برآورد مقادیر کربنات آهن و منگنز در دولومیت‌ها به روش پراش پرتو ایکس

مینا خاصی، غلامرضا میرداشتری، محمدحسین زرین کوب

گروه زمین‌شناسی، دانشگاه بیرجند، بیرجند، ایران

چکیده: هدف از این پژوهش، برآورد مقادیر کربنات آهن و منگنز در دولومیت‌های آهن‌دار به روش پراش پرتو ایکس بوده است. این روش نسبت به روش‌های شیمیایی معنی‌داری که برای تعیین مقادیر آهن و منگنز کاربرد دارد، به سهولت و با صرف هزینه‌ای کمتر انجام می‌گیرد. در این راستا تعداد ۲۰ نمونه دولومیت وضعیت به کم‌هار سازند بر سببی مختلف و موقتیت چرخ‌های الکتریکی عمیق‌ترین شالی‌زارهای سیبزه، شتری، مزدوران و سلطانیان، انتخاب و مقادیر آهن و منگنز در آن‌ها به روش طیف‌سنجی جذب‌نمای آنالیز و تعیین شد. در محیط رئوس، به ترتیب مقادیر فاصله‌ی شیبگی نسبت به مقادیر آهن و منگنز XRD آنالیز شدند. در نهایت با تریم مقادیر فاصله‌ی شیبگی نسبت به مقادیر آهن و منگنز نمونه‌ها حاصل شدند. از این نمونه‌ها یک نمونه توان از آن در سایت نمونه‌سازی و در نهایت یک نمونه به روش مجهول دولومیتی دیگر که تها به روش پراش پرتو ایکس آنالیز می‌شود استفاده گردید.

واژه‌های کلیدی: پراش پرتو/پرتو ایکس/ دولومیت/ آهن/ منگنز/ دولومیت‌های آهن‌دار

مدفوع

کاتی دولومیت در شکل‌ها و انواع مختلف آن دو مدل دارد که گروه مایو و شکل‌های سبز‌های کربناتی برشمار هستند. دولومیت‌ها در سیستم به صورت لوزی رخ می‌بیند. [۱] شکل‌های پلوری دومیت‌ها یا آن‌ها از ناحیه‌های کربناتی و سیاه‌سیاه تشکیل می‌یابند. [۲] از نوع سیبزه تشکیل شده‌اند و در نهایت از مقادیر عناصری کربناتی حاصل می‌شوند که از دو عنصر به‌طور معمول جانشین‌شده‌اند و در نهایت از دو عنصر به‌طور معمول جانشین‌شده‌اند و در پلاکولی دولومیتی در شکل‌های سبز‌های کربناتی برشمار هستند.

می‌تواند در سایت نمونه‌سازی و در نهایت یک نمونه به روش مجهول دولومیتی دیگر که تناوی این کاربرد XRF و ICP (ژئوپژی، جذب‌نمای آنالیز) و AAS (طیف‌سنجی جذب‌نمای آنالیز)

بکلی و دولومیت‌های آهن‌دار

می‌تواند در سایت نمونه‌سازی و در نهایت یک نمونه به روش مجهول دولومیتی دیگر که تناوی این کاربرد XRF و ICP (ژئوپژی، جذب‌نمای آنالیز) و AAS (طیف‌سنجی جذب‌نمای آنالیز)
پرفروسری

