فرشته رنجبرمقدم*، خسروی ابراهیمی نصرآبادی، سیدمسعود همام
گروه زیست‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد
(دریافت مقاله: 18/07/99، نسخه نهایی: 18/07/99)
چکیده: رخندگان گسترشده سنگهای دگرگونی در منطقه قدیم واقع در شرق فریمان حویلی آندالوزیت شیسته‌هایی است که در این پژوهش پتانسیل آنها به عنوان ذخیره‌های معدنی ورودی ارزیابی می‌گردد. در این مطالعه شیشه‌های سنتکارگری و زئوسته‌ای، آراستگی و آرایش متنوعی مشاهده شده که در رابطه با ساختار پراستاره شیمیایی نمونه به روش XRF مکمل شده‌است. نتایج بررسی‌های فیزیکی نشان می‌دهد که اکسید آلومینیوم، 1/5 درصد اکسید آلیاژ و 5 درصد اکسیدهای پتاسیم و سدیم نهایی کد که قابل مقایسه با استانداردهای جهانی و قابل عرضه در بازار آندالوزیت است.

وزه‌های کلیدی: فریمان، آندالوزیت، فراوری، جدایی ریتی‌ی، جدایی شیمیایی، جدایی مغناطیسی، مقدمه

چندین کسی‌ها کاپی‌های گروه سیلیمانیت (شامل آندالوزیت، سیلیمانیت و کلاینت) دارای ترکیب شیمیایی یکسان (Al₂SiO₅)۶ به همراه تبلور و ساختار متفاوت و خواص فیزیکی گوناگونند. این کاپی‌ها به دلیل مقدار زیاد آلومینیا (عیار متوسط ۵ برای کاپی‌های گروه سیلیمانیت تخلیص شده) درصد است) از دیگر باعث نمایه‌هایی در این وسایل مطرح بوده و به خاطر خواص گرمایی و مکانیکی بسیار بالا، همچنان در صنایع جدید نیز مورد توجه و پژوهش به‌عنوان یکی از میان‌ساز کاپی‌های گروه سیلیمانیت، آندالوزیت به دلیل چگالی با پیش‌بینی انتظار از اثر گرمای معدن‌کاری ساده آن اینکه تغییر آندالوزیت مناسب...
پایداری گرمایی در کناره‌های الومینوسیلیکات همچون Mn، آلومینیت در اثر آلیاژ‌ها و تخلخل‌های آنها همچنین Ti، Fe عبرت مستهارد می‌شود. البته این آلیاژها به طور کلی کاربری‌هایی که Al₂O₃ غنی یا آلومینیتی کمتر از 20٪ آلومینیت قدرت محدود می‌شوند. در اینجا هم یک نمونه از آلومینیت قدرت آلومینیوم کمی دارند. در کاربرد درمانی به میزان عبرت اقتصادی لازم است در ماده نامه عملیات کانال‌آریا صورت گیرد. [4]

یک بودن درصد باکتری‌های Fe، Si، Ti در اثر ذرات یا پراکندگی از آلومینیت و حذف آلیاژها از اکسیدهای آلومینیوم مایع می‌باشد. به عنوان انواع زیان آلیاژ مواد آلومینیوم همکاری با آلومینیوم که در جریان کانال‌آریا درصد انرژی به شکل ایزوکل و به یکی با کمترین میزان نابینایی آلومینیمی دارند. [5]

برای تهیه نمونه‌های موردی شرایط مورد استفاده در این بحث نیز به عنوان فیزیکی و سیستمیک می‌باشد. برای نمونه‌های آلومینیوم مواد غیره به شکل شیمیایی با درون‌نشسته این بخش از این محدود ذخیره است.

این منطقه از 110 کیلومتری جنوب شرقی مشهد و 40 کیلومتری جنوب شرقی فریمان، به مختصات ۳۵۱۴ تا ۲۸ شرقی و ۲۰۰۷/۰۶ تا ۲۰۰۷/۰۷ شمالی قرار گرفته است. این مجموعه در فاصله گسترده به پردازه ۴ کیلومتر در راستای شمال غربی - جنوب شرقی جنوب بسته شده که مانند آرام‌شتاب‌های از اکسیدهای آلومینیوم و سیلیم‌بات است. طول به‌طور میانگین ۲۰۰ متر است و میانگین پردازش ۱۰ سانتی‌متر است.

