شیمی کانی و بررسی نقش آلومینیوم کل بیوتیت بر ای تحقیق نوع کانی زایی در توده‌های نفوذی محور کرگ–طلیان

اسمالیل کشت کاری‌های منصور قربانی، جعفر عمرانی

1- گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران
2- سازمان زمین‌شناسی و اکتشافات معدنی کشور (دریافت مقاله: ۲۷/۸/۹۹، نسخه نهایی: ۹۹/۱۱/۷)

چکیده: توده‌های نفوذی محور کرگ–طلیان در البرز مرکزی با پراکندگی‌های خاص به شکل سنگ‌پتول، فاکوپیت، استوک و بلک در درون سنگ‌های آغواری سازند کرگ و معادن آن جای گرفته‌اند. بر پایه بررسی‌های میکروسکوپی، ترکیب سنگ‌شناسی‌ای این توده‌ها مشابه بوده و شامل الیوتین گارو، الیوتین مونوزودوریت، الیوتین مونوزودوریت، پیروکسن مونوزودوریت به همراه دایک‌های فلزیک از نوع سنگ‌های است. مجموعه کانی‌های ترکیب‌های این مجموعه شامل پلاژیوکلاز، پلیکانس، پیروکسن، الیوتین و بیوتیت قلبی است. بیوتیت‌هایی که در شیشه‌کنی کانی‌های مورد بررسی است از لحاظ ترکیبی بین قطب آنت و سیدرولیت قرار می‌گیرند و از سنگ‌های سیسکه‌های دیور متعادل شده قرار دارند. بیوتیت‌های مورد بررسی، در نموهدهای شیمیایی و سنتی، که بر پایه اکسیدهای Al₂O₃، MgO استوارند، در گستره کالکتان کوه‌های قرار می‌گیرند. دمای جایگیری بیوتیت نفوذی زبانه بر اساس تیتانیوم FeO⁴⁻ و MgO بیوتیت بین ۶۶ تا ۷۷ درجه سانتی گراد مهار شده است. همچنین فشار مясه‌های هیدراتالن آلومینیم الیوتین بیون بیومی شده و در این راستا به تینتیوم C₃S₄Fe₅Si₆O₁₈(H₂O, F, Cl) مجموعه گراگین‌تپی بین ۲۰ تا ۷۲۵ کیلوگرم در این منطقه. در تغییرات است که بر اساس نتایج دستا روی تیتانیوم الیوتینی هیدراتالن زبانه‌های ورزانی خوبی در کانترافی سر- مرزه و سنگ‌های پرچمن و شکرمان در کانترافی چسب و روی دارند.

واژه‌های کلیدی: شیمی کانی آلومینیوم کل بیوتیت، پرچم‌سازی سنگ‌پتول

مقدمه

بیوتیت به عنوان یکی از فراوان‌ترین و شایع‌ترین کانی‌های مافیک در ترکیب گراگین‌تپی، با توهم که به ساختر بلوری سایت چارچوبی Z₃Si⁴Fe₃⁴+ نیز از جمله Al و تشکیل Ti و Fe³⁺ می‌گیرند. ترکیبات و نسبت جایگزینی اکسیدهای سه عنصر اصلی Mn و Al و Fe در تحلیل شرایط سنگ‌پتولیک که مادر مولتی‌پیدا شده، جایگزینی می‌تواند به عنوان یکی از ترکیب‌های بیون می‌باشد. بنابراین با استفاده از مفاهیم شیمیایی پیش‌بینی می‌توان نوع معنی‌دار را تشخیص داده ماهیت آن را تعیین کرده و همچنین سطح منطقه را رده‌بندی کرده و تحلیل‌های سنگ‌شناسی ارائه کرده.

keshktaremail@gmail.com

تاریخ دریافت نسخه نهایی: ۹۹/۱۱/۷، تاریخ پذیرش: ۹۹/۱۲/۳۲
شود زیرا ساختار مخصوص این کانی، این امکان را می‌دهد که پیازی است. توده‌های نفوذی مورد بررسی شامل سه توده به شرح زیرند:

