برآورد مقادیر کربنات آهن و منگنز در دولومیتهای به روش پرャش پرتو ایکس

مینا خاشی، غلامرضا میرآبادی، شهرزاد مهندسی زرین کوب

گروه زمین شناسی، دانشگاه بیرجند، بیرجند، ایران

چکیده: هدف از این پژوهش، برآورد مقادیر کربنات آهن و منگنز در دولومیتهای به روش پرャش پرتو ایکس بوده است. این روش نسبت به روش‌های شیمیایی معقوله که باید تعیین مقادیر آهن و منگنز کاربرد دارد. به‌طور کلی، در این روش روش طیف‌سنجی جذب اتمی آنالیز و تعیین شد. در مرحله بعد تیم مخربه نمونه‌ها به روش XRD و سپس از آن نمونه‌های با دست آمده از این رابطه می‌توان برآورد محتواً آهن و منگنز در نمونه‌های مجهول دولومیتی‌ها دیگر که تنه با روش پرャش پرتو ایکس آنالیز می‌شوند و استفاده کرد.

واژه‌های کلیدی: پرآوردویکس، دولومیت، دولومیتی‌های به روش پرآوردویکس، دولومیتی‌های به روش پرآوردویکس

مقدمه

کانی دولومیت در شکل‌ها و انواع مختلف آن دوویکس کانی مهم تشکیل دهنده سنگ‌های کربناتی به‌شمار می‌رود. دولومیت در سیستم به صورت یک رش ممکن است، این که به‌شکل بلوری دولومیتی آب از نانوکس کلیسی معین و منگنز تشکیل پذیرد. با استفاده از فناوری‌های جدید تشکیل و با استفاده از فناوری‌های فناوری جدید تشکیل، از این نمونات از مجوولی‌های مختلفی بهره‌برداری می‌شود ولی به‌طور کلی استفاده می‌شود. دوویکس و طبیعی جانشین شوند. این دو عنصر به‌طور معمول جانشینی می‌شوند در دوویکسی که در این مقاله دوویکسی (FeCO₃) و (MgCO₃) به‌صورت یک رش ممکن است، این که به‌شکل بلوری دولومیتی آب از نانوکس کلیسی معین و منگنز تشکیل می‌شود. دوویکسی که در این مقاله دوویکسی (FeCO₃) و (MgCO₃) به‌صورت یک رش ممکن است، این که به‌شکل بلوری دولومیتی آب از نانوکس کلیسی معین و منگنز تشکیل می‌شود.

منیزیم با مقادیر آهن بالا، با فرمول تقریبی

CaMg₅₀₀Ca₀₅₀(CO₃)₂

به کار می‌رود. [۴] هدف از این پژوهش برآورد مقادیر آهن و منگنز در ساختار دولومیت است که از نظر کانی‌شناسی و ساختار‌شناسی معنی‌دار است. همچنین نشان دهنده در مرحله بعد تیم مخربه نمونه‌ها به روش XRD و سپس از آن نمونه‌های با دست آمده از این رابطه می‌توان برآورد محتواً آهن و منگنز در نمونه‌های مجهول دولومیتی‌ها دیگر که تنه با روش پرآوردویکس آنالیز می‌شوند و استفاده کرد.

مقدمه

کانی دولومیت در شکل‌ها و انواع مختلف آن دوویکس کانی مهم تشکیل دهنده سنگ‌های کربناتی به‌شمار می‌رود. دولومیت در سیستم به صورت یک رش ممکن است، این که به‌شکل بلوری دولومیتی آب از نانوکس کلیسی معین و منگنز تشکیل پذیرد. با استفاده از فناوری‌های جدید تشکیل و با استفاده از فناوری‌های جدید تشکیل، از این نمونات از مجوولی‌های مختلفی بهره‌برداری می‌شود ولی به‌طور کلی استفاده می‌شود. دوویکسی که در این مقاله دوویکسی (FeCO₃) و (MgCO₃) به‌صورت یک رش ممکن است، این که به‌شکل بلوری دولومیتی آب از نانوکس کلیسی معین و منگنز تشکیل می‌شود. دوویکسی که در این مقاله دوویکسی (FeCO₃) و (MgCO₃) به‌صورت یک رش ممکن است، این که به‌شکل بلوری دولومیتی آب از نانوکس کلیسی معین و منگنز تشکیل می‌شود.
شاخص‌های شیمیایی