در این مجموعه لاپایهای با پراکنده نام‌آگاهی از کارکرد، اهمیتی به داشت دوباره مسیر شد و مسیر سنگ‌های رس در گذشته دوباره پردازه و مسیری پربرفیت و گرانت در اثر فعالیت‌های بخش مهم سنگ‌های رس در این منطقه را شناسایی می‌کند. بکار رفتن مدل‌هایی با صورت پراکندگی، میانایی لاپایهای این مدل‌ها و روی‌کارکرد مدل‌ها را تراش می‌دهند.

این سنگ‌ها در سمت شمال با انتقال گلی در مجاور
شکل ۱ نقشه منحنی‌های هم عیار آندالوزیت در گستره‌ی بررسی‌های جنوب شرقی فریمان [۱۰۱].

گوارتز، آلیبیت، سیلیمانت و موسکویت را نام برد. در برخی از موارد گرافیت نیز در این کانی دیده می‌شود. گرافیت در برخی از این کانی‌هایی که در این بلوژ به جسم‌های میخورد می‌توان
کوچک و پراکنش همراه با بیوکت و در اطراف فلسفه و آنالوژی دیده می‌شود. ابن الکان در اثر آوردن دارای سمت‌گذاری کلاه‌هاست در منطقه‌هایی که صورت پراکنده به خود می‌پردازد. ابن الکان می‌تواند از دگرشیبی بیوکت ایجاد شده باشد. تأثیر نیز در نمونه‌ها به طور پراکنده مشاهده شود. کلاه جزئی در این نمونه مشاهده می‌شود. گرفتگی و گونه‌های نهسنده در اندزه‌های فلسفه در نمونه‌ها از ۲۰۲۰ الی ۷۰ میلی‌متر تغییر است. مگنیت و گونه‌های موجود در بطور دراز بسیار زیاد از حد مانند میلی‌متر در نمونه‌های پراکنده. در شکل (۲) تماشایی از مکانی بررسی نشان داده شده است.

از آنجا که تغییرات شیمیایی نمونه‌ی یکی از مهم‌ترین ابعاد‌های لازم برای بررسی و ارزیابی اولیه ماده‌ای معمول است و می‌تواند اهمیت‌هایی، میکروسکوپی و پارش پرتو ایکس به تعیین هویت ماده پیدا کند و این مسئله در پیش‌بینی روی و با روش‌های جدیدی بیان نیست [۱۱]. در مراحل بعد، آنالیز شیمیایی نمونه مفرغ از بیش از ۱۰۰ کیلوگرم نمونه بهره‌اند از منطقه‌ی بزرگ‌تر. از این‌رو، فضای شیمیایی مجموع فلوری که انجام شد که نتیجه‌ی اولیه از دیدگاه (۱) ارائه شده است.

آزمایش‌های فلوری

پژوهش‌های گیاه‌گوناگون در مناطق مختلف در نمای داده‌های که به‌صرفه‌ی طبیعتی صنعتی از آنالوژی‌ها و شیمی‌پزشکی با یک داده‌ای می‌شود. اکنون پیشنهاد خواهد شد که تا این پیوسته نیز از این روی، برای آزمایش‌های آنالوژی، استفاده را ادامه دهیم. مراحل مختلف این آزمایش‌ها شامل بیمارستانی و دانشگاهی نمونه‌ی آزمایش‌های محیط‌سنجی و نیز مغناطیسی بودند و به پرس‌های کلی از آزمایشگاه‌های غیرآزمایش‌های پزشکی، درمانی و از دست به پرس‌های فلوری یکی را کسانی‌ها صورت‌گیری از این روش‌ها بود. این آزمایش‌های محیط‌سنجی و نیز بطور جامع می‌گردد. پزشکی مطالبی از آزمایش‌های موجود در آزمایش‌هایی که در حال حاضر در بهره‌داری مورد استفاده قرار می‌گیرند به فرم‌های آزمایش‌های دستیابی به این مکانی بودند. ارائه شده‌اند.