توده نفوذی شمال زبان

توده نفوذی شمال زبان به صورت نفوذی‌های عدسی مانند سیل درون‌لایه‌های متغیر-اندیش‌نیا سازند کرج نفوذ کرده است. توده اصلی دارای ترکیب الیون گابرو تا موزونیت است. سنگ‌های با ترکیب الیون گابرو بیشترین حجم توده را شامل می‌شوند و دارای الپر ها درشت‌تر نسبت به پشت با ترکیب موزونیتی هستند. سنگ‌های این توده در نمونه‌سازی دستی به صورت مروزات با الپر و نشان از پلازیکلاز و پروکسی هستند، بنابراین این توده نفوذی شمال دانه‌ای پرتره‌ای و دارای دانه‌ای هستند و ترکیب کانی‌دانشی این توده شامل پلازیکلاز، فلدسپر، پلی‌پاراژنین، الیون، الیون، بیونت، اندکی آبات، اسفن و آلانیت به علاوه کانی‌های کدر است.

از بیونت در زمین‌شناسی نفوذی استفاده‌زایی می‌کند، عناصر گوناگون در بخش‌های مختلف شیکه ایشان، به سهولت یافته‌اند. [1-2]، برای بررسی جدید مشخص شده که ویژگی‌های کانی‌شناسی و حضور آلوسیمی کل موجود در بیونت، ارتباط نگاتیوی با کانتری از گرایی‌ها دارد [3-4]، در این راستا، به دلیل گسترش‌دهی بیونت در سنگ‌های گرانی‌تتی نظرآوره نشده سه انجام بررسی کلی شیمی از این کانی هم برای دانشجو و هم برای فشارسنجی استفاده و رابطه آن با نوع کانی‌ای زاپی بررسی شده است.

زمین‌شناسی و سنگ‌نگاری مجموعه نفوذی محوطه کرج

مجموعه گرانی‌تتی محوطه کرج-طلقان به صورت نفوذی- های نه چندان بزرگ مانند سیل، لوبولیت، فاکولیت، استوک و پلاک [5] درون‌لایه‌های متغیر-اندیش‌نیا سازند کرج (شامل تف سیز، نفوذ قطع‌های با پرورش، نفوذ ماسه‌ای، نفوذ آهک، نشی و گذره‌های انگشتانی) نفوذ کرده (شکل 1) و فرسایش این توده‌ها به صورت فرسایش پوست

شکل 1، موقعیت مجموعه نفوذی مورد بررسی در نقشه زمین‌شناسی ساده شده (بر گرفته از نقشه‌های زمین‌شناسی 1/10000) تهران، قزوین و شکران [7-9].
مورد بررسی، جزء گراینده‌های کم‌هایانه آنتی‌بازیک و حاشیهی فعال قارسی به شمار می‌آید (۱۳۱۱].

روش بررسی

به منظور دستیابی به اهداف این پژوهش، پس از بررسی شواهد صحرایی و یاریایی از رخ‌جویانه‌های مختلف، تعداد ۱۸ نمونه سنگی از واحدهای مجموعه گراینده‌های مورد بررسی برداشت شدند (تقییاً ۶۰ مقطع از هر نمونه) و طی مرحله‌ی بعدی از آنها مقاطع نازک تهیه شدند (تعداد ۸ مقطع از ۱۸ مقطع برای کانی شیمی). سپس برای تعیین ترکیب شیمیایی کانی بیوتیت، نوازل ریزپردازش الکترونی با رزپردازه‌ی مدل ELECTRON PROBE MICRO ANALYZER Cameca SX100 فرآیند مرکز تحقیقات فلزسازی مورد بررسی قرار گرفت. وسیله‌ی کش در کانتر سنگ‌های پلاژیوکسی و در لایه‌های سنگی که به روند شمال بازی‌های جنوبی خارجی و با اثره‌ی دگرگونی به رنگ دیده می‌شود (۱). بفایت‌های غالب در این توده به صورت علفی، پورفیری، گردو دانه‌ای، سپی کاتیک و هویت دیده می‌شوند.