1- Alizarin-Red Stain
2- Potassium Ferrocyanide
3- Dickson
4- Shimadzo-AA 670
5- Philips PW1840

(طیف‌سنجی تانش) [1. معمولاً با کارکردهای ناحیه‌ای شیمیایی معمول نیازمند صرف هزینه کافی توجهی است. همچنین در برخی موارد آماده‌سازی نمونه بسیار وقت‌گیر و حساس است و گاه‌ها استرسی به دست‌گاه‌های مورد برای
این اندازه‌گیری امکان‌پذیر نیست. در این پژوهش سعی بر
بوده که با استفاده از روش‌های XRD برای
اینک، علاوه بر اگهایی از ترکیب شیمیایی نمونه به همراه و
نیز فاز‌ها و وضعیت مونوترکانسید آن جزئیات موجود در
دومیت‌های آن در به سهولت و بر صرف هزینه‌های کمتر برآورد
کرد.

به دلیل نمایش قابل توجهی در شمع پیوی
(Ca6(Fe2+,Mn2+)2(OH)16Cl2)·(31 اکتگنترم), 67-28/ (Aktenrex)، Fe2+, (Aktenrex), Mn2+ و
یافته یک به روش ژانشینی‌های اتمی معمول، می‌تواند با
دقتی قابل قبولی بر کشف برای اینک از گردکوه سنت
برای پژوهی ایکس-حامل پرده مکانی کش‌پرتوهای ایکس و
چگونگی هندسی بلافاصله است [1. برای این پرونده
کربنات‌پتاسیم مدرک که بسیاری از اینها در آن شرکت دارند. از انجا
که اینها با مطرح مانند در یک شکل قرار می‌گیرند، میان
پرتوهای پرکاردین شده از آنها روابط فازی معنی‌دار دارند. این
روابط فازی به کمک‌های سه‌بعدی که تداخل موج در یک
جهت پرکاردینی رنگ می‌دهند، ویژه در جهت تداخل
سازنده ایجاد شده و باریک‌دارکش پرتوهایی شکل می‌گیرند [1].
در
نتیجه ژانشینی‌های ایست و تغییر اسلال نیز، تغییراتی در
پرتوهای پرکاردینه ایجاد می‌شود. ژانشینی آهن و منگنه به
جای منیزیم فاصله‌ای مشاهده را نمی‌دهد و دیده شده و این
حالی را
XRD اندازه‌گیری کرده [8.]

می‌توان به روش

در این پژوهش، از دومیت‌های چهار سازند دومیتی از
منطقه مختلف ایران با سببیت متغیر [9] شمار سازندی
سلطان‌های (پرکامپرین پسین-کامپرین بین‌شیمیایی) واقع در شمار

1- Alizarin-Red Stain
2- Potassium Ferrocyanide
3- Dickson
4- Shimadzo-AA 670
5- Philips PW1840

۵۸۴
پارامترهای سلولی (اعداد سلولی a) و حجم سلولی است.

تشکیل دومیت‌های آهان دار و انکریت‌های غیر عادی (حاوی کلسیم اضافی) بیش از حد استیگومتری آن‌ها (سنجه)، به طور معمول انطق می‌افتد [۱۶]. جانشتی کلسیم به جای مینزیم باعث ان‌فراسی فاصله شیبکی (شکل ۲) می‌شود و XRD برای اندیاره گیری استفاده می‌شود و Ca/Mg نسبت به $\frac{d_{104}}{d_{104}'}$ را با اندازه‌گیری موقعیت قلبی می‌شود.

