ارتباط کانی سازی‌های مس و طلا با فاژهای مختلف ماگمایی در توده‌های خانکنده و فوسفور، شرق ایران

حمایت جمالی*، عبدالجناجی بیک‌پور، بهزاد مهراتی

1-گروه زمین‌شناسی، دانشگاه علوم، دانشگاه اصفهان، اصفهان
2-گروه زمین‌شناسی، دانشگاه علوم، دانشگاه تربیت معلم، تهران

(دریافت مقاله: 1390/10/09، نسخه نهایی: 1391/06/29)

چکیده: منطقه‌های مورد بررسی در شرق ایران در استان آذربایجان شرقی واقع شده و به‌خشي از پهنهای ماگمایی سنوزونیک اهر-ارسیزان در شمال غرب ایران است. مدل‌شناسی این منطقه شامل سنگ‌های آتشنشانی با ترکیب آندزیت، لاتیت-اندرزیتکارترال است. توده‌های فوسفور خانکنده و فوسفور به سبب روندهای در سنگ‌های آتشنشانی اوسن و نفوذ کرده و سبب تشکیل زون‌های دگرگونی سیستمی و سیستمی طلا شده است. توده‌های فوسفور دارای ترکیب کرستت، گراندولیت‌ها، موزونیت‌ها و جایگاه‌های بدوه و سایر سطوح تکثیر شده ساخته شده است. سنگ‌های بایری‌زیسی نسبت به سنگ‌های اسپیت‌ریت سازی هستند. رگه‌های ای‌بی‌ترمال از نوع سولفید‌پایین، هم در سنگ‌های آتش‌نشانی اوسن و هم در توده‌های کوارتز سنوزونیتی بوسفور - لشکیل شده است. هم‌چنین کانی‌های کربنات کم‌امرونه طلا به صورت گردگه‌ای در بین دوگره سنگ‌نواستگردها در حاشیه توده فوسفور تکثیر شده است. دگرسانی سرپینیت-آستریلیتیک (کانی‌های سنگ‌های طلا را همراهی می‌کند) بی‌پی، گالن، اسفلات، کالکوپریت و پراکنده در حاشیه‌های جنوب غربی توده‌های خانکنده سنگ‌های کوارتز سنوزونیتی رخ داده است. بی‌پی، کالکوپریت و پرایزنده کوارتز سنوزونیتی را از سنگ‌های کوارتز سنوزونیتی ارائه می‌دهد. در کوارتزسنوزونیتی‌ها رخ داده که با رگه‌های مگنتیتی-کانی‌های مافیک (آمفیبول و بیوئنیت) همراه است.

واژه‌های کلیدی: فازهای ماگمایی، آسیا-ارسیزان، سنوزونیتی، تکثیرماگمایی، دارستی، ای‌بی‌ترمال

مقدمه

منطقه‌های مورد بررسی در شرق ایران، استان آذربایجان شرقی (شکل 1) و در پنهنهای ماگمایی سنوزونیک اهر-ارسیزان واقع شده است. فاژهای خانکنده شامل سنگ‌های آتش‌نشانی اوسن و نفوذ کرده و سبب تشکیل زون‌های دگرگونی سیستمی و سیستمی طلا شده است. توده‌های فوسفور دارای ترکیب کرستت، گراندولیت‌ها، موزونیت‌ها و جایگاه‌های بدوه و سایر سطوح تکثیر شده ساخته شده است. سنگ‌های بایری‌زیسی نسبت به سنگ‌های اسپیت‌ریت سازی هستند.

*نویسنده مسئول، تلفن: 919323675، نامبر: 02164222222، پست الکترونیکی: hemayatjamali@yahoo.com
ماگماتیسم این مجموعه را جزو سری آهکی-قلبی و در رابطه با مناطق فورانی دانسته‌اند [3, 1-5]. در میان این پژوهشگران نیز اختلاف نظر وجود دارد و بطرح گسترش خیال برخی آن‌ها در نظر گرفته‌اند. درخور قلمداد‌کردن [4-6] و عده‌ای آن را به صورت یک کمربند جدا می‌دانند که از جنوب شرقی شرقی-ترکیب کشیده شده است [2, 1].

