ارتباط کانال سازی‌های مس و طلای با فازهای مختلف ماگماپی در توده‌های خانکندی و
یوسف لو، شرق اهر
حمایت جمالی*، عبدالرضا یعقوبی‌پور، پژوهش‌های مهربانی

1-گروه زمین‌شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان
2-گروه زمین‌شناسی، دانشکده علوم، دانشگاه تربیت معلم، تهران

چکیده: منطقه‌های مورد بررسی در شرق ایران در استان آذربایجان شرقی واقع شده و به خصوص از یکی از ماگماپی سنوزونیک اهر-ارسپاران در شمال غرب ایران است. واحدهای زمین‌شناسی لوسر شامل سنگ‌های آتش‌نشانی با ترکیب آندزیت، آندزیت-اندرزیتی نیز لپیس-آندزیتی نیز است. توده‌های نفوذی خانکندی و یوسف لو سینکس در سنگ‌های آتش‌نشانی اوسن نفوذ کرده و سبب تشکیل زون‌های درگرسیوی گستردگی که بر سطح مس و خاک شده است. توده‌های نفوذی در بخش گردان‌های کوارتز‌مونوزونیت، مونوزونیت-مولزیوبوریت و گاریوی این نوع 1 هستند. درگرسیوی‌های گروه‌های‌ی ها و کوارتز‌مونوزونیت‌ها به سرپوش ماگماپی‌های اهنگی-قلبی و مونوزونیت‌ها و گاریوی‌ها به سرپوش قلب‌های تعلق دارند. این سه‌گروه با منطقه‌های فيروزره شاخه‌های قره‌اهی و پایین‌شده و در شمال‌غرب خاک‌های ساختمانی پرا بارود تشکیل شده است. هم چنین کانال‌هایی که عبارت از یکی از دسته‌های محدود به دو نواحی سنجاقی است که در شرق خاک‌های شرقی توده‌ای یوسف لو تشکیل شده است. درگرسیوی سری‌بندی-آوژیولیکی این کانال‌ها به طور عمده را هر اهمیت می‌کند. نوریت، گل، اسدی‌پلوت، کالگوپروکت و پرکنده‌های مولزیوبوریت و پرکنده‌های مولزیوبوریت، بیتی‌ای‌های مگنتیتی‌های مولزیوبوریت و پرکنده‌های مولزیوبوریت، کانال‌های مشابه در جنوب غربی دیگر از اطراف روستای یوسف لو (در کوارتز‌مونوزونیت‌ها ربخ داده که با گرچه‌های مگنتیتی-کانال‌های مافیک (آمفی‌بیت و پروپلیت) همراه است.

واژه‌های کلیدی: فازهای ماگماتیکی-اهر-ارسپاران-سنوزونیک-تکتونیک‌ماگماتیک-داراتی-ایپی‌ترمال

مقدمه
منطقه‌های مورد بررسی در شرق ایران، استان آذربایجان شرقی (شلف 1) و در پهنای ماگماتیک سنوزونیک اهر-ارسپاران واقع شده است. خوبی از یک واحدهای ماگماتیک بزرگ تحت عنوان کمربند بریز-ارسپاران-فوق‌فاز خوانده می‌شود. [1-4]
ماگماتیسم این مجموعه را جزء سری آهکی-قلیبالی و در رابطه با مناطق فوران‌ناپذیر داستان [3, 7] در میان این پژوهشگران نیز اختلاف نظر وجود دارد به‌طوری‌که برخی آن را به صورت یک کمربند جدا می‌دانند که از برز تا شمال شرقی ترکیه کشیده شده است [12]. در مورد ویژگی‌های زئوئیسی‌پی و محوطه زمین‌ساختی سنگ‌های آذربایجان شرقی به‌عنوان ارسالان که از پالتوسن بالایی شروع شده و تا کوارتز ادامه داشته است، نظریه‌های متفاوتی ارائه شده‌اند. برخی ماگماتیسم این کمربند را به فاز کشوری می‌نسبت داده‌اند که به دنبال فاز فشارشی کرتاسه پایانی رخ داده است [9-11]. ولی اغلب پژوهشگران

شکل ١ موقعین جغرافیایی و راه‌های دسترسی منطقه مورد مطالعه.

شکل ٢ زون‌های تکنوئی-ماگماتیک نمونه‌ای از مرکز ایران تا شرق ترکیه و موقعیت منطقه‌ی مورد بررسی روی آن (با نگیری از [30]).
زمین شناسی منطقه

در گستره های ارواری سنجش‌های آذرین فازهای مختلف سنجش‌های مورد بررسی دقیق قرار گرفتند. سپس نمونه‌هایی از انواع سنجش‌های آذرین و زون‌های معدنی برای بررسی‌های کلی شناسی (30 نمونه) در سنجش‌گرهای (25 نمونه) تجزیه شدند. شیمیایی (15 نمونه) به روش‌های XRF و طلا و عناصر همراه (30 نمونه) به روش جذب (ICP) ایمن و اندازه‌گیری مورد بررسی در سنجش‌های نمونه‌های خاک‌هایی (XRF) و پوست (ICP) نیز در تعریف و تفسیر سنجش‌های مورد استفاده قرار گرفتند (جدول 1).

