tr>
<td>N6</td>
<td>1000</td>
<td>200</td>
<td>200</td>
<td>400</td>
<td>0.5</td>
</tr>
<tr>
<td>S86180</td>
<td>567</td>
<td>930</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>S86181</td>
<td>576</td>
<td>300</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>S86182</td>
<td>13</td>
<td>300</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>S86183</td>
<td>27</td>
<td>500</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>S86184</td>
<td>37</td>
<td>930</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>S86185</td>
<td>27</td>
<td>490</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>BZ012</td>
<td>0.09</td>
<td>100</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>BZ013</td>
<td>0.09</td>
<td>100</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>BZ016</td>
<td>0.09</td>
<td>100</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>BZ018</td>
<td>0.09</td>
<td>100</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>BZ019</td>
<td>0.09</td>
<td>100</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>BZ017</td>
<td>0.09</td>
<td>100</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>G1</td>
<td>0.09</td>
<td>100</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>S4-172</td>
<td>0.09</td>
<td>100</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
<tr>
<td>MH2d-43</td>
<td>0.09</td>
<td>100</td>
<td>18</td>
<td>271</td>
<td>0.05</td>
</tr>
</tbody>
</table>

کیک‌دیگر از مهندسین به‌نیازهای منفی به عنصر
وباسته است. رویلیسون(1993) اعتقاد دارد که تهی‌شدگی از
شاخ صنایع سنگهای قاره‌ای است و ممکن است نشان
دهندگی شرکت پوسته در فراورده‌های ماهیبلند باشد.[24]
چالی (1999) معنی است که شاره‌ای و گردآوری ناشی از
پوسته اپی‌پوسته مرور به فرآیند گوشی گردیده از
دیواره ای ایجادی به منفی منفی
می‌شود.[25] همچنین (2000) معنی‌دار که تمام ماهی‌های کوچک
که این عنصر به شاره‌های آزاد شده از صفحه وارد نمی‌شود. به
Sr و Cs، Ba، Pb و Pb و پیش‌تر به‌شماره Ti به‌شماره
را به ماکت فرآیند و بازگشت ماکت به
نقطه‌ای فرآینده می‌گردد و شاره‌های مسئله شده
از تحرک نسبتاً بالایی برخوردند و شاره‌های مشتق شده
در صفحه‌های فرآینده غنی از این عنصر مسئله
[26] در کلیه تهی‌شدگی منفی فوری و 
نپنده‌ای Ti و Nb
نپنده‌ای منفی عناصر ضروری و 
می‌توان نشان دهندگی شکل‌گیری سنگه‌ها در منطقه
فرآیند باشد. زیرا در منطقه‌های فرآیند شاره‌های آزاد شده
از لیست‌های فرآینده که Nb
غیز در گروه LILE
گوشه‌های همجوشی می‌یابند.[27]