در یک پژوهش تعداد 100 نمونه سنگ به طور کلی از سازندگان در نظر برداشت. نمونه‌های سازندگان باید انالیز‌های شیمیایی‌ی ما پایین‌تر از هر دو نوع دومولیتەهی آهن- در و فاقد آهن و ترجیحاً فاقد شکستگی و پرشیدنی همه- شد. برای تفکیک دقیق نمونه‌های مسک، سهک، دو مولیتەی و دو مولیتەی از یکدیگر، سطح تازه از نمونه‌ها با معرفی الپارین فرم و فلورسان پتیپس (به روش دیکسون) 11 دقیقه بسته شدند. سپس مقادیر مواد محلول در آب در تعداد 24 نمونه منظوره از دومولیتەی معمول در پایین تعداد 200 نمونه مناسببه مقادیر مواد محلول کمتر از 0.1 Ca2+ و Fe2+ و آلیکس یککه پره‌بیوندهای آهن- فاقد کمتر از 1.25 میکرولیتر (100 برابر) است. یک باعث از اینجا که انرژی با توجه مناسب در یک شکل قرار می‌گیرد، میان پروتوکانیاکه و اینکه از روابطی فاقد معیار و دارای این روابط فیزیکی به گونه‌های پتیپس که داخل خبر در بیشتر گاه پرفروسری در دسته‌بندی باید به یکه که راه‌یافتهای آهن- بعد برای شناسیده و باربیکینهای پرایدهای شکل می‌گیرد. این در نتیجه جانشینی‌های به دنبال استفاده از پرایدهای باربیکینهای آهن- و منگنز به جای مینیم فعالشکه‌های را تغییر می‌دهد و این حالات را می‌توان به روش انجام‌گیر کردن [8].

2- Alizarin-Red Stain
3- Dickson
4- Shimadzo-AA 670
5- Philips PW18400

شیمیایی

(طیف‌سنجی ناتیو) معمولاً با کارگیری روشهای شیمیایی معمول نیازمند صرف هنری قابل توجهی است. همچنین در برخی موارد آماده‌سازی نمونه‌ها بسیار وقت‌گیر و حساس است. به همراه دسترسی به دستگاه‌های مورد برای این اداسه‌های امکان‌پذیر نیست. در این پژوهش سعی بر بوده است به استفاده از روش‌های XRD ایم، علی‌اکرم از ترکب شیمیایی نمونه‌ها مجهول و نیاز فازهای ویژه مورد برای سورت‌گیری کمتر پرآور

صبرت گرفته (شکل 1).

- Alizarin-Red Stain
- Potassium Ferrocyanide
- Dickson
- Shimadzo-AA 670
- Philips PW1840
بیدر و بررسی
tشکل دومیت‌ها. دومیت‌های آهن دار و آنکربت‌هایی غیر عادی (حاوی کلسیم اضافی بیش از حد استپکومتری آهن سنگجو) به طور معمول انفاس می‌افتد [13]. جانشینی کلسیم به جای منیزیم باعث افزایش وصله شیب‌های فلزی (شکل 3) می‌شود و اغلب به روش XRD برای اندازه‌گیری استفاده می‌شود و Ca/Mg نسبت به Ca/Fe

یک استاندارد ارائه می‌دهد [14].

چنان‌که از شکل 2 پیداست، به دلیل شیوع بونه‌کوچک‌تر
می‌توان با مقادیر کلسیم، سنگجو در MgCO3

متغیر نسبت به کلسیم، با افزایش مقادیر
به سمت دومیت، فاصله شیب‌هایی (مقادیر d104)
کاهش می‌یابد و افزایش انحراف موقتی قله‌ای
(R-20 CuKα) d104 می‌یابد.

روش دقیقه‌برن‌انالیز XRD مستلزم سنگنج دقيق

پارامترهای سلولی (اعداد سلولی، a, b, c) و حجم سلولی است

(011) این امر در جایگی که فازهای خالص وجود دارند و امکان

اندازه‌گیری دقیق فاصله شیب‌های (d-spacing)

می‌باشد. با سنگنج فاصله شیب‌های در کانی‌های کربناتی

ارزی رخ می‌توان محیط آهن و منگنز در دومیت‌های آهن-

دار و آنکربت را تعیین کرد. بدین منظور دو فرض وجود دارد

اول این که نرخ‌های غیر عادی جانشینی کلسیم نسبتاً کم‌اکن‌دش

(کلسیم اضافی ≥ 5 مول درصد) و دوم، میزان پی ظنی قابل

توجه نیش می‌توان با مقایسه شدت پراش با یک کنی

منظم با ترکیب شیمیایی مشابه آسیبی سبب تغییرات در

محیط آهن و منگنز را می‌توان با یک انتباه خطاهای دارد

مقادیر d104 و مول درصد MnCO3 + FeCO3 این انتباه به گونه‌ای است که با افزایش مقادیر d104 مول درصد