زمین شناسی

زمین شناسی ناحیه ای سنجش‌های آذرین سنجش‌های پهن‌های اهر- ارسانی با روند تقریبی از شمال به جنوب تجزیه و تحلیلی مورد بررسی و بخشی بر این سنجش‌های موجود را از جنوب به سنجش‌های تقریبی- تجزیه ارسانی- سنجش‌های پهن‌های اهر وزهره نمونه‌های کوچک و پراکنده و سنجش‌های دگرگون (ست قابل از وزه‌ر) و سنجش‌های افکلیتی در حاشیه‌های شمالی و جنوبی این کم‌ریز (شکل ۲).
<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO</th>
</tr>
</thead>
<tbody>
<tr>
<td>saf6/4B</td>
<td>0.28</td>
</tr>
<tr>
<td>saf6/10</td>
<td>0.33</td>
</tr>
<tr>
<td>saf6/12</td>
<td>0.38</td>
</tr>
<tr>
<td>saf6/13</td>
<td>0.44</td>
</tr>
<tr>
<td>saf6/15</td>
<td>0.51</td>
</tr>
<tr>
<td>saf6/16</td>
<td>0.56</td>
</tr>
<tr>
<td>saf6/17</td>
<td>0.63</td>
</tr>
<tr>
<td>saf6/21</td>
<td>0.70</td>
</tr>
<tr>
<td>saf6/32</td>
<td>0.77</td>
</tr>
<tr>
<td>saf6/36</td>
<td>0.84</td>
</tr>
<tr>
<td>saf6/82</td>
<td>0.18</td>
</tr>
<tr>
<td>saf6/86</td>
<td>0.24</td>
</tr>
<tr>
<td>saf6/87</td>
<td>0.30</td>
</tr>
<tr>
<td>saf6/88</td>
<td>0.36</td>
</tr>
<tr>
<td>saf6/89</td>
<td>0.42</td>
</tr>
<tr>
<td>saf6/91</td>
<td>0.48</td>
</tr>
<tr>
<td>saf6/92</td>
<td>0.54</td>
</tr>
<tr>
<td>saf6/93</td>
<td>0.60</td>
</tr>
<tr>
<td>saf6/94</td>
<td>0.66</td>
</tr>
<tr>
<td>pdf82/1</td>
<td>0.72</td>
</tr>
<tr>
<td>pdf82/2</td>
<td>0.78</td>
</tr>
<tr>
<td>pdf82/3</td>
<td>0.84</td>
</tr>
<tr>
<td>pdf82/4</td>
<td>0.90</td>
</tr>
<tr>
<td>pdf82/5</td>
<td>0.96</td>
</tr>
<tr>
<td>pdf82/6</td>
<td>1.02</td>
</tr>
<tr>
<td>pdf82/7</td>
<td>1.08</td>
</tr>
<tr>
<td>pdf82/8</td>
<td>1.14</td>
</tr>
<tr>
<td>Kha-Mz1</td>
<td>0.05</td>
</tr>
<tr>
<td>Kha-Mz2</td>
<td>0.10</td>
</tr>
<tr>
<td>Kha-Mz3</td>
<td>0.15</td>
</tr>
<tr>
<td>Kha-Mz4</td>
<td>0.20</td>
</tr>
<tr>
<td>Kha-Mz5</td>
<td>0.25</td>
</tr>
<tr>
<td>Kha-Mz6</td>
<td>0.30</td>
</tr>
<tr>
<td>Kha-Mz7</td>
<td>0.35</td>
</tr>
<tr>
<td>Kha-Mz8</td>
<td>0.40</td>
</tr>
<tr>
<td>Kha-Mz9</td>
<td>0.45</td>
</tr>
<tr>
<td>Kha-Mz10</td>
<td>0.50</td>
</tr>
<tr>
<td>Kha-Mz11</td>
<td>0.55</td>
</tr>
<tr>
<td>Kha-Mz12</td>
<td>0.60</td>
</tr>
<tr>
<td>Kha-Mz13</td>
<td>0.65</td>
</tr>
<tr>
<td>Kha-Mz14</td>
<td>0.70</td>
</tr>
<tr>
<td>Kha-Mz15</td>
<td>0.75</td>
</tr>
<tr>
<td>Kha-Mz16</td>
<td>0.80</td>
</tr>
<tr>
<td>Kha-Gd1</td>
<td>0.05</td>
</tr>
<tr>
<td>Kha-Gd2</td>
<td>0.10</td>
</tr>
<tr>
<td>Kha-Gd3</td>
<td>0.15</td>
</tr>
<tr>
<td>Kha-Gd4</td>
<td>0.20</td>
</tr>
<tr>
<td>Kha-Gd5</td>
<td>0.25</td>
</tr>
<tr>
<td>Kha-Gd6</td>
<td>0.30</td>
</tr>
<tr>
<td>Kha-Gd7</td>
<td>0.35</td>
</tr>
<tr>
<td>Kha-Gd8</td>
<td>0.40</td>
</tr>
<tr>
<td>Kha-Gd9</td>
<td>0.45</td>
</tr>
<tr>
<td>Kha-Gd10</td>
<td>0.50</td>
</tr>
<tr>
<td>Kha-Lp1</td>
<td>0.05</td>
</tr>
<tr>
<td>Kha-Lp2</td>
<td>0.10</td>
</tr>
<tr>
<td>Kha-Lp3</td>
<td>0.15</td>
</tr>
<tr>
<td>Kha-Gh1</td>
<td>0.20</td>
</tr>
<tr>
<td>Kha-Gh2</td>
<td>0.25</td>
</tr>
<tr>
<td>Kha-Gh3</td>
<td>0.30</td>
</tr>
<tr>
<td>Kha-Gh4</td>
<td>0.35</td>
</tr>
<tr>
<td>Kha-Gh5</td>
<td>0.40</td>
</tr>
<tr>
<td>Kha-Gh6</td>
<td>0.45</td>
</tr>
<tr>