بحث و بررسی

شناسایی بیوتیت‌های اولیه از بیوتیت‌های نانوی

به منظور شناسایی بیوتیت‌های اولیه از بیوتیت‌های نانوهای از نمونه‌های FeO - TiO۲ - MgO + MnO ناپایی می‌تواند بیوتیت‌های اولیه ای با ماکم‌ها را بیوتیت-های اولیه‌ای که به تعداد شاهد، ریزپردازش و نانو بیوتیت‌های نانوهای جدید بررسی گرفته شده است. قطعات ماکم‌های پلاژیوکسی و بیوتیت‌های اولیه از نمونه‌های FeO - TiO۲ - MgO + MnO مربوط به درستی کننده‌ی ماکم‌های اولیه‌ای و فقط منظور ماکم‌های بیوتیت‌های نانوهای دواری می‌باشد. شکل ۲ نشان می‌دهد که بیوتیت‌های از نوع میکروکسی و کاتیک شیمیایی نانوهای دواری می‌باشد. شکل ۲ نشان می‌دهد که بیوتیت‌های از نوع ماکم‌های اولیه و فقط منظور ماکم‌های بیوتیت‌های نانوهای دواری می‌باشد. شکل ۲ نشان می‌دهد که بیوتیت‌های از نوع ماکم‌های اولیه و فقط منظور ماکم‌های بیوتیت‌های نانوهای دواری می‌باشد. شکل ۲ نشان می‌دهد که بیوتیت‌های از نوع ماکم‌های اولیه و فقط منظور ماکم‌های بیوتیت‌های نانوهای دواری می‌باشد. شکل ۲ نشان می‌دهد که بیوتیت‌های از نوع ماکم‌های اولیه و فقط منظور ماکم‌های بیوتیت‌های نانوهای دواری می‌باشد. شکل ۲ نشان می‌دهد که بیوتیت‌های از نوع ماکم‌های اولیе
جدول ۱ نتایج آنالیز ریزیدراش الکترونی کانی های پویشی (W) (فرمول ساختاری بر اساس ۲۴ اتم آکسیژن محاسبه شده).

<table>
<thead>
<tr>
<th>Location</th>
<th>Ziyarvan</th>
<th>Prachan</th>
<th>Shekarnab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock Type</td>
<td>ZR⁺</td>
<td>ZR⁺⁺</td>
<td>ZR⁺⁺⁺</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۵۵.۲</td>
<td>۵۲.۵</td>
<td>۴۹.۹</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۱۸.۰</td>
<td>۱۶.۴</td>
<td>۱۴.۸</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۴.۶</td>
<td>۱۳.۱</td>
<td>۱۱.۶</td>
</tr>
<tr>
<td>MgO</td>
<td>۱۳.۰</td>
<td>۱۱.۶</td>
<td>۹.۸</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Prachan</th>
<th>Shekarnab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock Type</td>
<td>Pr⁺</td>
<td>Pr⁺⁺</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۴۴.۰</td>
<td>۴۱.۲</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۳۸.۱</td>
<td>۳۵.۸</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۱۱.۱</td>
<td>۹.۶</td>
</tr>
<tr>
<td>FeO</td>
<td>۷.۹</td>
<td>۶.۵</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۲</td>
<td>۳.۶</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۰.۶</td>
<td>۰.۴</td>
</tr>
<tr>
<td>K₂O</td>
<td>۰.۵</td>
<td>۰.۴</td>
</tr>
<tr>
<td>Mg(Mg+Fe)</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
</tr>
</tbody>
</table>

ایادآور جدول ۱

\[\text{TiO}_2 - \text{FeO} - \text{MgO} \]
در حالت کلی می توان گفت بیوئیتی های دوباره متعادل شده گسترده B شکل 2 با بیوئیتی های ثانوی دارای کلیه‌ای آبیتی، روتیت و اکسیدهای آهن-نیتریمی هماهنگی دارند.

 backdrop شبه B بیوئیت

بیوئیت محلول جاده، جاده از وسط انتهای به انتی، سیدورفلیت، فلامگویت و استونتی هست که به عامل این جهان فاز، نمودار زیر عنوان چهارضلعی (ASPE) طراحی شده‌اند که برای تعیین ترکیب میکاسی‌های هسته‌ی سبک‌های بسیار Fe(Fe+Mg)+Al به کار می‌رود. در این چهارضلعی دو منگزیسی بیوئیتی می‌باشد که به ترتیب شاخه گریدنگی total
گرانیتونیدهای کوهزاپی آهنی-قبلاً از نوع 1 که به طور متوسط غنی از منیزیم بوده و معمولاً همراه با آمفیبول کلسیم (C), در و یا پیروکسن کلسیمی و با همراه به فورانس هستند (1). توابل از آن به عنوان یک مکانیک مناسب برای شناسایی مربوط به زمره‌شناسی گرانیتونیدها استفاده کرد. عبدالرحمن ([8] با اکسید FeO* و MgO, A1₂O₃ استفاده از آنالیزهای سه‌گانه‌ای سیستمی S-Type کاتی بیوتیت، به نمودار مفاهیم و در نظر گرفتن مشابهی‌گرایی و عنصر بررسی به تصویر در آمده‌ایند. تمام نمونه‌های بیوتیت از نوع گرانیتونیدهای نوع I هستند و در پنهای C قرار می‌گیرد که به فلئرو بیوتیت گرانیتونیدهای قوسی آهنی-قبلاً فورانسی و با همراه انگشتانی منیزیم بیا و شباهتهای قلبی و قلب‌های قریب می‌گیرند (شکل 5). فرمول نمودارهای عدالتیم ([5] کاملاً همکاری دارند.