MnCO3 + FeCO3 افزایش می‌یابد.
طرف‌النواهی محتوای آهن به روش جذب اتمی، موقعیت شدن نا کننده مورد بررسی قرار گرفت. نتایج حاکی از این‌که این مقدار در سطح مشابهی با آهن این مقدار در دومین نیز سازمانی است. به مقدار گسیلی مناسب بوده و به مصرف مونیز در ساختار دولومیت‌ها شود. نتایج بررسی تعیین شده در بافت‌های سیبکهای در اثر جانشینی آهن و منگنز به جای منیزیم را می‌توان به شرح زیر بیان کرد:

روش پراش پرتای ایکس (XRD) در اثر به‌کارگیری این ابزار به ویژه در تغییرات شیمیایی و پارامترهای باخته‌ی با کمک از دولومیت‌های آهن‌دار و یا آهن‌کنار. داده‌های این روش به دست آمده‌اند. داده‌های جدول ١ همراه با داده‌هایی از آنالیز غیر محدود Appetel یک اشاره به ارتباط غیر طبیعی مصرف MnCO₃ + FeCO₃ به‌جای C₃O₃ و شرایط در صورت کاهش محیطی و نیز سازمانی استفاده قرار گرفته‌اند (شکل ٤). تمامی کاتیون‌های باد شده در جدول ١ منظوم بوده و ترکیبی نزدیک به ایبده ال دارند.

{
\begin{align*}
\text{MnCO}_3 + \text{FeCO}_3 & \rightarrow \text{Mn}_2\text{CO}_3 + \text{Fe}_2\text{CO}_3 \\
\text{Ca}_3\text{MgCO}_3 & \rightarrow \text{Ca}_2\text{Mg}_2\text{CO}_3 \\
\text{Mg}_2\text{CO}_3 & \rightarrow \text{Mg}_2\text{CO}_3 \\
\text{Fe}_3\text{CO}_3 & \rightarrow \text{Fe}_3\text{CO}_3 \\
\text{C}_3\text{O}_3 & \rightarrow \text{C}_3\text{O}_3 \\
\text{C}_2\text{O}_3 & \rightarrow \text{C}_2\text{O}_3 \\
\text{C}_1\text{O}_3 & \rightarrow \text{C}_1\text{O}_3 \\
\end{align*}
\}

در سال ١٩٧٤، الهامی و هم‌تراکن (١٨) با آنالیزم‌های
جدول 1 داده‌های نوشته‌یابی و بلورشناسی کربنات‌های منشأ در سری محلول جامد 1

<table>
<thead>
<tr>
<th>Material</th>
<th>mol % Fe+Mn</th>
<th>d104 [Å]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>0.1</td>
<td>2.8846</td>
<td>[15]</td>
</tr>
<tr>
<td>SAN-2</td>
<td>0.2</td>
<td>2.8857</td>
<td>[15]</td>
</tr>
<tr>
<td>Eugi dolomite</td>
<td>0.5</td>
<td>2.8847</td>
<td>[15]</td>
</tr>
<tr>
<td>Dolomite</td>
<td>3.0</td>
<td>2.8847</td>
<td>[20]</td>
</tr>
<tr>
<td>Dolomite</td>
<td>3.0</td>
<td>2.8847</td>
<td>[21]</td>
</tr>
<tr>
<td>REO-11</td>
<td>65</td>
<td>2.8919</td>
<td>[19]</td>
</tr>
<tr>
<td>BM1931-294</td>
<td>115</td>
<td>2.8846</td>
<td>[32]</td>
</tr>
<tr>
<td>Ankerite</td>
<td>177</td>
<td>2.8971</td>
<td>[33]</td>
</tr>
<tr>
<td>SUL-2</td>
<td>20.5</td>
<td>2.9111</td>
<td>[19]</td>
</tr>
<tr>
<td>DA-8-3</td>
<td>210</td>
<td>2.8991</td>
<td>[19]</td>
</tr>
<tr>
<td>CEB</td>
<td>255</td>
<td>2.9150</td>
<td>[19]</td>
</tr>
<tr>
<td>AMNH 6376</td>
<td>27.1</td>
<td>2.9060</td>
<td>[22]</td>
</tr>
<tr>
<td>GALL-2</td>
<td>29.5</td>
<td>2.9494</td>
<td>[19]</td>
</tr>
<tr>
<td>Ankerite</td>
<td>34.0</td>
<td>2.9656</td>
<td>[21]</td>
</tr>
<tr>
<td>AMNH 8059</td>
<td>36.5</td>
<td>2.9494</td>
<td>[22]</td>
</tr>
</tbody>
</table>