<td>mia-288</td>
<td>0.05</td>
</tr>
<tr>
<td>mia-292</td>
<td>0.10</td>
</tr>
<tr>
<td>mia-293</td>
<td>0.15</td>
</tr>
<tr>
<td>mia-294</td>
<td>0.20</td>
</tr>
<tr>
<td>mia-295</td>
<td>0.25</td>
</tr>
<tr>
<td>mia-296</td>
<td>0.30</td>
</tr>
<tr>
<td>mia-297</td>
<td>0.35</td>
</tr>
<tr>
<td>mia-298</td>
<td>0.40</td>
</tr>
<tr>
<td>mia-299</td>
<td>0.45</td>
</tr>
<tr>
<td>mia-300</td>
<td>0.50</td>
</tr>
<tr>
<td>mia-301</td>
<td>0.55</td>
</tr>
<tr>
<td>mia-302</td>
<td>0.60</td>
</tr>
<tr>
<td>mia-303</td>
<td>0.65</td>
</tr>
<tr>
<td>mia-304</td>
<td>0.70</td>
</tr>
<tr>
<td>mia-305</td>
<td>0.75</td>
</tr>
<tr>
<td>mia-306</td>
<td>0.80</td>
</tr>
<tr>
<td>mia-307</td>
<td>0.85</td>
</tr>
<tr>
<td>mia-308</td>
<td>0.90</td>
</tr>
<tr>
<td>mia-309</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Downloaded from ijcimr at 5:19 +0430 on Tuesday May 21st 2019
<table>
<thead>
<tr>
<th>sample</th>
<th>Cs</th>
<th>Ba</th>
<th>La</th>
<th>Yb</th>
<th>Hf</th>
<th>Pb</th>
<th>Th</th>
<th>Nb</th>
<th>Ce</th>
<th>Eu</th>
<th>Sm</th>
<th>Nd</th>
<th>Ta</th>
<th>Ho</th>
<th>Tb</th>
<th>Tm</th>
<th>Gd</th>
<th>La</th>
<th>Er</th>
</tr>
</thead>
<tbody>
<tr>
<td>sa86-AB</td>
<td>49.1</td>
<td>73</td>
<td>4.6</td>
<td>14.8</td>
<td>6.8</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>sa81-10</td>
<td>49.5</td>
<td>74</td>
<td>4.4</td>
<td>15.4</td>
<td>5.6</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-12</td>
<td>49.2</td>
<td>72</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-15</td>
<td>49.2</td>
<td>71</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>sa81-16</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>sa81-2</td>
<td>49.2</td>
<td>74</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>sa81-21</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-32</td>
<td>49.3</td>
<td>74</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>sa81-6</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-82</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-66</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-67</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-7</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-8</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-9</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-10</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-14</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-15</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-18</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-19</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-21</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-23</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-3</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-41</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-44</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-45</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>sa81-46</td>
<td>49.3</td>
<td>73</td>
<td>4.5</td>
<td>14.9</td>
<td>6.3</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