در مورد ویژگی‌های زئوستیمیایی و محیط زمین‌ساختی سنگ‌های آذری به نسبت بالاتری شروع شده و تا کویر سنگ‌نبرد دانسته است و نظریه‌ای متفاوتی ارائه شده است. برخی ماگماتیسم این کمربند را به فاز چشم‌پوشی می‌پیش بینند که به دنبال فاز فشارشی کرناه‌پایایی رخ داده است [9-11]. ولی اغلب پژوهشگران

شکل ۱ موقعیت جغرافیایی و راه‌های دسترسی منطقه مورد مطالعه.

شکل ۲ زون‌های نمونه‌برداری در کشور و موقعیت منطقه‌ای مورد بررسی روا حسن آن (با تغییرات از [۱۱۰۳]).
علاوه به چاپ‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است، کتاب‌های دیگری که تکنیکی مانند سنجش‌های اندیشه از کتاب‌های او و به طور عمده در این کتاب‌ها به کار گرفته شده است.
<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>FeO</th>
<th>MnO</th>
<th>Cr₂O₃</th>
<th>TiO₂</th>
<th>V</th>
<th>Cr</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Mg</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>saf1</td>
<td>0.15</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.005</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>saf2</td>
<td>0.12</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.005</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>saf3</td>
<td>0.11</td>
<td>0.06</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.005</td>
<td>0.04</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.05</td>
<td>0.02</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>saf4</td>
<td>0.13</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.005</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>saf5</td>
<td>0.14</td>
<td>0.05</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.005</td>
<td>0.04</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.05</td>
<td>0.02</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>نمونه</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Yb</td>
<td>Hf</td>
<td>Pb</td>
<td>Th</td>
<td>Nb</td>
<td>Ce</td>
<td>Eu</td>
<td>Sm</td>
<td>Nd</td>
<td>Ta</td>
<td>Ho</td>
<td>Tb</td>
<td>Gd</td>
<td>Lu</td>
<td>Er</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>sa86-AB</td>
<td></td>
</tr>
<tr>
<td>sa81-10</td>
<td></td>
</tr>
<tr>
<td>sa81-12</td>
<td></td>
</tr>
<tr>
<td>sa81-15</td>
<td></td>
</tr>
<tr>
<td>sa81-16</td>
<td></td>
</tr>
<tr>
<td>sa81-51</td>
<td></td>
</tr>
<tr>
<td>sa81-60</td>
<td></td>
</tr>
<tr>
<td>sa81-66</td>
<td></td>
</tr>
<tr>
<td>sa81-69</td>
<td></td>
</tr>
<tr>
<td>sa81-7</td>
<td></td>
</tr>
<tr>
<td>sa81-2</td>
<td></td>
</tr>
<tr>
<td>sa81-3</td>
<td></td>
</tr>
<tr>
<td>sa81-4</td>
<td></td>
</tr>
<tr>
<td>sa81-7</td>
<td></td>
</tr>
<tr>
<td>sa81-8</td>
<td></td>
</tr>
<tr>
<td>sa81-11</td>
<td></td>
</tr>
<tr>
<td>sa81-12</td>
<td></td>
</tr>
<tr>
<td>sa81-15</td>
<td></td>
</tr>
<tr>
<td>sa81-25</td>
<td></td>
</tr>
<tr>
<td>sa81-60</td>
<td></td>
</tr>
<tr>
<td>sa81-66</td>
<td></td>
</tr>
<tr>
<td>sa81-69</td>
<td></td>
</tr>
<tr>
<td>Kha-M1</td>
<td></td>
</tr>
<tr>
<td>Kha-M2</td>
<td></td>
</tr>
<tr>
<td>Kha-M3</td>
<td></td>
</tr>
<tr>
<td>Kha-M4</td>
<td></td>
</tr>
<tr>
<td>Kha-M5</td>
<td></td>
</tr>
<tr>
<td>Kha-EMZ</td>
<td></td>
</tr>
<tr>
<td>Kha-M7</td>
<td></td>
</tr>
<tr>
<td>Kha-M8</td>
<td></td>
</tr>
<tr>
<td>Kha-M9</td>
<td></td>
</tr>
<tr>
<td>Kha-M10</td>
<td></td>
</tr>
<tr>
<td>Kha-Gd1</td>
<td></td>
</tr>
<tr>
<td>Kha-Gd2</td>
<td></td>
</tr>
<tr>
<td>Kha-Gd3</td>
<td></td>
</tr>
<tr>
<td>Kha-EGD</td>
<td></td>
</tr>
<tr>
<td>Kha-EC6</td>
<td></td>
</tr>
<tr>
<td>Kha-EC7</td>
<td></td>
</tr>
<tr>
<td>Kha-EC8</td>
<td></td>
</tr>
<tr>
<td>Kha-Lp1</td>
<td></td>
</tr>
<tr>
<td>Kha-Lp2</td>
<td></td>
</tr>
<tr>
<td>Kha-Lp3</td>
<td></td>
</tr>
<tr>
<td>Kha-Gb1</td>
<td></td>
</tr>
<tr>
<td>Kha-Gb2</td>
<td></td>
</tr>
<tr>
<td>Kha-Gb3</td>
<td></td>
</tr>
<tr>
<td>Kha-Gb4</td>
<td></td>
</tr>
<tr>
<td>Kha-Gb5</td>
<td></td>
</tr>
<tr>
<td>Kha-Gb6</td>
<td></td>
</tr>
<tr>
<td>nsa-275</td>
<td></td>
</tr>
<tr>
<td>nsa-290</td>
<td></td>
</tr>
<tr>
<td>nsa-291</td>
<td></td>
</tr>
<tr>
<td>nsa-298</td>
<td></td>
</tr>
<tr>
<td>saf-301</td>
<td></td>
</tr>
<tr>
<td>saf-303</td>
<td></td>
</tr>
<tr>
<td>saf-304</td>
<td></td>
</tr>
<tr>
<td>nsa-364</td>
<td></td>
</tr>
<tr>
<td>nsa-365</td>
<td></td>
</tr>
</tbody>
</table>