نتایج مربوط به آنالیز دولومیت‌های مورد بررسی از سوی در جدول 2 ارائه شده‌اند. نتایج ذکر است که پیش از انجام آزمایش‌های اصلی بلور بررسی بر روی نمونه‌های دولومیت مورد بررسی، تعدادی نمونه ملایم از مخلوط پودر دولومیت و مقدار مشخصی اکسید روی (ZnO) به عنوان استاندارد داخلی که در آزمایشگاه گروه علوم زمین و اقیانوس-شناسی دانشگاه لیبرپول انگلستان مورد آزمایش قرار گرفته بودن [44]، تهیه و برای XRD مورد استفاده در این پژوهش انتخاب شدند. در نمودار پراکنش‌های نمونه‌ها، نقطه‌ای اوج وایسته به

از طرف دیگر تعداد زیادی از نمونه‌های آنالیز شده توسط گلدشمیت و همکاران [12] عیرادی و بوده و اغلب با داشتن کلسیم اضافی مشخص می‌شه. زمانی که این داده‌ها با داده‌های به دست آمده از طرف دیگر به‌کارگیری آزمایش‌های آزمایش‌های نزدیک، مقایسه می‌شوند، پراکندگی‌های بالا توچه‌ی نشان می‌دهند. برخی از این پراکندگی‌ها ممکن است به دلیل خطای در انتقال‌های شیمیایی و

باشد [13]. اما بیشتر پراکندگی‌های به تغییرات محتوای کلسیم و منگنز در نمودار این منحصر به فرد نسبت داده می‌شود.
دولومیتی آلانیز شده نشان می‌دهد که در نمونه‌های گوناگون، زاوه‌ای وابسته به موقعیت شدیدترین نقطه اوج مقادیر متفاوتی است (شکل‌های ۵ و ۶). علاوه برای، هیچک و زاوه‌ای -های با زاوه‌ای پراش در دومین عادی ۹۶ (۸) هم‌خوانی ندارد. علت تفاوت در موقعیت شدیدترین نقطه اوج، یا به بیان دیگر تفاوت در مقدار زاوه‌ای ۲۰، به تغییرات ایجاد شده در ابعاد سلولی به دلیل جانشینی‌های بونی مربوط می‌شود. بررسی مقادیر مول درصدی در MnCO₃ + FeCO₃ با مقایسه با مقادیر زاوه‌ای ۲۰ نشان می‌دهد که هر چه مقادیر جانشینی یا به عبارات دیگر مقدار مول درصد FeCO₃ بیشتر باشد، میزان انحراف رخ داده در موقعیت قوی -FeCO₃ تنین نقطه اوج بیشتر شده (به این معنی که ۲۰ از زاوه‌ای ۲۰ مربوط به دولومیت عادی بیشتر فاصله می‌گیرد) و مقدار عضدی زاوه‌ای ۲۰ کوچک‌تر می‌شود.