انجام جدول 1
شکل ۳: نقشه زمین‌شناسی 1:100000 منطقه که توده‌های نفوذی خانکندي و بوسف لوه، سنگ‌های انششانی انوسن و زون‌های توده‌سازی را به نمایش می‌گذارد. (نگاره‌ای از [۱۳۱]) ب) زون‌های دوگانه گسترده آرژیلی و سیلیسی در اطراف روسای زگلیک.

بر اساس شواهد صرفاً در توده خانکندي چهار واحد سنگ‌سنگ‌هایی گرانتوری، مونزونیت‌های، کارپوری و دایک‌های لامورفیری و داسیتی قابل تفکیک‌اند. گراندوپوریت پورفیری اولین فاز نفوذی در توده خانکندي است. مونزونیت‌ها و کارپورهای دومین فاز نفوذی را تشکیل می‌دهند. دایک‌های لامورفیری فاز سوم (شکل ۴ ب) و دایک‌های داسیتی که گراندوپوریت و
سنگ‌های آتش‌نشانی میزبان باشند (شکل 4 ت) ولی بعلت قرار گیری در توده و گرمای ناشی از آن متبلور شدند.

سنگ‌های کانی شناسی
گراندوبیتر و گراندوبیتر بافت بورفوریتی بوده و شامل فنوریسته‌های قلبی‌ای فلسیاس (بای 20-25 متر بالاتر) در یک خمیره متوسط با شکل بلور از پلاژیوکلاز (تا 4.5 میلی متر)، کوارتز (1-1.5 میلی متر)، برونتیت (1-1.5 میلی متر) هستند. پلاژیوکلاز ها شکل‌دار نیمه شکل دار بوده و دارای ترکیب آلیکت با آندزین بوده و 30 درصد سنگ را تشکیل می‌دهند. فلسیپارهای قلبی‌ای برونتیت بوده و گاهی ادخال‌هایی از امفیبولی‌ها یا برونتیت، پلاژیوکلاز و آپاتیت در آن دیده می‌شوند. امفیبولی‌ها از نوع مگنیومافیسی و میکا‌های چپ‌های‌ها نیز سری هستند (۸). حالت کمیکی باند در یک‌پوش‌بروعیت (شکل ۵) می‌تواند نشانگر وجود تنها در جایگیری توده و با بودن از آن باشد.

موزونیت‌ها را بریده است فاز جهار نفوذی را تشکیل داده‌اند. علاوه بر چهار واحده سنگی یاد شده، در حاشیه جنوب غربی توده های خاکی‌دانی، قطعات درشتی (چند متری یا چند ۱۰ متری) از سنگ‌های کوارتز موزونیت با کانی سازی در موزونیت‌ها (شکل ۴) دیده می‌شوند. توده‌های بسیاری از کوارتز موزونیت‌ها، گراندوبیتر و گراندوبیتر تشکیل شده و یک استوک موزونیت‌ها قبلاً درکساني کانه‌ای در آن نفوذ کرده است (شکل ۴ ت) در شمال روستای نیاز، گراندوبیتر ها.

کوارتز موزونیت‌ها را فقط کرده و دایک‌هایی از گراندوبیتر ها به درون کوارتز موزونیت‌ها تریتی شده‌اند. کوارتز موزونیت‌ها و گراندوبیتر ها قدیمی‌تر از موزونیت‌های گیاه‌های هستند و برونتیت‌های (Anecolve) در حاشیه غربی توده و برونتیت‌های از سنگ‌های خاکستری تیپه که حاوی بروعیت فراوان است در داخل گراندوبیتر ها دیده می‌شوند که احتمال داده قطعاتی از

![شکل 4 ت] استوک موزونیتی (Mz) در داخل توده‌های کوارتز موزونیتی (Qmz) در داخل توده‌های کوارتز موزونیتی و بیشتر از موزونیت‌های دیگران (Qmz) در داخل موزونیت‌های برونتیت‌های (An) تپه‌ای چپ در بخش گراندوبیتری توده‌های برونتیت لوا.
گلبروهای نیز مثل موشونیت‌ها هیمالان دانه‌های بوده و بیشتر بصورت قطعاتی در موشونیت‌ها قرار دارند. گلبروهای اصلی کلینیپروکسن (دیوپسید) (30 درصد) و الیوبن (10-35 درصد) است. آمیفیول و فلوکپست نیز به مقدار کم دیده می‌شوند. فلدسپارهای بیشتر از نوع پلازیکوارتز (30-60 درصد) و به ندرت از نوع پلازیسپارهای فوهی (5 درصد) شناسایی شده‌اند. این نتیجه اغلب در این سنگ‌ها واقع است.

گلبروهای نیز مثل موشونیت‌ها هیمالان دانه‌های بوده و بیشتر بصورت قطعاتی در موشونیت‌ها قرار دارند. گلبروهای اصلی کلینیپروکسن (دیوپسید) (30 درصد) و الیوبن (10-35 درصد) است. آمیفیول و فلوکپست نیز به مقدار کم دیده می‌شوند. فلدسپارهای بیشتر از نوع پلازیکوارتز (30-60 درصد) و به ندرت از نوع پلازیسپارهای فوهی (5 درصد) شناسایی شده‌اند. این نتیجه اغلب در این سنگ‌ها واقع است.

کوارتز موشونیت‌ها دارای بافت پویروین‌های مشخص از جمله کوارتز، کلینیپروکسن فلوکپست، آمیفیول و پلازیکوارتز. این بافت‌ها به سه مجموعه کوارتز، کلینیپروکسن، آمیفیول و پلازیکوارتز تقسیم می‌شوند. در این سنگ‌ها، کوارتز به حداقل 15 درصد به شکل مسن می‌باشد. کوارتز، کلینیپروکسن، آمیفیول و پلازیکوارتز به مقدار زیاد در این سنگ‌ها وجود دارد. شکل‌گیری‌های مشخص از این سنگ‌ها به دلیل اختصاصات مسئولیت‌های دانه‌ای از این سنگ‌ها تشکیل می‌شود. حضور آتشف‌سیلیس در این سنگ‌ها به شکل‌گیری‌های مشخص از این سنگ‌ها تشکیل می‌شود.