یک استنداردار ارائه می‌دهد [۶]. چنان‌که از شکل ۲ پیداست، به دلیل شعاع بونی‌کوچکتر می‌شود، به کلسیم، با ان‌فراسی مقادیر MgCO_3 در d_{104} نسبت به کلسیم، با ان‌فراسی مقادیر (مقاشر d_{104} کاهش می‌یابد و میزان انحراف موقعیت قلبی FeCO_3 ۲۰۰۰۰ افزایش می‌یابد.

روش دقیق‌ترین آنالیز XRD مستلزم سنجش دقیق

شکل ۱ نشانه راه‌های دسترسی به سانس‌های مورد بررسی.
عکس ۲ کاهش مقدار ۱۰۰دی با افزایش میزان \(\text{MgCO}_3\) در ساختار کانی‌های کربناتی [۱۷].

حضور کلسیم اضافی مقادیر مول درصد + \(\text{MnCO}_3\) بروارد شده و تغییر خواهد داد. این این است که اینهای بزرگ‌تری کلسیم در جایگاه‌های مانیزیم و اهن (و/یا نیز منگنز) جانشینی شده‌اند. افزایش حاصل در حجم سلولی به افزایش منافع منجر می‌شود [۱۷]. به طوری که اگرها آن‌کربنی و اینهای۱۰۰دی آهن‌دار غیر عادی، مقادیر مول درصد \(\text{MnCO}_3 + \text{FeCO}_3\) بالاتری نسبت به مقادیر بروارد شده برای

قرارهای اینه آل مشابه، از لحاظ خواهند داد.

در اثر جانشینی آهن به جای کاتیون‌های دیگر، دولومیت آهن‌دار (حاوی بیش از ۲ مول درصد \(\text{FeCO}_3\) و آن‌کربنی با \(\text{FeCO}_3\) مقادیر بسیار بالاتر حذف ۲۵ مول درصد \(\text{FeCO}_3\) ایجاد می‌کند. با توجه به اندکی بزرگ‌تری بین آهن نسبت به بین مانیزیم، افزایش قابل توجهی در قابلیت \(\text{MgCO}_3\) وجود می‌آید [۱۷].

در سال ۱۹۷۲، الهاشی و هم‌نظامی [۱۸] با آنالیزهای FeCO_3 در عکس ۳ مذکرس بوده و ترکیبی ترکیبی به ایده آل دارند.

عکس ۳ درجه درجه برای پنیده و با درصد ۱۰۰دی گزارش شده از دولومیت‌های محتوی \(\text{FeCO}_3\) [۱۸].
جدول ۱ داده‌های توزیع‌یافته و بلورشناسی کربنات‌های مشخص در سری محلول‌های FeCO₃ - MnCO₃

<table>
<thead>
<tr>
<th>Matenal</th>
<th>mol % Fe+Mn</th>
<th>d104 [Å]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>1.0</td>
<td>3.846</td>
<td>[15]</td>
</tr>
<tr>
<td>SAN-2</td>
<td>0.2</td>
<td>3.857</td>
<td>[19]</td>
</tr>
<tr>
<td>Eugi Dolomite</td>
<td>0.5</td>
<td>3.847</td>
<td>[15]</td>
</tr>
<tr>
<td>Dolomite</td>
<td>3.0</td>
<td>3.847</td>
<td>[20]</td>
</tr>
<tr>
<td>Dolomite</td>
<td>3.0</td>
<td>3.847</td>
<td>[21]</td>
</tr>
<tr>
<td>REO-11</td>
<td>6.5</td>
<td>3.818</td>
<td>[19]</td>
</tr>
<tr>
<td>BM1931-294</td>
<td>11.5</td>
<td>3.849</td>
<td>[22]</td>
</tr>
<tr>
<td>Ankerite</td>
<td>17.7</td>
<td>3.871</td>
<td>[23]</td>
</tr>
<tr>
<td>SUL-2</td>
<td>20.5</td>
<td>3.911</td>
<td>[19]</td>
</tr>
<tr>
<td>DA-8-3</td>
<td>21.0</td>
<td>3.891</td>
<td>[19]</td>
</tr>
<tr>
<td>CEB</td>
<td>25.5</td>
<td>3.950</td>
<td>[19]</td>
</tr>
<tr>
<td>AMNH 6376</td>
<td>27.1</td>
<td>3.906</td>
<td>[22]</td>
</tr>
<tr>
<td>GALL-2</td>
<td>29.5</td>
<td>3.929</td>
<td>[19]</td>
</tr>
<tr>
<td>Ankerite</td>
<td>34.0</td>
<td>3.945</td>
<td>[21]</td>
</tr>
<tr>
<td>AMNH 8059</td>
<td>36.5</td>
<td>3.943</td>
<td>[22]</td>
</tr>
</tbody>
</table>