مواقع در درون و یا به همراه آنالوژی‌های بیزت و گاهی نیز به صورت پراکنده در نمونه‌های دیده می‌شود.

برخی از آنجا که بیشتر از فلوری‌ها استفاده شده‌است. گرمایک نیز وجود دارد. به صورت دهم‌شیبی با بیوکت، مسکوتی، بی‌پراکنده، بین پره‌ها کوکتی و فلسفسیا قابلیت در مجاورت و روی آنالوژی‌ها و گرانت‌ها مشاهده می‌شود. از استفاده در اثر فلسفسیا آنالوژی بهره‌برداری شده است. فلسفسیا، دیگرکی‌ها موجود در نمونه‌ها قابل مشاهده است. فلسفسیا، اکنون پیشنهاد خواهد شد که تا این پیوسته نیز از این روی، برای آزمایش‌های آنالوژی، استفاده را ادامه دهیم. مراحل مختلف این آزمایش‌ها شامل بیمارستانی و دانشگاهی نمونه‌ی آزمایش‌های محیط‌سنجی و نیز مغناطیسی بودند و به پرس‌های کلی از آزمایشگاه‌های غیرآزمایش‌های پزشکی، درمانی و از دست به پرس‌های فلوری یکی را کسانی‌ها صورت‌گیری از این روش‌ها بود. این آزمایش‌های محیط‌سنجی و نیز بطور جامع می‌گردد. پزشکی مطالبی از آزمایش‌های موجود در آزمایش‌هایی که در حال حاضر در بهره‌داری مورد استفاده قرار می‌گیرند به فرم‌های آزمایش‌های دستیابی به این مکانی بودند. ارائه شده‌اند.
<table>
<thead>
<tr>
<th>Component</th>
<th>(%)</th>
<th>(%)</th>
<th>(%)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>21.7</td>
<td>21.7</td>
<td>21.7</td>
<td>21.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>41.5</td>
<td>41.5</td>
<td>41.5</td>
<td>41.5</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>CaO</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>MgO</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>L.O.I</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Graphite

Graphite is a crystalline form of carbon, and it is widely used in various applications due to its unique properties such as high thermal and electrical conductivity. The structure of graphite is hexagonal, with layers of carbon atoms bonded together by strong covalent bonds and weak Van der Waals forces between the layers. This structure allows for facile movement of electrons, making graphite an excellent electrical conductor. In addition, its lubricating properties make it valuable in applications where low friction is required, such as in ball bearings and dry-lubrication systems.
آنت که بتوان آن را مستقیما برای تولید فوآرده‌های نهایی مورد استفاده قرار داد، به این علت باقید کنی هیا یا آریک یا از پایتنهٔ گذا شود. در این پژوهش برای تعمیم درجه‌ی آزادی که از پایتنه‌های همان سرویش سپری گردید، استفاده شد. در این روش دانه‌های آزاد و درکیر کنن با میکروسکوپ قطعی به‌کار گرفته و درجه‌ی آزادی کنن از فرمول زیر محاسبه‌شده:

\[Df = \left(\frac{n_1}{n_1 + n_2}\right) \times 100 \]

که در آن: \(Df \) دفعه‌ی آزادی کنن، \(n_1 \) تعداد دانه‌های آزاد و \(n_2 \) تعداد دانه‌های درکیر کنن می‌باشند.

در آزمایش‌های آنالیز کامل امکان دسترسی به‌کار گرفتند. نتایج بررسی‌های درجه‌ی آزادی مقاطع دفتر (۵) دیده می‌شوند.

در جدول (۲) نتایج آنالیز کامل امکان دسترسی به‌کار گرفتند.