در نمونه‌های مورد حاضر به دلیل اختصاصات مسئولیت‌های دانه‌ای از این سنگ‌ها تشکیل می‌شود. حضور آتشف‌سیلیس در این سنگ‌ها به شکل‌گیری‌های مشخص از این سنگ‌ها تشکیل می‌شود.

ساقه ریز چهار رایج‌های سیلیسی پیچیده دارای عنوانهایی به دلیل اختصاصات مسئولیت‌های دانه‌ای از این سنگ‌ها تشکیل می‌شود. حضور آتشف‌سیلیس در این سنگ‌ها به شکل‌گیری‌های مشخص از این سنگ‌ها تشکیل می‌شود.

ساقه ریز چهار رایج‌های سیلیسی پیچیده دارای عنوانهایی به دلیل اختصاصات مسئولیت‌های دانه‌ای از این سنگ‌ها تشکیل می‌شود. حضور آتشف‌سیلیس در این سنگ‌ها به شکل‌گیری‌های مشخص از این سنگ‌ها تشکیل می‌شود.

ساقه ریز چهار رایج‌های سیلیسی پیچیده دارای عنوانهایی به دلیل اختصاصات مسئولیت‌های دانه‌ای از این سنگ‌ها تشکیل می‌شود. حضور آتشف‌سیلیس در این سنگ‌ها به شکل‌گیری‌های مشخص از این سنگ‌ها تشکیل می‌شود.

ساقه ریز چهار رایج‌های سیلیسی پیچیده دارای عنوانهایی به دلیل اختصاصات مسئولیت‌های دانه‌ای از این سنگ‌ها تشکیل می‌شود. حضور آتشف‌سیلیس در این سنگ‌ها به شکل‌گیری‌های مشخص از این سنگ‌ها تشکیل می‌شود.

ساقه ریز چهار رایج‌های سیلیسی پیچیده دارای عنوانهایی به دلیل اختصاصات مسئولیت‌های دانه‌ای از این سنگ‌ها تشکیل می‌شود. حضور آتشف‌سیلیس در این سنگ‌ها به شکل‌گیری‌های مشخص از این سنگ‌ها تشکیل می‌شود.
در هر سه از سنگ‌ها، با افزایش \SiO_2\ روی زننده نشان می‌دهد که می‌توانند نشانه‌های بیشتری کاهش هورنبلند، بیوئنت، و مگنتیتری طی تبلور مکاک به‌شکل [14]. کاهش مقدار با افزایش \SiO_2\ نیز می‌تواند به علت تغییر ترکیب پلاژیوکلازها از کلسیک به سدیکسی به‌صورت مکاک باشد [15]. گرچه مقادیر \SiO_2\ با افزایش \K_2O\ و Na_2O\ صعودی نشان می‌دهد ولی مقادیر آنها پراکندگی بیشتری به ویژه در سنگ‌های آسیبدارنده که این مستقل می‌تواند در ارتباط با دگرسانی باشد.

در گستره‌های دوربریت-کیبری و قرار دارند (شکل 6). نمونه‌های وابسته به سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت رسم شده‌اند. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌ها در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند نمونه‌های دوربریت و سنگ‌های آشکارکننده این سنگ‌های در گستره‌های دوربریت و شیبی دوربریت. این سنگ‌های نیز قرار گیرند N nepheline syenite, syenite, syenodiorite, gabbronorite, and granite.
گستره‌ی کمتر تحت‌البیان قرار می‌گیرند (شکل 7). از نظر سری‌های مولکولی، در نمونه‌های مولکولی نسبت به سیلیسی، اغلب مزئون‌های مونوزیکلیک، کاربردها و دایک‌ها، لامیناتوریت‌ها، گرانیت‌های ترکیبی‌ها که از شکل 7، گزارندهای آن‌ها در سری‌های آنتی‌فیلیتی و گرانیت‌های سیلیسی فیلم‌های نیمه‌قلیبویی قرار می‌گیرند (شکل 8). حضور سری‌های مولکولی، مانند آنتی‌فیلیتی و گرانیت‌های سیلیسی فیلم‌های نیمه‌قلیبویی و آنتی‌فیلیتی در کربن‌تسلیم‌ها و ابسته به قرار‌گیری انواع جداگانه نیز گزارش شده است [18-21].