جدول ۲ نتایج حاصل از محاسبات مقادیر مول درصد کربنات آهن و کربنات مگنزیوم، وابسته به نمونه‌های دولومیتی مورد بررسی از سایز‌های سپیز (Sb)، مزروران (Mz)، شتری (Sh) و سلطانیه (So) می‌باشد.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Rev. Fe (%)</th>
<th>Rev. Mn (%)</th>
<th>mol (%) FeCO₃</th>
<th>mol (%) MnCO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb 1</td>
<td>۹.۰۱</td>
<td>۸.۸۵</td>
<td>۸.۴۰</td>
<td>۸.۷۷</td>
</tr>
<tr>
<td>Sb 2</td>
<td>۵.۹۱</td>
<td>۶.۴۸</td>
<td>۶.۵۴</td>
<td>۶.۶۱</td>
</tr>
<tr>
<td>Sb 3</td>
<td>۹.۰۱</td>
<td>۶.۱۰</td>
<td>۶.۵۷</td>
<td>۶.۱۱</td>
</tr>
<tr>
<td>Sb 4</td>
<td>۱.۷۵</td>
<td>۲.۰۳</td>
<td>۱.۶۸</td>
<td>۱.۸۱</td>
</tr>
<tr>
<td>Sb 5</td>
<td>۱.۸۸</td>
<td>۱.۷۱</td>
<td>۱.۸۹</td>
<td>۱.۶۸</td>
</tr>
<tr>
<td>Mz 1</td>
<td>۸.۵۰</td>
<td>۸.۳۰</td>
<td>۷.۶۵</td>
<td>۷.۲۳</td>
</tr>
<tr>
<td>Mz 2</td>
<td>۷.۴۱</td>
<td>۷.۱۸</td>
<td>۷.۴۳</td>
<td>۷.۰۸</td>
</tr>
<tr>
<td>Mz 3</td>
<td>۳.۸۸</td>
<td>۳.۴۲</td>
<td>۳.۴۸</td>
<td>۳.۴۲</td>
</tr>
<tr>
<td>Mz 4</td>
<td>۸.۲۰</td>
<td>۸.۰۱</td>
<td>۸.۶۷</td>
<td>۸.۴۴</td>
</tr>
<tr>
<td>Mz 5</td>
<td>۲.۴۲</td>
<td>۲.۱۹</td>
<td>۴.۳۳</td>
<td>۴.۳۳</td>
</tr>
<tr>
<td>Sh 1</td>
<td>۸.۸۹</td>
<td>۸.۷۶</td>
<td>۸.۵۰</td>
<td>۸.۱۸</td>
</tr>
<tr>
<td>Sh 2</td>
<td>۱.۴۶</td>
<td>۱.۲۸</td>
<td>۱.۴۶</td>
<td>۱.۴۶</td>
</tr>
<tr>
<td>Sh 3</td>
<td>۸.۷۶</td>
<td>۸.۵۱</td>
<td>۸.۵۱</td>
<td>۸.۵۱</td>
</tr>
<tr>
<td>Sh 4</td>
<td>۱.۵۷</td>
<td>۱.۳۰</td>
<td>۱.۲۴</td>
<td>۱.۲۴</td>
</tr>
<tr>
<td>Sh 5</td>
<td>۱.۵۸</td>
<td>۱.۲۴</td>
<td>۱.۴۴</td>
<td>۱.۴۴</td>
</tr>
<tr>
<td>So 1</td>
<td>۲.۲۷</td>
<td>۱.۹۸</td>
<td>۲.۰۴</td>
<td>۲.۰۴</td>
</tr>
<tr>
<td>So 2</td>
<td>۱.۶۲</td>
<td>۱.۴۸</td>
<td>۱.۴۸</td>
<td>۱.۴۸</td>
</tr>
<tr>
<td>So 3</td>
<td>۱.۲۹</td>
<td>۱.۲۹</td>
<td>۱.۴۸</td>
<td>۱.۴۸</td>
</tr>
<tr>
<td>So 4</td>
<td>۱.۲۹</td>
<td>۱.۲۹</td>
<td>۱.۴۸</td>
<td>۱.۴۸</td>
</tr>
<tr>
<td>So 5</td>
<td>۱.۲۹</td>
<td>۱.۲۹</td>
<td>۱.۴۸</td>
<td>۱.۴۸</td>
</tr>
</tbody>
</table>
جدول ۳ نتایج حاصل از آنالیز پیشنهادات و نیز مقادیر مول درصدی FeCO₃ + MnCO₃