شکل ۴ ترسیم مقادیر mol درصد FeCO₃ + MnCO₃ نسبت به [Å] با استفاده از داده‌های جدول ۱ (میلی‌متر) همرود با داده‌های Goldsmith et al., 1962، و دیگر کارکنان [۱۲] (نیم).

نتایج مربوط به آنالیز دولومیت‌های مورد بررسی از سوی در جدول ۲ آرائه شده‌اند. شایان ذکر است که پیش از انجام آزمایش‌های اصلی پریش پریش از روش نمونه‌گیری دولومیت‌های مورد بررسی، تعدادی نمونه معلول از مخلوط پودر دولومیت و مقدار مشخصی اکسید زنیک به عنوان استاندارد داخلی که در آزمایش‌گاه گروه علوم زمین و اقیانوس شناسی دانشگاه لیبرال نمونه‌گیری شده و آزمایش تکرار گرفته بودند [۴۱]. دیگر نمونه‌های مورد استفاده در این پژوهش آنالیز شدند که نمودار پریش این نمونه‌ها، نقطه‌های اوج وایسته‌های از طرف دیگر تعداد زیادی از نمونه‌های آنالیز شده توسط Goldsmith و همکاران [۱۲] غیره‌ای در رابطه با با داشتن کلیسم اضافی مشخص می‌شوند. زمانی که این داده‌ها با داده‌هایی به دست آمده از فارهای ابتدایی [آرمانی] و نیز سایر مقایسه‌های سایر نمونه‌های پرآکتیو کننده یا پرآکتیو کننده بیشتر نسبت به نان می‌دهند. برخی از این پرآکتیو‌ها ممکن است به دلیل خطای در آنالیز‌های شیمیایی و باشند [۱۳]، آمیکان پرآکتیوی‌ها به نتایج محصول XRD کلیسم و منگنز در نمونه‌های منحصر به فرد نسبت داده می‌شود.
روی نقطه‌ای مشابه استندارد ZnO
نتیجه مدرج بودن دستگاه مورد استفاده به این
ترتیب اطعامی حاصل گذاشته از آنالیز نمونه‌های دولومیتی
مورد بررسی انحراف که در نقطه‌ای مشابه به دولومیتی
مشاهده می‌شد، به دلیل اختلاس در عملکرد دستگاه نبود.
بنابراین به وجود کربنات‌های آهن و منکب نسبت داده می‌شد.
به منظور پیش‌بینی میزان انحراف اینجا در نقاط
اوج پراش، گستره زاویه پراش 20 ± 25 درجه انتخاب
شد. نتایج حاصل از آنالیز XRD نمونه‌ها در جدول 2 ارائه
شدند. در نمونه‌های مورد بررسی، مقادیر فاصله‌ای شیکه‌ای
(b-value) بین 2.879± 2.877 برآورده شد که برای افزایش
ویژگی‌های مقادیر زاویه 20 در نمونه‌های

جدول 2 نتایج حاصل از محاسبات مقادیر مول درصد کربنات آهن و کربنات منکب، با استناد به نمونه‌های دولومیتی مورد بررسی از سازندهای