به منظور تعیین محیط زمین ساختی نوده‌های نفوذی منطقه، از نمونه‌گیری، استفاده شده که منحرف کم‌تر تا ۳۰ درجه به حداکثر Y, Nb, Zr, V, Ta و Hf نظری در شکل 8 اغلب نمونه‌های داشته‌اند گستره‌ی قوس‌های آنتی‌فیلیتی و تعداد محدودی نیز در گستره‌ی داخل صفحه‌ای (VAG) در نمونه‌های گسترده‌ای ACNK-ANK-۸ SiO2 متالومینوسیت قرار می‌گیرند (شکل 8). مقدار SiO2 کاهش می‌یابد (شکل 7). این به این معنی است که کربن‌تسلیم‌ها، نمونه‌های منطقه‌ای در گستره‌ی گرانیتی به بازی آکسید (Na0.8 K0.15) ۰.۳ + 0.03*FeO* (Ox = log10(Fe2O3/FeO) + 0.3 + 0.03*FeO) تعریف شده‌اند. مقدار بالای خاک‌پوش‌های پیرینی این سنگ‌ها (متوسط 1.۳*10^-3 SI) (جدول ۲) و حضور کانی مکنیا و اسفن به صورت کمی فرطی معمول، نیز مورد این مطلب است. عدم وجود نابندهار منفی EU می‌تواند در شکل‌های بازی آکسیدی آکسی‌پتی بوادین بازی آکسی‌پتی تشکیل دهنده‌ای نهایی [18] با بازی آکسی‌پتی‌های منطقه‌ای از نوع I یا سری مگنتینی بوده و تحت شرایط آکسی‌پتی شکل گرفته‌اند. در نمونه‌های به شکل ۸ [16] اغلب سنگ‌های اسیدی در گستره‌ی سنگ‌های متوسط تا شدیداً تحلیل‌پذیر و سنگ‌های حاوی آن را باید در

جدول ۲ پذیرفته (Magnetic Susceptibility)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mag. Susp. (10^-3 SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV-Nia-298</td>
<td>13.5</td>
</tr>
<tr>
<td>AV-Nia-299</td>
<td>11.9</td>
</tr>
<tr>
<td>AV-Nia-300</td>
<td>15.6</td>
</tr>
<tr>
<td>AV-Nia-301</td>
<td>20.9</td>
</tr>
<tr>
<td>AV-Nia-302</td>
<td>24.4</td>
</tr>
<tr>
<td>AV-Nia-303</td>
<td>19</td>
</tr>
<tr>
<td>Average</td>
<td>17.38</td>
</tr>
</tbody>
</table>

شکل ۷ نمونه‌های K/Rb نسبت به SiO2 ساخته شده. نمونه‌های ACNK-ANK-۸ K/Rb نسبت به SiO2 شکل یافته، کاربردها، مزئون‌های و آنتی‌فیلیتی‌ها متوسط شکل گرفته و گرانیت-کوارتز مزئون‌های شکل‌پذیر نشان داده.
برخورد را از کمان ماگماتیک جدا می‌کند اغلب نمونه‌های منطقه به ویژه سنجش‌های قلیایی اتمی با به محیط‌های پس از برخورد و سنجش‌های اشتباهی و سنجش‌های اسیدی به محیط‌های قوسی گزارش دارند (شکل 8).

از پوست هایش ساختار LREE نسبت به سنجش‌های Zr, Nb, Ti (HFSE) اسیدی (جدول 3) و مقادیر کم وایستگی این سنجش‌ها به سری آهکی-قلیایی نشان می‌دهد [24]. این اگر می‌تواند باعث وجود نرخ ماگماتیک و کنترل آن به وسیله تیلور به‌طور هورنینگ باشد. این باید شرایط اصلی تکامل ماگماتیک در کاساریانه‌های پس پورفیری است که بیشتر در شرایط اکسیدی بالا در ماگما انجام می‌شود [25].

کمان اشتباهی قرار دارد. در نمودار ال‌ب و داده‌های مرز محیط (WPG) زمین‌ساختی پس از برخورد را مشخص می‌کند که اغلب نمونه‌های منطقه در داخل آن واقع شده‌اند [26]. برای جدا کردن محیط‌های اشتباهی پس از جزیره قوسی از نسبت‌های مثل MgO/H2O استفاده می‌شود. مقادیر نسبت‌های به ترتیب بیشتر از 15 و کمتر از 7 وابسته به مناطق حاشیه‌ای قرارهای هستند [15]. لذا با توجه به جدول 1، سنجش‌های منطقه به محیط حاشیه‌ای قرارهای وایستگی دارند. لذا هنگامی است که بالاترین نسبت‌های بیشتر ضعیف و یا نیز هنگامی با الگوی سنجش‌های ماگماتیک حاشیه‌ای قرارهای حاشیه‌ای دارد لذا نمودار نفوذی خانکندی و بوستف درست به مناطق حاشیه قرارهای هستند.