شکل 4 (الف) بررسی انتخاب منیزیم‌های آهن و منیزیم‌های در نمودار چهار فلئری [12] (ب) بیوتیت‌های مورد آنالیز از نوع بیوتیت‌های غنی از منیزیم هستند ([14].

شکل 5 عضو سری مکاپاتی براساس شیمی بیوتیت (5). گستره‌ها: A: فلایی (منطقه کشک)، C: آهنی-قبلاً، (منطقه فورانسی) و P: پولیمین (محتوای بیچرودی).
از طرف دیگر ترکیب شیمی بیوتین قادی به جدایی سنج گرانیتئی میزانی خود بر پایه رده‌بندی القوابی گزارنده‌است. بنابراین مقداری از AlIV در مقابل Fe/(Mg + Fe) کردن دارد که جدا کنش اندوگ گرانیت‌ها بر این خاصیت آن- هاست. در این مقدار نمونه‌های بیوتین مورد بررسی در گسترده‌ترین گروه‌های نوع I قرار می‌گیرند که با نتایج حاصل از بررسی‌های زمین‌شناسی سنج کل [۱۲] کاملاً همخوانی دارد (شکل ۷).

دیسکسیون با استفاده از مقداری از مقداری از Ti گردن داماسنجه‌های نزدیک به سنج که مقداری از ترکیب Ti و Mg/(Mg + Fe) روی یک نمونه دوتایی ساده (شکل ۸) و هم با محاسبه T در فرمل زیر بدست آید:

\[T = \left(\frac{\ln(Ti) - a - c(X_Mg)}{b}\right)^{0.333} \]

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.3594</td>
<td>4.65E-09</td>
<td>-1.728</td>
<td></td>
</tr>
</tbody>
</table>

\[a = 9.234 \quad b = 2.372E-09 \quad c = 1.217 \]

که در آن T دما بر حسب درجه سانتی‌گراد، مقادیر اتم در Ti مقادیر، Ti بهنجار به ۲۵۰۰ کیلوپاس، Fe به انبر X_Mg به‌طور ۸۵ این فرمول با c = b a Mg/(Mg+Fe) با برای مقادیر مقادیر T = ۴۸۰-۸۰۰°C معین است. بنابراین داماسنجه توده‌های پیش‌تر و شکستن با استفاده از این روش با توجه به بالای بودن مقادیر Ti آنها کاملاً پذیر نیست. دمای نسبی داماسنجه‌های زباران براساس این داماسنجه بین ۷۰ تا ۷۷ درجه سانتی- در گراد (یا ۷۳ درجه سانتی‌گراد) محاسبه شده است (۸).

[۱۴] AlIV در مقابل Fe²⁺/(Mg+Fe²⁺)

شکل ۷ نمونه نمایش نسبت Fe²⁺/(Mg+Fe²⁺)
فاشرسنجبی استفاده از محصول آلومینیم کل (AlTi) بین بیرونی فاشرسنجبی سبک‌های آلومینیم کل امکان‌پذیر. در این معادله AlTiwed در محصول آلومینیم بیرونی تولید شده است.

\[
P(Kb) = 3.03 \times AlTi^2 - 0.33 \text{ (6.53)}
\]