<table>
<thead>
<tr>
<th>Sample No</th>
<th>mol (%) FeCO₃ + MnCO₃</th>
<th>d-value (Å)</th>
<th>Angle° (2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb 1</td>
<td>8.83</td>
<td>2.911</td>
<td>30.95</td>
</tr>
<tr>
<td>Sb 2</td>
<td>5.91</td>
<td>2.8899</td>
<td>30.99</td>
</tr>
<tr>
<td>Sb 3</td>
<td>9.98</td>
<td>2.8920</td>
<td>30.895</td>
</tr>
<tr>
<td>Sb 4</td>
<td>1.84</td>
<td>2.8854</td>
<td>31.03</td>
</tr>
<tr>
<td>Sb 5</td>
<td>1.84</td>
<td>2.8855</td>
<td>30.965</td>
</tr>
<tr>
<td>Mz 1</td>
<td>9.34</td>
<td>2.8935</td>
<td>30.99</td>
</tr>
<tr>
<td>Mz 2</td>
<td>8.33</td>
<td>2.8891</td>
<td>30.775</td>
</tr>
<tr>
<td>Mz 3</td>
<td>6.76</td>
<td>2.8879</td>
<td>30.96</td>
</tr>
<tr>
<td>Mz 4</td>
<td>1.19</td>
<td>2.8843</td>
<td>30.98</td>
</tr>
<tr>
<td>Mz 5</td>
<td>4.61</td>
<td>2.8872</td>
<td>30.805</td>
</tr>
<tr>
<td>Sh 1</td>
<td>8.40</td>
<td>2.8914</td>
<td>30.91</td>
</tr>
<tr>
<td>Sh 2</td>
<td>1.33</td>
<td>2.8847</td>
<td>31.105</td>
</tr>
<tr>
<td>Sh 3</td>
<td>8.07</td>
<td>2.8912</td>
<td>30.875</td>
</tr>
<tr>
<td>Sh 4</td>
<td>1.23</td>
<td>2.8849</td>
<td>30.97</td>
</tr>
<tr>
<td>Sh 5</td>
<td>4.76</td>
<td>2.8879</td>
<td>30.94</td>
</tr>
<tr>
<td>So 1</td>
<td>2.28</td>
<td>2.8843</td>
<td>30.96</td>
</tr>
<tr>
<td>So 2</td>
<td>1.84</td>
<td>2.8856</td>
<td>30.965</td>
</tr>
<tr>
<td>So 3</td>
<td>2.48</td>
<td>2.8859</td>
<td>30.96</td>
</tr>
<tr>
<td>So 4</td>
<td>1.19</td>
<td>2.8843</td>
<td>30.98</td>
</tr>
<tr>
<td>So 5</td>
<td>4.76</td>
<td>2.8875</td>
<td>30.94</td>
</tr>
</tbody>
</table>

درصد نمودار XRD از ساند سیبزار مقدار زاویه ۲θ وابسته به شدیدترين نقطه اوج دولوميتي برای با

شکل ۵ نمودار XRD وابسته به نمونه دولوميتي ۴ Sb از ساند سیبزار. مقدار زاویه ۲θ وابسته به شدیدترين نقطه اوج دولوميتي برای با

31.04 درجه است.
شکل ۶ نمودار XRD وابسته به نمودار دیلومینی ۲ مز ۲ از ساند مردوان. مقدار زاویه ۲۰ وابسته به شدیدترین نقطه اوج دیلومینی برای با