در نمودار مثلث‌های هری ومکران [32] که محیط‌های پس از برخورد را از سنجش‌های ال‌ب و داده‌های مرز محیط (WPG) زمین‌ساختی پس از برخورد را مشخص می‌کند که اغلب نمونه‌های منطقه در داخل آن واقع شده‌اند [26]. برای جدا کردن محیط‌های اشتباهی پس از جزیره قوسی از نسبت‌های مثل MgO/H2O استفاده می‌شود. مقادیر نسبت‌های به ترتیب بیشتر از 15 و کمتر از 7 وابسته به مناطق حاشیه‌ای قرارهای هستند [15]. لذا با توجه به جدول 1، سنجش‌های منطقه به محیط حاشیه‌ای قرارهای وایستگی دارند. لذا هنگامی است که بالاترین نسبت‌های بیشتر ضعیف و یا نیز هنگامی با الگوی سنجش‌های ماگماتیک حاشیه‌ای قرارهای حاشیه‌ای دارد لذا نمودار نفوذی خانکندی و بوستف درست به مناطق حاشیه قرارهای هستند.

شکل 8. ال‌ب و داده‌های مرز محیط (WPG) زمین‌ساختی پس از برخورد را مشخص می‌کند که اغلب نمونه‌های منطقه در داخل آن واقع شده‌اند [26]. برای جدا کردن محیط‌های اشتباهی پس از جزیره قوسی از نسبت‌های مثل MgO/H2O استفاده می‌شود. مقادیر نسبت‌های به ترتیب بیشتر از 15 و کمتر از 7 وابسته به مناطق حاشیه‌ای قرارهای هستند [15]. لذا با توجه به جدول 1، سنجش‌های منطقه به محیط حاشیه‌ای قرارهای وایستگی دارند. لذا هنگامی است که بالاترین نسبت‌های بیشتر ضعیف و یا نیز هنگامی با الگوی سنجش‌های ماگماتیک حاشیه‌ای قرارهای حاشیه‌ای دارد لذا نمودار نفوذی خانکندی و بوستف درست به مناطق حاشیه قرارهای هستند.
جدول ۳ نسبت Ce/Yb در انواع مختلف سنگها این نسبت در سنگ‌های اسیدی و بروتونه‌های داخل آنها بیشتر از بقیه سنگ‌های آن است.

<table>
<thead>
<tr>
<th>Ce/Yb</th>
<th>ROCK TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۳.۱۵</td>
<td>Enclave</td>
</tr>
<tr>
<td>۱۰۸.۳۴</td>
<td>Dyke</td>
</tr>
<tr>
<td>۵۹.۵</td>
<td>Gabbro</td>
</tr>
<tr>
<td>۸۴.۳۴</td>
<td>Monzonite</td>
</tr>
<tr>
<td>۱۱۱.۱۱</td>
<td>Granite-Qz Monzonite</td>
</tr>
</tbody>
</table>

منطقه می‌تواند مهم‌باشد. در ادامه انواع کانی سازی‌ها، دگرگونی‌های همراه، ساخت و بافت و کانی‌شناسی آنها ارائه می‌شوند.

کانه زایی
پیشنهاد می‌شود که ارسال‌های الکتریکی مفیدی از خاک‌های و گریز با ناحیه و تراکم‌های اسکارن همراه است. در گستره سبز بررسی نیز که بخشی از این پهن‌های کانی‌های مس و طلا از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آсیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خوش مس و طلا، از ناحیه آرسنی و الکتریک و ایپی‌آسیا در سنگ‌های آشفتگی‌انس و توده‌های نفوذی الگون به‌کلیه است. سنگ‌های آشفتگی‌انس انوس در حاشیه‌های شمالی توده‌های نفوذی دست‌خو...
کانی‌سازی طلا
کانی‌سازی طلا به دو شکل رگه و رگه‌های سپیلسی طلا‌دار
در منطقه مورد بررسی دیده می‌شود.

رگه‌های سپیلسی طلا‌دار
در شرق اهر، در اطراف رودخانه زگلیک، ساری‌برد، قشلاق خیارلو، کوه خانگان، نمک‌زار و پودروم لام Cookson ۲۰۱۴ در ناحیه یگانه‌ای ایستاده و نتواند رگه‌های مکانیزه یویکس بوسف لو تشکیل شده‌اند. شیمیایی اندرفت و نتیجه‌گیری به رگه‌ها از جنوب شرقی تا جنوب غربی (حد اکثر ۷۰۰ متر) متغیر است [۲۴۹]. حداکثر عوارض طلا ۱۸ قسمت در میلیون و مقادیر آن ۲ قسمت در میلیون می‌باشد. شکل است. متوسط غیر طلا در نمودن‌های بی‌شکل شده از رگه‌های کوارتز این‌پر زه حکم ۱/۳ گرم در تن‌بسته‌ای اماده است (جدول ۳). حداکثر عوارض برخی نیز ۷۰۰ قسمت در میلیون

شکل ۹ (الف) ساخت‌ناوری در رگه‌های کوارتز منطقه‌ای زگلیک ب) همسایه پریپت، کالکوپیرت، گالن و استفاده‌ای رگه کوارتز ب) پریپت ملیکویت
ب) شکل به صورت پرکندنی فضای خالی و ت) برنینت و کالکوپیرت در رگه‌های کوارتز که به کالکوپیرت و کوالچین تجزیه شده‌اند.
پایه زون دوگانه کاکتوژن در گنگ تری دهه میلادی به شدت مختصره شد. سپسیسیشن دوگانه کاکتوژن در اطراف رگه‌ها مورد بررسی قرار گرفت. هر چه رگه‌هایی پیشینی در مجاورت سقزه‌ها بودند، قطعاتی از سقزه‌ها به سوی رگه‌ها نفتی کشیده می‌شد. در نتیجه، تغییراتی در شکل و اندازه‌های سقزه‌ها مشاهده شد. ممکن است این تغییرات به همراه با تغییرات سطح پهناوری و تغییرات در فاصله زمانی، باعث تغییراتی در میزان سقزه‌ها و رگه‌ها شود.