ارتباط کانی سازی‌های سنگ و طلا با فازهای مختلف ماگمایی در ...
شکل ۳ - نقشه زمین‌شناسی 1:100000 منطقه که توده‌های نفوذی خانکندی و بوست لو، سنگ‌های انفشرانی انوسن و زون‌های دگرگانه را به نمایش می‌گذارد (با تغییراتی از [31]). زون‌های دگرسانی گستردگی آرزیلی و سیلیسی در اطراف روسیه زیگلیک.

ولی فاز نفوذی در توده خانکندی است. مونزونیت‌ها و گابروها دومنی فاز نفوذی را تشکیل می‌دهند. دایک‌های لامبرفویری فاز سوم (شکل ۴ ب) و دایک‌های داسیتی که گرانودوریت و
سنگ‌های آتش‌نشانی میزبان یا شنند (شکل ۴) ولی بعلت قرار گیری در توده و گرمای ناشی از آن مته‌بردند. سنگ‌های قیرینی و کانی شناسی گراندیت و گراینت‌ها دارای یافته پورفیری‌های بوده و شامل فلوکسته‌های قلبی فلدسپار (بین ۲۵-۳۰ درصد فراوانی و ۴-۴.۵ میلیمتر طول) در یک خمیره متوسط تا شست بلور از پلاژیوکلام (تنها ۱-۱.۵ میلیمتر). کوارتز (۱-۱.۵ میلیمتر) = امفیبول هستند. پلاژیوکلام‌ها شکل دار تندی بوده و دارای ترکیب آلیت‌های تاندلین بوده و ۳۰ درصد سنگ را تشکیل می‌دهند. فلدسپارهای قلبی، پرتونیت بوده و گاهی ادخل‌های از امفیبول، پرتونیت، پلاژیوکلام و اولپت در آن دیده می‌شوند. امفیبول‌ها از نوع مگنزیومافیسی و میکرو فهیده نا بسیر هستند [۹]. حالت کینگ باید در پرازهای پرتونیت (شکل ۵) متواند ناشتا و وجود تنش در خلال جایگیری توده و یا بعد از آن باشد.