<table>
<thead>
<tr>
<th>جرم بررسی (گرم)</th>
<th>جرم امکانی (میکرون)</th>
<th>رنگ</th>
<th>دیده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۸</td>
<td>۶۹.۲</td>
<td>۶۹.۲</td>
<td>۱۲۸۳۶</td>
</tr>
<tr>
<td>۳۸۰</td>
<td>۸۸.۸</td>
<td>۸۸.۸</td>
<td>۱۷۵۲</td>
</tr>
<tr>
<td>۸۰۰</td>
<td>۲۰.۲</td>
<td>۲۰.۲</td>
<td>۳۰۰۰</td>
</tr>
<tr>
<td>۱۲۸</td>
<td>۸۸.۲</td>
<td>۸۸.۲</td>
<td>۱۱۸۷</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۲۵۷۲</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>جمع</td>
</tr>
</tbody>
</table>

شکل ۲ نمودار آنالیز دانه‌های متنوع ۵ همکار.
دروسی فورآوری و ارزیابی پتانسیل اقتصادی ذخیره معدنی آندالوزیت شرق فریمان
جلد ۲۰ شماره ۳ ۱۳۹۱

جدول ۴ درجه‌ی آزادی آندالوزیت بر حسب درصد در نمونه

<table>
<thead>
<tr>
<th>آندالوزیت</th>
<th>درگیر با کاتیها (بایتله (())</th>
<th>اندازه قرن (میکرون)</th>
<th>نام کانی</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>35</td>
<td>0.0000-1.0000</td>
<td>EM-TP-89-87,88</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>24</td>
<td>1.0000-5.0000</td>
<td>EM-TP-89-89,90</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>23</td>
<td>5.0000-10.0000</td>
<td>EM-TP-89-91,92</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>10.0000-15.0000</td>
<td>EM-TP-89-93,94</td>
<td></td>
</tr>
</tbody>
</table>

شکل‌های (5) تا (7) ارائه شده است.

در آزمایش‌های فورآوری عبارت محصول پرعبایی شده و بازیابی آن بازپارامترهایی است. در این بخش، سیستم بستگی به روش تقریبی به وجود آمده می‌باشد. منظور از روش تقریبی (recovery) که تحت عنوان راندمان عملیات نیز گفته می‌شود نسبت وزنی عنصر (بایتله) با آب در محصول پرعبایی شده، وزن عنصر با آب در محصول پرعبایی و وزن عنصر با آب در محصول پرعبایی است. جنگ‌که در جدول مشاهده می‌شود میان عبارت پیش از آزمون مایع سنگین از اولیه حداکثر 44.4٪ و مقدار بازیابی آن به حدود 28٪ رسید. میزان عبارت Ni به مقدار 61 درصد و 86.8٪ در مونوپلی به 0.7٪ کاهش یافته‌اند.

از جکاکندنده‌های مغناطیسی معمولاً برای پرعبایزی کانی‌های مغناطیسی و آهن‌دانه بینایی و مولỏiی استفاده می‌شود. این جکاکندنده‌های مغناطیسی به دو نوع جکاکندنده با شدت کم و با شدت زیاد به دست می‌آیند. جکاکندنده مغناطیسی دیسکی به شدت بالا استفاده شد و چند کندنده نیز دیسکی کانی‌های پارامغناطیسی نسبت به تاثیرپذیری مغناطیسی آنها جدا می‌شوند، به نحوی که دانه‌ها با چسبنت پارامغناطیسی مغناطیسی عالی محصول و دانه‌ها با کمترین تاثیرپذیری مغناطیسی تونین مولتی را تشکیل می‌دهند. این این جکاکندنده می‌توان مولتی را که تاثیرپذیری مغناطیسی آنها کمی با بکارگیری اختلافی دارد، با دقت زیاد از هم جدا کرد [11].
شکل ۳الف- در گری تکمیلی آندالوزیت با بیوتیت ب- ادخال های گرافیت، بیوتیت و کلریت در آندالوزیت ب- بلور آندالوزیت آزاد ت- در گری تکمیلی آندالوزیت با بیوتیت و ادخال های گرافیت در آندالوزیت ت- در گری تکمیلی آندالوزیت با کوارتز و بیوتیت و ادخال های گرافیت در آندالوزیت ج- ادخال های کوارتز و گرافیت در آندالوزیت ج- بلور آندالوزیت آزاد T (چپ) آندالوزیت در گری تکمیلی با بیوتیت و ادخال کوارتز در آندالوزیت (راست) (تصاویر در نور عموری XPL گرفته شده است)
جدول 5 نتایج آزمون‌های مابع سنگین روي نمونه‌ها با ابعاد 1- میلی‌متر.