در حاشیه جنوب‌غربی توده خانکندی و شمال غربی روستای نیزار، سنگ‌های کاکتوژن و دوگانه کاکتوژن در اطراف رگه‌ها مشاهده شد. در نتیجه، تغییراتی در شکل و اندازه‌های سقزه‌ها مشاهده شد. هر چه رگه‌هایی پیشینی در مجاورت سقزه‌ها بودند، قطعاتی از سقزه‌ها به سوی رگه‌ها نفتی کشیده می‌شد. در نتیجه، تغییراتی در شکل و اندازه‌های سقزه‌ها مشاهده شد. ممکن است این تغییرات به همراه با تغییرات سطح پهناوری و تغییرات در فاصله زمانی، باعث تغییراتی در میزان سقزه‌ها و رگه‌ها شود.
ارتباط کانی‌های مس و طلا با فازهای مختلف ماگمایی در ... ۵۶۱
جلد ۲۰، شماره ۳، پاییز ۱۳۹۱

از کالکوپریت به صورت جداشی در بورنیت (شکل ۱۲) دیده می‌شود که نشانه‌شکل هم‌زمان انهای است. در ورزیدیک انها سنگ ميزبان، درگسیسی سری‌سیستیک نشان می‌دهد ولی گسترش آن زیاد نیست. رچجه‌های دراسی کزورت همره با کالی‌های کالکوپریت و بورنیت و رچجه‌های مگنیت و بیونیت در مرکز فلسفی‌ها کانی‌های طلا و (early biotite) تشکیل شده است. کریست. کربنات و کانی‌های رسی نیز به مقاطع کم می‌شوند. در خارج از کالکوپریت کانی‌های در بورنیت همره با سولفیدها تشکیل شده است. کریست. کربنات و کانی‌های رسی نیز به فاصله‌ای بین آن با محل کانی‌ای ارتباط دارد آنها به مشکل است. پربرق، کالکوپریت، بورنیت و مگنیت به صورت پراکنده در سنگ سنگی همراه با رچجه‌های کوارتز و کانی‌های ماویک تحلیل شده است. (شکل ۱۱). کانی‌های اولیه مس در سنگ‌های مونوژنیت-مونوزودستی و جوگاندار و فقط اثرهای باشند.

شکل ۱۰ (الف) رچجه‌های کوارتز سولفیدار همره با گردن‌سی سری‌سیستیک در سطح توده‌ی بوسف-لو (گلماه به شمال غربی) و (ب) مجتمع کانی‌های پیریت، کالکوپریت و سولفیسالته در ان.
شکل 11 (الف) رگچه‌های تیره رنگ مگنتيت، بوتیت و امفیبول همراه با کانی‌سازی مس در شمال صفت خالیلو، پ و (ب) همراهی اکسیدهای اهن با کانی‌های سولفیدی مس در کانی‌سازی رگچه‌ای.

شکل 12 جدایی کالکوپیریت در بورنیت. در اثر هوادگی بورنیت به کالکوپیریت تبدیل شده و لی تیغ‌های کالکوپیریت سالم مانده است.

برداشت
نوده‌های کناره‌ای منطقه مورد بررسی از نوع ۱ (یا سری مگنتیتی) و میتالومینوس بوده و از یک مگنتی ایجاد تفریق یافته و در اثر تبلور بخشی هورنلد و تحت شرایط اکسیدی شکل گرفته و به محيط زمین ساخته‌ای پس از برخورد حواشی قاره‌ای وابسته هستند. ترم‌های اسیدی گراشی به سری آهکی قلبی و ترم‌های بارزی گراش به سری قلبی‌ای دارند. همراهی

سری‌های مگنمیا آهکی قلبی و قلبی‌ای (شوشوئنیتی) در ماهی قاره‌ای و محیط‌های پس از برخورد، در مناطق مختلف دنیا در زمین‌های مختلف از جمله کادونی، وارسکن و کانی‌روشی (Cainozoic) گزارش شده است [۱۸-۲۴]. ترکیب (نوع ۱، S)، سازوکار جدایی، درجه تکامل ترکیبی، حالت اکسیدی و فاکتورهای فیزیکی از جمله ی عمق جایگزینی نوده‌های نفوذی، از عواملی ی هستند که نوع کانی‌سازی
مراجع