مونزونیت‌ها را برایت است. فاز جهار نفوذی را تشکیل داده‌اند. علاوه بر چهار واحد سنگی به شده، در حاشیه جنوب غربی توده خانکندی، قطعات درشتی (جند متری تا چند ۱۰ متری) از سنگ‌های کوارتز مونزونیت‌ها با کانی‌های مس در مونزونیت‌ها (شکل ۳) دیده می‌شوند. توده پیفیشتر از کوارتز مونزونیت‌ها گراندیت و گراینت تشکیل شده و بیک استوک مونزونیت‌ها فاقد دگرسانی کاملاً در آن نفوذ گردیده است (شکل ۴ الف). در شمال روستای نیاز، گراندیت‌ها کوارتز مونزونیت‌ها را یافته دویده و دایک‌هایی از گراندیت‌ها به درون کوارتز مونزونیت‌ها تریشی شده‌اند. کوارتز مونزونیت‌ها و گراندیت‌ها قبیلی‌تر از مونزونیت‌ها و گراندیت‌ها یافتی شده و (انحلوی) پرتوپتی‌های (QMz) از آنها در مونزونیت‌ها دیده می‌شوند. در حاشیه غربی توده پیفیشتر، پرتوپتی‌هایی از سنگ‌های خاکستری تبیه که حاوی پرتونیت فراوان است در داخل گراندیت‌ها دیده می‌شوند که احتمال دارد قطعاتی از...
گلریی نیز مثل موکنیون‌ها همسان دانه بوده و پیشتر بصورت قطعاتی در موکنیون‌ها قرار دارند. کلی، مانی تیروکسین (دبیورسید) و الپیو (5000 دیس) درصد است. اهمیت و فلوکسیرا نیز به مقدار کم دیده می‌شود. فلسفاهای بیشتر از نوع پلیپکلاته (2000 دیس) و به ندرت از نوع پتیسم فلسفاهای هستند. این بودجه زیبرک و کاکی‌های کدر (به ویره مکاتونیت) کاتی‌های فرعی معمول در این سنگ‌ها هستند.

شکل 5: حالات کنگن‌بند در بویونیه‌های گوناگون به‌وری‌باتری نیاز به پلاریزه.

کوارتز موکنیون‌ها در این بویونیه‌بندی مشکلی از فلسفاهای پلیپکلاته (تا 2 میلی‌متر) پتیسم فلسفاه (تا 3 میلی‌متر) و بویونیه (تا 15 میلی‌متر) در زمین‌های رس بی‌لغز کوارتز-فلسفاه است که اغلب در گذرانس شده و به مجموعه‌ای از سرپیسیت، کوارتز، کاتی‌های رسی و اپیدو تبدیل شده‌اند. مقدار کوارتز در این سنگ‌ها 10-15 درصد است. فلسفاهای پلیپکلاته گاهی تا 30 درصد حجم سنگ را تشکیل می‌دهند. فلسفاهای بویونیه تا 15-20 درصد و بویونیه فلسفاه نیز 10-12 درصد حجم سنگ را پیش از اختصاص‌یابی به دهه. این بودجه، زیبرک و مکاتونیت کاتی‌های فرعی این سنگ‌ها هستند. در بعضی جاها، رگ‌های سیلیسی به صورت درخت‌های همرابر با گروه‌های سنگ‌زا و در این سنگ‌ها تشکیل شده‌اند. حضور بویونیه و امپیفیل به صورت فلسفاهی و نیز مکاتونیت به عنوان یک کاتی‌های فرعی معمول در سنگ‌های اسیدی، تشکیل از شرایط آسیب‌شدگی ماسی تشکیل دهنده‌انه‌است.[8].

موکنیون‌ها همسان دانه بوده و اندامی بی‌لغز از ان 5-10 میلی‌متر در تغییر است که منبع اصلی آن پلیپکلاته (35 درصد) پتیسم فلسفاه (30 درصد) کلی، مانی تیروکسین (15-20 درصد) و میکا (غلب فلسفاه) (5 درصد) است. بعضی از میکا‌ها جانشینی‌ها یا کاتی‌های کدر نشان می‌دهند. بی‌لغزه‌ای‌های پتیسمی باید به به دهه. این بودجه، زیبرک و مکاتونیت کاتی‌های فرعی معمول در این سنگ‌ها هستند.
در هر سری از سنگ‌ها به‌طور مداوم CaO، MgO، SiO2، K2O، Na2O، Fe2O3، FeO، Al2O3، TiO2 و Na2O در تناسب می‌توانند به‌طور استقلال یا ترکیبی یافت شوند.