سازند مورد بررسی با داده‌های جمع‌آوری شده از منابع دیگر (داده‌های جدول ۱ و داده‌های گلدشمند و همکاران [۱۳۶]) ادغام شده و نمودار نهایی (شکل ۷) ترسیم شده و نتایج ۱ به دست آمده. در نتیجه استفاده از این رابطه می‌توان تنها با داشتن مقدار فاصله شیب‌های حاصل از آنالیز XRD میزان مول درصد موجود در نمونه‌های دیلومینی مجهول را برآورد کرد.

\[\text{mol\% FeCO}_3 + \text{MnCO}_3 = 1271.5 \times d_{104} - 3667.2 \]

\(r^2 = 0.897 \)

نتایج ۱

بررسی مقادیر d (فاصلهٔ شیب‌های نیز نشان می‌دهد که این رقم‌ها در دودمیت‌هایی با ترکیب مختلف، متغیر است.

بررسی این مقادیر با مقایسهٔ آنها با مجموع مقادیر کربنات آهن و کربنات منگنز نشان می‌دهد که مقادیر جابجایی باعث عبارت دیگر مقدار مول درصد FeCO_3 + MnCO_3 بیشتر یا کمتر می‌شوند.

با در راستای دسترسی به هدف‌نیابی این پژوهش، مقادیر FeCO_3 + MnCO_3 به دست آمده از نمونه‌های دیلومینی مربوط به جهار MnCO_3

شکل ۷ نمودار نهایی نشان دهندهٔ تغییرات مقادیر مول درصد حاصل از این پژوهش (جدول ۳) و داده‌های گردآوری شده از منابع دیگر (شکل ۷) ترسیم شده است.
برداشت
داده‌های حاصل از آنالیز پراش پتروپتروپیک نشان می‌دهد که موقعیت نقطه‌ای اوج وابسته به تمامی نمونه‌های دولومیتی آهربن نسبت به دولومیت معمولی انحراف نشان می‌دهد. همچنین، زاویهی پراش (2θ) وابسته به شیوه‌نامه نقطه‌ای اوج وابسته به نمونه‌های آنالیز شده با یکدیگر و نیز با زاویهی پراش وابسته به نمونه‌های نقطه‌ای اوج دولومیتی عادی متفاوت است. با توجه به این که انحراف در خطوط پراشیده نسبت به حالت ابتدای آل می‌تواند به تغییر در ساختار بلوری نسبت داده شود، می‌توان چنین نتیجه گرفت که جانشین‌های معمول اینه همچون جانشین‌های آهن و منگنز به جای مزینی در شبکه دولومیت‌ها به تغییر در ابعاد سلولی و در نهایت تغییر در موقعیت خطوط پراش شده است. مقایسه داده‌های حاصل و ترسیم نمودار وابسته نشان دهنده وجود یک روند منحل بین مقدار فاصله شیب‌گاه و میزان آهن و منگنز است. به طوری که با افزایش مقدار آهن و منگنز مقدار فاصله سلولی نیز افزایش می‌یابد.

با استفاده از داده‌های حاصل از این پژوهش و ادغام آنها با داده‌های جمع‌آوری شده از منابع دیگر، تغییرات مول درصد کربنات‌های آهن و کربنات منگنز نسبت به مقدار فاصله‌ی سلولی ترسیم شده و نمودار نهایی و تابع وابسته حاصل شده است. نمودار و تابع بدایه این امکان را فراهم می‌کند که تلاش با داشتن مقدار فاصله‌ی شیب‌گاه حاصل از آنالیز XRD بتوان منیژ میزان موجود در نمونه‌های دولومیتی آهربن مجهول را پرورد کرد.

مراجع
[1] رحمت پور بنا بی، سنگ شناسی کربناته‌های ارتشراب، تکنیک، تحلیل، انتشارات دانشگاه تهران (۱۳۸۴) ۴۸۷ ص.
[3] آدابی جر، ژئوتکمیک رسوبی، انتشارات آرین، زمین (۱۳۸۳) ۴۳۶ ص.