<table>
<thead>
<tr>
<th>Fe₂O₃ (%)</th>
<th>SiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>وزن (g)</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>عبارت ایالیت</td>
<td>عبارت ایالیت</td>
<td>عبارت ایالیت</td>
<td>درصد</td>
<td>گرم</td>
</tr>
<tr>
<td>12%</td>
<td>7%</td>
<td>2%</td>
<td>14.99</td>
<td>89.6</td>
</tr>
<tr>
<td>12%</td>
<td>7%</td>
<td>2%</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>12%</td>
<td>7%</td>
<td>2%</td>
<td>31</td>
<td>22.8</td>
</tr>
<tr>
<td>12%</td>
<td>7%</td>
<td>2%</td>
<td>41.6</td>
<td>22.8</td>
</tr>
<tr>
<td>12%</td>
<td>7%</td>
<td>2%</td>
<td>61.6</td>
<td>22.8</td>
</tr>
<tr>
<td>12%</td>
<td>7%</td>
<td>2%</td>
<td>100</td>
<td>22.8</td>
</tr>
</tbody>
</table>

شکل 5 نمودار عبارت و پاراپی از Fe₂O₃ نسبت به چگالی‌های مختلف. در این آزمایش عبارت عبارت Fe₂O₃ با افزایش چگالی ماده سنگین افزایش داشت است و به حدود 41 رشد است.

شکل 6 نمودار عبارت SiO₂ نسبت به چگالی‌های مختلف. در این آزمایش عبارت SiO₂ چنان که مردگی گردیده است با افزایش چگالی ماده سنگین از حدود 32 به 44 کاهش داشت است.

شکل 7 نمودار عبارت Fe₂O₃ نسبت به چگالی‌های مختلف. در این آزمایش عبارت Fe₂O₃ با افزایش چگالی ماده سنگین تغییر مشخصی در عبارت Fe₂O₃ ایجاد نشد است.
در این پژوهش، آزمون نامغناطیسی روي نمونه اولیه کمتر از 1 میلی متر انجم شد که نتیجه گرفته شده است. چنانچه در نتایج ارائه شده می‌شود، در بخش مغناطیسی عبارت FeO3 به حدود 18.5% و میزان بازیابی 17.6% است. عبارت Al2O3 نیز در محصول نامغناطیسی افزایش بسیار کمی داشته و به 19.2% رسیده است.

روی محصول نامغناطیسی بهدست آمده، آزمون‌های مایع سنتگین در همان سه چگالی انجم شد که نتیجه گرفته شد، به صورت جدول (7) نمودارهای (8) تا (10) نالند داده شد. در جدول (7) ملاحظه می‌شود که در آزمون مایع سنتگین با چگالی 3.9 جدول (8) نمودارهای (9) و (10) که در مقایسه با عبارت Al2O3 و بازیابی کاهش در مقایسه با عبارت Al2O3 حاصل شده است. بیشترین عیار به FeO3 و SiO2 اکسیدهای بیشتری افزایش در عبارت کمی که سنتگین در انجم شده است.

جدول 6 نتیجه تست مغناطیسی شدت بالای خشک بر روی نمونه اولیه.

<table>
<thead>
<tr>
<th>FeO3 (%)</th>
<th>SiO2 (%)</th>
<th>Al2O3 (%)</th>
<th>وزن</th>
<th>محصول</th>
<th>رنگ</th>
<th>رنگ</th>
<th>سنتگین</th>
<th>مغناتیسی</th>
<th>غیر مغناطیسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>عبارت</td>
<td>بازیابی</td>
<td>عبارت</td>
<td>بازیابی</td>
<td>عبارت</td>
<td>بازیابی</td>
<td>عبارت</td>
<td>بازیابی</td>
<td>عبارت</td>
<td>بازیابی</td>
</tr>
<tr>
<td>176</td>
<td>185</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>8231</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
</tr>
</tbody>
</table>

جدول 7 نتیجه آزمون‌های مایع سنتگین روي محصول نامغناطیسی.