شکل 6 نمودار مجموع فلایی نسبت به سیلیس [121] خدای ایران. زیرکو سیلیس ویژه‌ای را از نیمه فلایی جدا کرده است. (ب) نمودار SiO2 نسبت به 0.001*Zr/TiO2 [121]. در هر سری نمودار ترکیب سنگ‌ها از غیرنیتریک، تالیب و متغیر است و در اغلب نمودرهای کناری ANK غیرنیتریک، تالیب و متغیر است. (ب) نمودار SiO2 نسبت به P2O5 [121]. در هر سری نمودار ترکیب سنگ‌ها از غیرنیتریک، تالیب و متغیر است و در اغلب نمودرهای کناری ANK غیرنیتریک، تالیب و متغیر است.

باند [121]. گرچه مقادری بسیاری از SiO2 به همراه CaO و MgO و Fe2O3 و FeO و Al2O3 و TiO2 و Na2O و K2O و Na2O در سه مقدار می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دهد ولی مقادیر این موارد در می‌تواند به‌طور مستقل یا ترکیبی به‌صورت مداوم نشان دید.
جدول ۲ پذیرفتنی سیگنال‌های نفوذی (Magnetic Susceptibility)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mag. Susep. (10^6 exp^-1 SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV-Nia-۲۳۸</td>
<td>۱۳۵</td>
</tr>
<tr>
<td>AV-Nia-۲۳۹</td>
<td>۱۱۹</td>
</tr>
<tr>
<td>AV-Nia-۲۴۰</td>
<td>۱۵۶</td>
</tr>
<tr>
<td>AV-Nia-۲۴۱</td>
<td>۴۰۹</td>
</tr>
<tr>
<td>AV-Nia-۲۴۲</td>
<td>۴۴۴</td>
</tr>
<tr>
<td>AV-Nia-۲۴۳</td>
<td>۱۹</td>
</tr>
<tr>
<td>Average</td>
<td>۱۷/۱۸</td>
</tr>
</tbody>
</table>

جسترهای K/Rb کمتر تحلیل یافته قرار می‌گیرند (شکل ۷). آنلایسی بررسی می‌گیرد. در نمودار مجموع قلیایی نسبت به سیلیس، آلبغ موزون‌دهی - موزون‌دهی - گلاژیورتی، گلاژیورتی و دایک‌های سیالی‌دار و غیرنمونه‌های در گستره گستره‌های نیمه قلیایی قرار می‌گیرند (شکل ۷). این نتایج از نظر سری‌های گستره‌ها در مجموع ت наличی می‌باشد. گلاژیورتی و دایک‌های سیالی‌دار، تجاری‌شده و موضعی دیگر در نمونه‌هایی در گستره گستره‌های اسپیرو اکسیده‌های (سی) ۱/۸۸. ۲/۲ برابر دارد (۱۸). مقادیر بالای تناسب‌پذیری این سنگ‌ها (متوسط میانگین هم‌نوازی و اسکلت به صورت یک نوردینه معمولاً نیز مرئی این سیگنال‌ها متفاوت با نسبت سنگ‌های بازی در مطلوب است. عدم وجود شرایط منفی Eu نیز دلیلی بر اکسایش بودن مگنتی‌های توکیو اکسیده‌ای (شکل ۳۷). بنابراین گستره‌های اسپیرو اکسیده‌های از نوع I و با سرب مگنتی‌های به کار رفته محاسبه شد که کنترل K/Rb به سی) ۱/۸۸. ۲/۲ برابر دارد (۱۸). اغلب سنگ‌های اسپیرو اکسیده‌های در گستره گستره‌های متوسط‌تر تا شدیداً تحلیل‌های و سنگ‌های از مسیر (۱۸) بررسی نشده که سی) ۱/۸۸. ۲/۲ برابر دارد (۱۸). اغلب گستره‌های اسپیرو اکسیده‌های معروف و تعداد محدودی نیز در گستره داخل صفحه‌ای (VAG) متوسط‌تر تا شدیداً تحلیل‌های و سنگ‌های از مسیر (۱۸) بررسی نشده که سی) ۱/۸۸. ۲/۲ برابر دارد (۱۸). اغلب گستره‌های اسپیرو اکسیده‌های معروف و تعداد محدودی نیز در گستره داخل صفحه‌ای (VAG)
برخورداری از کمیت مادگی که کننده آلپلومونهای منطقه به ویژه سنگهای قلبی تانکری در به محیطهای پس از برخورد و سنگهای آتششناختی و سنگهای اسیدی به محیط‌های قوسی گزارش دارند (شکل 8).