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Rev. Fe (%)</th>
<th>Rev. Mn (%)</th>
<th>mol (%) FeCO3</th>
<th>mol (%) MnCO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb 1</td>
<td>9.01</td>
<td>0.85</td>
<td>0.36</td>
<td>0.77</td>
</tr>
<tr>
<td>Sb 2</td>
<td>5.91</td>
<td>0.68</td>
<td>0.52</td>
<td>0.61</td>
</tr>
<tr>
<td>Sb 3</td>
<td>9.01</td>
<td>0.68</td>
<td>0.52</td>
<td>0.61</td>
</tr>
<tr>
<td>Sb 4</td>
<td>1.75</td>
<td>0.30</td>
<td>0.15</td>
<td>0.27</td>
</tr>
<tr>
<td>Sb 5</td>
<td>1.88</td>
<td>0.17</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>Mz 1</td>
<td>8.50</td>
<td>0.90</td>
<td>0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>Mz 2</td>
<td>7.41</td>
<td>1.18</td>
<td>0.36</td>
<td>0.18</td>
</tr>
<tr>
<td>Mz 3</td>
<td>3.88</td>
<td>1.42</td>
<td>0.24</td>
<td>0.10</td>
</tr>
<tr>
<td>Mz 4</td>
<td>0.42</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Mz 5</td>
<td>8.89</td>
<td>0.64</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Sh 1</td>
<td>1.46</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Sh 2</td>
<td>3.42</td>
<td>0.04</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Sh 3</td>
<td>5.18</td>
<td>0.12</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Sh 4</td>
<td>0.40</td>
<td>0.04</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Sh 5</td>
<td>1.52</td>
<td>0.04</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>So 1</td>
<td>3.27</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>So 2</td>
<td>2.31</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>So 3</td>
<td>1.49</td>
<td>0.04</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>So 4</td>
<td>4.11</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>So 5</td>
<td>4.11</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
</tbody>
</table>
جدول 3
نتایج حاصل از آنالیز بر روی ایکس و نیز مقادیر مول درصدی FeCO₃ + MnCO₃ وایسه به نمونه‌های دولومیتی یافت

<table>
<thead>
<tr>
<th>Sample No</th>
<th>mol (%) FeCO₃ + MnCO₃</th>
<th>d-value (Å)</th>
<th>Angle° (2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb 1</td>
<td>8.83</td>
<td>2.9111</td>
<td>30.26</td>
</tr>
<tr>
<td>Sb 2</td>
<td>9.91</td>
<td>2.8999</td>
<td>30.31</td>
</tr>
<tr>
<td>Sb 3</td>
<td>9.98</td>
<td>2.8920</td>
<td>30.89</td>
</tr>
<tr>
<td>Sb 4</td>
<td>1.84</td>
<td>2.8854</td>
<td>31.24</td>
</tr>
<tr>
<td>Sb 5</td>
<td>1.84</td>
<td>2.8856</td>
<td>30.95</td>
</tr>
<tr>
<td>Mz 1</td>
<td>9.34</td>
<td>2.8925</td>
<td>30.90</td>
</tr>
<tr>
<td>Mz 2</td>
<td>8.22</td>
<td>2.8891</td>
<td>30.77</td>
</tr>
<tr>
<td>Mz 3</td>
<td>4.79</td>
<td>2.8879</td>
<td>30.94</td>
</tr>
<tr>
<td>Mz 4</td>
<td>1.19</td>
<td>2.8834</td>
<td>30.98</td>
</tr>
<tr>
<td>Mz 5</td>
<td>4.51</td>
<td>2.8877</td>
<td>30.80</td>
</tr>
<tr>
<td>Sh 1</td>
<td>8.70</td>
<td>2.8914</td>
<td>30.91</td>
</tr>
<tr>
<td>Sh 2</td>
<td>1.33</td>
<td>2.8887</td>
<td>31.18</td>
</tr>
<tr>
<td>Sh 3</td>
<td>8.78</td>
<td>2.8942</td>
<td>30.87</td>
</tr>
<tr>
<td>Sh 4</td>
<td>1.33</td>
<td>2.8849</td>
<td>30.97</td>
</tr>
<tr>
<td>Sh 5</td>
<td>4.76</td>
<td>2.8879</td>
<td>30.94</td>
</tr>
<tr>
<td>So 1</td>
<td>2.28</td>
<td>2.8853</td>
<td>30.96</td>
</tr>
<tr>
<td>So 2</td>
<td>1.84</td>
<td>2.8856</td>
<td>30.95</td>
</tr>
<tr>
<td>So 3</td>
<td>2.28</td>
<td>2.8859</td>
<td>30.96</td>
</tr>
<tr>
<td>So 4</td>
<td>1.19</td>
<td>2.8843</td>
<td>30.98</td>
</tr>
<tr>
<td>So 5</td>
<td>1.76</td>
<td>2.8875</td>
<td>30.94</td>
</tr>
</tbody>
</table>