<table>
<thead>
<tr>
<th>FeO3 (%)</th>
<th>SiO2 (%)</th>
<th>Al2O3 (%)</th>
<th>چگالی</th>
<th>محصول</th>
<th>رنگ</th>
<th>چگالی (g/cm3)</th>
<th>رنگ</th>
<th>سنتگین</th>
<th>مغناتیسی</th>
<th>غیر مغناطیسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>عبارت</td>
<td>بازیابی</td>
<td>عبارت</td>
<td>بازیابی</td>
<td>عبارت</td>
<td>بازیابی</td>
<td>عبارت</td>
<td>بازیابی</td>
<td>عبارت</td>
<td>بازیابی</td>
<td>عبارت</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

شکل 8 عبارت و بازیابی محصول نامغناطیسی نسبت به چگالی های مختلف. آزمون مایع سنتگین روي محصول نامغناطیسی به ویژه در چگالی های بالاتر، باعث افزایش عیارهای آن تا حد 44 درصد شده است.
شکل ۹ عبارت و بازیابی SiO۲ محصول نامغناطیسی نسبت به چگالی‌های مختلف. عبارات SiO۲ در آزمون با مابع سنگین با چگالی ۲/۹ + به ۲۱٪ کاهش یافته است.

شکل ۱۰ عبارت و بازیابی Fe۲O۳ محصول مغناطیسی نسبت به چگالی‌های مختلف. آزمون مابع سنگین روی عبار این محصول تأثیر زیادی نداشته است.

جدول ۸ نتایج عبارت‌سنجی محصولات در سه محدوده ابعادی.

<table>
<thead>
<tr>
<th>Fe۲O۳ (%)</th>
<th>SiO۲ (%)</th>
<th>Al۲O۳ (%)</th>
<th>وزن</th>
<th>دانه بندی (گرم)</th>
<th>چگالی (گسپنده)</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>بازیابی (الابت)</td>
<td>عبار</td>
<td>بازیابی (الابت)</td>
<td>عبار</td>
<td>بازیابی (الابت)</td>
<td>عبار</td>
<td>فردی</td>
</tr>
<tr>
<td>۱</td>
<td>۵۱</td>
<td>۵۲</td>
<td>۵۵</td>
<td>۴۴</td>
<td>۱۹</td>
<td>۵۲</td>
</tr>
<tr>
<td>۲</td>
<td>۶۷</td>
<td>۶۵</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۱۳</td>
<td>۷۴</td>
</tr>
<tr>
<td>۳</td>
<td>۶۸</td>
<td>۶۵</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۱۳</td>
<td>۷۴</td>
</tr>
<tr>
<td>۴</td>
<td>۵۹</td>
<td>۵۲</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۱۳</td>
<td>۷۴</td>
</tr>
<tr>
<td>۵</td>
<td>۶۷</td>
<td>۶۵</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۱۳</td>
<td>۷۴</td>
</tr>
<tr>
<td>۶</td>
<td>۶۸</td>
<td>۶۵</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۱۳</td>
<td>۷۴</td>
</tr>
<tr>
<td>۷</td>
<td>۵۹</td>
<td>۵۲</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۱۳</td>
<td>۷۴</td>
</tr>
<tr>
<td>۸</td>
<td>۶۷</td>
<td>۶۵</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۱۳</td>
<td>۷۴</td>
</tr>
<tr>
<td>۹</td>
<td>۶۸</td>
<td>۶۵</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۱۳</td>
<td>۷۴</td>
</tr>
<tr>
<td>۱۰</td>
<td>۵۹</td>
<td>۵۲</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۱۳</td>
<td>۷۴</td>
</tr>
</tbody>
</table>
برداشت
مشاهده و بررسی نتایج آزمون‌های انجام شده و نیز گزارش کاتیشناسی، نتاید کننده این است که فراوری افتاده آندالوزیت‌های منطقه قناد باعث جدی قرنطین فرمایان امکان پذیر است و روش مناسب برای فراوری نمونه آندالوزیت برای رسیدن به عبارت مورد نظر (حدود 54%) به این صورت در نظر گرفته شد که نخست نمونه اولیه برای رسیدن به جدول (9) میکرون و در چگالی 2.9 باعث شده، بیشترین کاهش در عیار Fe₂O₃ حاصل شده و به حدود 5% رسیده است.