در این معادله AlTiwed در محصول آلومینیم بیرونی تولید شده است. در این روش برای تعیین فشار نیروی تعیین نمودار \(780°C \) تا \(820°C \) که دمای تغییرات فشار در محصول فشارنگی در سطح فشردنی مورد بررسی استفاده شده است. نتایج نشان می‌دهد که دمای تغییرات فشار در محصول فشردنی \(50 \text{ Kb} \) تا \(25 \text{ Kb} \) در محصول فشردنی \(0.5 \text{ Kb} \) تا \(0.5 \text{ Kb} \) شکل‌برداری بین

\[
\text{形象} = \text{بیرونی} + \text{سرسبک} + \text{سوپرسک} + \text{سوری} + \text{سوپرسکت}
\]

\[\text{بیرونی} = 2.3 \times \text{سربسیا} + \text{بیرونی} + \text{سوپرسکت}
\]

\[\text{سوپرسکت} = 25 \times \text{بیرونی}
\]

\[\text{سوری} = 3 \times \text{بیرونی}
\]

\[\text{سوپرسک} = 5 \times \text{بیرونی}
\]

\[\text{سربسیا} = 2 \times \text{سربسیا}
\]

\[\text{بیرونی} = 3.0 \times \text{بیرونی}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سوپرسکت} = 0.5 \times \text{سوپرسکت}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]

\[\text{سوری} = 0.3 \times \text{سوری}
\]

\[\text{سربسیا} = 0.3 \times \text{سربسیا}
\]

\[\text{بیرونی} = 0.3 \times \text{بیرونی}
\]

\[\text{سوپرسکت} = 0.3 \times \text{سوپرسکت}
\]
ظالمان برای تعیین نوع کانی‌سازی احتمالی [1].

بانرایین توپه‌های فوق می‌تواند از نظر پتاسیل کانه‌زایی مس-آهن و سرب و روی جایی باشد. همچنین واژنکی بین Al3+ در بیوتیت و شاخ اشباع شدگی آلومینیوم (Al\textsubscript{2}O\textsubscript{3} / (CaO+Na\textsubscript{2}O+K\textsubscript{2}O) واژنکی به کانه‌زایی توسط پتاسیم [1] بررسی شده است (شکل 11). بدن صورت که اگر بیوتیت در مقابل ضریب اشباع Al\textsubscript{2}O\textsubscript{3} / (CaO + Na\textsubscript{2}O + K\textsubscript{2}O) پتاسیم در کانه‌زایی با تررسیم شوند، برای روند Al\textsubscript{2}O\textsubscript{3} / (CaO + Na\textsubscript{2}O + K\textsubscript{2}O) مبتنی بر مقدار آلومینیوم در سری مس، آهن و سرب و روی نسبت خویش دارد که وجود شاخ‌های این عنصر در منطقه [12] تأثیر کندنهای این ادعا می‌شود.

![شکل 9: فشار تبلور بیوتیت‌ها بر اساس متوسط مدرج شده زمین فشارسنگ بیوتیت [1]](https://example.com/s9.png)

![شکل 10: مقایسه نسبت Al3+ (Mg(Mg\textsubscript{2} + Fe) در بیوتیتهای سه کریستالی محدود در زاین با بیوتیتهای کانه‌زایی‌های محور کرج-شکل 11)](https://example.com/s10.png)
توده‌های نفودی محور کرج-طاقلا، طاقلا، نفرود و باکتی، استوک و پلاک در درون سنگ‌های آدروآواری سازند کرج و معادل آن‌ها گرفته‌اند.

با توجه به اینکه این توده‌ها در توپوهای انسان تزیق شده‌اند، لذا سن انسن بالایی و احتمالاً بیگوناس را دارد. بر پایه بررسی‌های میکروسکوپی، ترکیب سنگ‌نماکی این توده‌ها مشابه است و متشکل از سنگ‌های آدریائوری دارای ترکیب الیوگانیوی و موزنگیونیت است. توده‌های پراکتیکا کرج، طاقلا، نفرود و باکتی، استوک و پلاک در درون سنگ‌های آدریائوری سازند کرج و معادل آن‌ها گرفته‌اند.

مجله بلورشناسی و کانی‌شناسی ایران

کشت‌کار، قربانی، عمرانی

شکل ۱۱ رابطه‌ای ضریب اشباع آلومینیم (Al) برای تغییر چگونگی کاتیو سازی

احتمال [1]
[9] Rader G., "دراشتهای درون‌ساختارهای کوشر (1972)."
[10] نوری‌خانده ولیدی ک. "بررسی پتروپتروژی‌های نوردیکی توده‌های مولوتونیتی شمال دیاران (منطقه طلاقلان)، رساله کارشناسی-ارشد، دانشگاه شهید بهشتی (1375) ص. 127.

Mراجع

[8] "آمینی ب. داشتهای زمین‌شناسی نهران".