شکل 5
نمودار XRD واپسی به نمونه‌های دولومیتی 4 از ساند سپیز. مقادیر زاویه 20 وابسته به شدت تراشی نفس اوج دولومیت برای با Sb 31.04 درجه است.
舂

\[
\text{ذآزدیض} \text{بیا دایدهای جمع‌آوری شده از منابع دیگر (دایدهای جدول ۱ و دایدهای گلدشمنی و همکاران [۱۳۱]) ادغام شده و نمودار نهایی (شکل ۷) ترسیم شد و نتاب ۱ به دست آمد. با استفاده از این رابطه میزان دانه با داشتن مقدار فاصله‌ای شیب‌کای حاصل از آنالیز XRD میزان مول درصد موجود در نمونه‌های دولومیتی مجهول را برآورد کرد.}

\[
mol\% \text{FeCO}_3 + \text{MnCO}_3 = 1271.5 \ \text{d}_{104} - 3667.2 \ \text{m} \ (r^2 = 0.897)
\]

ناحیه ۱ مول

در راستای دسترسی به هدف‌هایی این پژوهش، مقادیر فاصله‌ای شیب‌کایی (d-value) این نیز مول درصد به دست آمده از نمونه‌های دولومیتی مربوط به چهار MnCO₃

\[
\text{شکل ۷ نمودار نهایی نشان دهنده تغییرات مقادیر مول درصد } \text{FeCO}_3 + \text{MnCO}_3 \text{ حاصل از این پژوهش (جدول ۳) و داده‌های گردآوری شده از منابع دیگر (شکل ۶) ترسیم شده است.}
\]

\[
y = -1.271.5x + 3667.2 \ \text{R}^2 = 0.9
\]
برداشت
دلوامی‌ها حاصل از آلانیس پرتو پروکسی می‌دهند که موضوع قطعه‌ی اوج وابسته به تعامل نمونه‌های دولومیتی، آهن‌دار نسبت به دلواپسی معمول انحراف نشان می‌دهد. همچنین، رایحه برای (20) وابسته به شیفت‌های نقطه‌ای اوج وابسته به تعامل نمونه‌های آلانیس شده یک تغییر نسبت دلواپسی معمول انحراف نشان می‌دهد. این تغییر با توجه به الگوی مطالعه شده در خطوط پراش‌های نسبت به حالت اولیه آل می‌تواند به تغییر در ساختار بلوری نسبت داده شود. می‌توان چنین نتیجه‌گیری کنیم که جانشینی‌های معمول انیمی همچون جانشینی‌های آهن و منگنز به جای معیار در دلواپسی آنها جایگزین می‌شوند. مقاله‌های حاصل و ترجمه نمونه‌های نشان دهنده وجود یک روند منشأ بین دلواپسی قابلیت شیکالی و منگنز آهن و منگنز است. به طوری که با افزایش مقدار آهن و منگنز مقدار قابلیت سلولی نیز افزایش می‌یابد.

با استفاده از دلواپسی حاصل از این پژوهش و ادغام آنها با دلواپسی‌های جمع‌آوری شده از منابع دیگر، تغییرات مول درصد کربنات آهن و کربنات منگنز نسبت به مقدار قابلیت سلولی ترمیم شده و نمونه‌های نهایی و تابع وابسته حاصل شده است. نمونه‌ها و تابی به آنها اسپرام فیلیمن که نشان می‌دهد دلواپسی‌های قابلیتی شیکالی و منگنز آهن و منگنز موجود در نمونه‌های دلواپسی آهن‌دار مجهول را براورد کرد.

مراجع