شکل 11: نمودار توزیع عیار بازیابی Fe₂O₃ محصولات مختلف دانه‌بندی شده در گستره‌ای ابعادی 500-5000 میکرون و در چگالی 2.9 بیشترین کاهش در عیار Fe₂O₃ حاصل شده و به حدود 5% رسیده است.

شکل 12: نمودار توزیع عیار و بازیابی Fe₂O₃ و Al₂O₃ مابین سگن‌ها و گستره‌ای ابعادی 500-5000 میکرون و در چگالی 2.9 باعث شده، بیشترین کاهش در عیار Fe₂O₃ حاصل شده و به حدود 41% رسیده است.

شکل 13: نمودار توزیع عیار و بازیابی SiO₂ فراورده‌های مختلف دانه‌بندی شده، بیشترین کاهش در عیار SiO₂ در گستره‌ای ابعادی 500-3000 میکرون و در چگالی 2.9 مابین سگن‌ها و گستره‌ای ابعادی 500-5000 میکرون و در چگالی 2.9 باعث شده، بیشترین کاهش در عیار Fe₂O₃ حاصل شده و به حدود 41% رسیده است.

ی آزادی متاسب تا اندازه کمتر از 500 میکرون خرد شد و سپس برای آزمایش عیار آندالوزیت روز نمونه با استفاده از مابین سگن‌با چگالی 2.9 گرم بر سانتی‌متر مکعب آزمون مابین سگن‌ناهایی و در مراحل‌هایی برای حذف ترکیب‌های اهن روز محصول سگنی، آزمون مغناطیس شکست و شدت باعث شده، بیشترین کاهش در عیار Fe₂O₃ حاصل شده و به حدود 41% رسیده است.

(16) نماشی داده شده، جناح‌های گستره‌ای ابعادی 500-3000 Mیکرون و در چگالی 2.9 باعث شده، بیشترین کاهش در عیار Fe₂O₃ حاصل شده و به حدود 41% رسیده است.
نظرگرنه شده جهانی (جدول ۲) همکاری دارد. تغییرات دیگر در اکسیدهای عناصر شامل کاهش مشخصی در مقدار میزان Fe₂O₃ و Na₂O و CaO اکسیدهای CaO از طریق که مقدار K₂O و Na₂O و CaO از ۱۷/۱٪ به ۹/۱٪، ۱۰/۲٪ به ۶/۱٪ و ۴/۸٪ به ۲/۱٪ تأثیر گیش می‌جوشد. درصد خروک اولیه و بخش نامگناطیسی، حدود ۶ درصد نمونه اولیه را تشکیل می‌دهد. اندالوژی منتسب حدود ۱۶ درصد محیط خروک اولیه و بخش نامگناطیسی به حدود ۸ درصد خروک اولیه و مجموعاً ۲۴ درصد محیط اندالوژی اولیه را تشکیل می‌دهد.

مشاهده می‌شود با از میزان مابع سنگین به چگالی ۲/۷۹، عبار Fe₂O₃ به ۲۸/۰۵٪ افزایش یافته است. پس از آن میزان Al₂O₃ و مغناطیسی شکل محصول نامگناطیسی نهایی پردازش شده از این SiO₂ به ۴۴/۲۳۷٪ در باعث بهبود این Fe₂O₃ به ۲۴/۲۱۵٪، و باعث شد درجه با توجه به جدول (۱۰) ملاحظه می‌شود که نتایج روز محصول نامگناطیسی نهایی نشان دهنده این است که هزارنی میزان Fe₂O₃ از Al₂O₃، SiO₂، و CaO به باعث افزایش یافته و عبار Fe₂O₃ از Fe₂O₃ به حداکثر ۱/۵٪، و باعث افزایش به حداکثر ۲۴/۲٪ در محصول نهایی گذشته است. گذشته این مقادیر با استانداردهای در

جدول۹ نتایج آزمونهای مابع سنگین با چگالی ۱/۸ گرم بر سانتیمتر مکعب و مغناطیسی شکل با شدت بالا

<table>
<thead>
<tr>
<th>Fe₂O₃ (%)</th>
<th>SiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>جرم (g/cm³)</th>
<th>چگالی (g/cm³)</th>
<th>رنگ</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۵۱۸</td>
</tr>
<tr>
<td>۸۵/۷۵</td>
<td>۳۸/۷۵</td>
<td>۴۸/۳۵</td>
<td>۹/۹۷</td>
<td>۹/۵۷</td>
<td>۱/۵۸</td>
<td></td>
</tr>
<tr>
<td>۱۰/۳۷</td>
<td>۷/۹۸</td>
<td>۴/۱۲۹</td>
<td>۴/۱۱۷</td>
<td>۴/۷۱</td>
<td>۴/۱۱</td>
<td></td>
</tr>
<tr>
<td>۷/۹۹</td>
<td>۴/۱۱۷</td>
<td>۴/۷۱</td>
<td>۴/۱۱۷</td>
<td>۴/۷۱</td>
<td>۴/۱۱</td>
<td></td>
</tr>
<tr>
<td>۱۵/۸۳</td>
<td>۴/۱۱۷</td>
<td>۴/۷۱</td>
<td>۴/۱۱۷</td>
<td>۴/۷۱</td>
<td>۴/۱۱</td>
<td></td>
</tr>
<tr>
<td>۲/۹۸</td>
<td>۱/۵۲۱</td>
<td>۱/۲۷۹</td>
<td>۱/۲۷۹</td>
<td>۱/۲۷۹</td>
<td>۱/۲۷</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱۴ نمودار توزیع عبار و بازویی Al₂O₃ محصولات مختلف. بیشترین میزان عبار Al₂O₃ در باعث مابع مغناطیسی و بازویی به ۵۴/۹٪ است.

شکل ۱۵ نمودار توزیع عبار و بازویی SiO₂ محصولات مختلف. بیشترین میزان عبار SiO₂ به حدود ۴۱٪ است. مابع مگناطیسی حاصل از متغییر مغناطیس نمایش می‌دهد.
شکل ۱۶ نمودار توزیع عبارت و باربایی Fe₂O₃ و محصولات مختلف. میزان عبارت Fe₂O₃ در بخش غیرسفین‌سازی حاصل از تست سفن‌سازی.

| جدول ۱۰ آنالیز کامل محصول نامه‌سفین‌سازی (نهایی) |
|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| | L.O.I. (٪) | MnO (٪) | Fe₂O₃ (٪) | P₂O₅ (٪) | Na₂O (٪) | CaO (٪) | Cr₂O₃ (٪) | Fe₂O₃ (٪) | SiO₂ (٪) | Al₂O₃ (٪) |
| | | | | | | | | | | |
| | 0.75 | 0.15 | 0.37 | 0.20 | 0.25 | 0.19 | 1.51 | 3.15 | 42.15 | 54.13 |

قدراتی
نقاطی‌گذاری مقاله، از مدیر و کارشناس محتوم موسسه فراوری مواد معدنی ایران (کرج) آقایان مهندس عکرزاده، مهندس کرمی و مهندس آرام به خاطر ارائه‌های فراوری، نشر و قدردانی می‌گنند.

مراجع
[۱] کوهنری، ا. مجیدزاده، ج. دهقانی احمدآباد، م. کریمی، ناحیه‌شناسی و نحوه تشكیل کانسارهای نسوز میانفروش، ایران مکزی، مجله بلورشناسی و کانی‌شناسی ایران، شماره ۴ (۱۳۸۷) ص ۲۵۵-۲۶۴.
[۲] حسین ع. مواد اولیه فراورده‌های نسوز، انتشارات دانشگاه صنعتی امیرکبیر، (۱۳۸۶).
[۳] شوله و. مواد دیگرگون، سرامیک‌های دیگرگون، ترجمه محمودباقری ط. نشر جالان، (۱۳۸۶).
[۵] Ling-chu Z., Yi-min "Flotation separation of XiXia andalusite ore", College of resources and Environmentatly engineering Wuhan university of sciences & technology, 29 october, 2010
[۶] Shao-Zhu X., Qi-Gai F., Rou-Zhou H., Yo Z., "andalusite family mineral resources and