نظرات علمی عناصر LREE و HREE نسبت به سنگهای Zr, Nb, Ti (HFSE) اسیدی (جدول 3) و مقدار کم (HFSE) وابستگی این سنگهای می‌سازد که قلبی نشان می‌دهد [24]. این آلی است که تا وابستگی وجود تغییر مادگی و کنترل ان به وسیله تیلور بخشی هورنبلند باشد. این پدیده عامل اصلی تکامل مادگی در کاسبراسیان مسی پورفیری است که بیشتر در شرایط اکسیدی بالا در مادگان انجام می‌شود [25].

برخورداری از کمیت مادگی که کننده آلپلومونهای منطقه به ویژه سنگهای قلبی تانکری در به محیطهای پس از برخورد و سنگهای آتششناختی و سنگهای اسیدی به محیط‌های قوسی گزارش دارند (WPG) زمین‌ساختی پس از برخورد را مشخص می‌کند که اغلب نمونه‌های منطقه در داخل آن واقع شده‌اند [26]. برای جدا کردن محیط‌های آتششناختی حاشیه‌های قارایا از جزیره‌های قوسی نسبت‌های میانگینی عناصر LREE و HREE نسبت به سنگهای Zr, Nb, Ti (HFSE) اسیدی (جدول 3) و مقدار کم (HFSE) وابستگی این سنگهای می‌سازد که قلبی نشان می‌دهد [24]. این آلی است که تا وابستگی وجود تغییر مادگی و کنترل ان به وسیله تیلور بخشی هورنبلند باشد. این پدیده عامل اصلی تکامل مادگی در کاسبراسیان مسی پورفیری است که بیشتر در شرایط اکسیدی بالا در مادگان انجام می‌شود [25].

\[
\begin{align*}
\text{Rb}/10 & = 0.0001 \\
\text{Rb}/30 & = 0.0003 \\
\text{Hf} & = 0.0005 \\
\text{Ta} & = 0.0007 \\
\text{Nb} & = 0.0009 \\
\end{align*}
\]
کانه زایی
پهنه ماسی و سنتوژنیک اهم-ارسپاران با کانی سازی‌های ممه‌ی از فلزات پایه و گرانبها ز نوع پروپری ای دیترام و اسکارن همراه است [۱۲۲]. در گستردگی موردن مریز که بخشی از این پهنه این، کانی‌های ممسی و مسی از نوع پروپری و ای دیترام در سنگ‌های آنتشائی‌ای آئولو و توده‌های نفوذی الگوس تشکیل شده است. سنگ‌های آنتشائی‌ای آئولو در حاشیه‌های شمایی توده‌های نفوذی دست‌خوش‌گشت‌سای در کست‌نیک‌های شده‌اند (شکل ۲). در سنگ‌های گسترده بیشتر از نوع آرزیلیک و سیلیسی‌های سخت کانی‌های اغلب به صورت پوست سنگ (cap rock) روز‌های آرزیلیکی قرار دارد (شکل ۳ ب) و در حداکثر میان انگشت‌های پک سنگ باریک از آزیلیت-جوروسیت تشکیل شده است. این روز‌های دیگر سنگ‌های آرزیلیک و سیلیسی‌های سخت کانی‌های اغلب به نام‌های NW-SE زون‌های سپریسی در حال تغییر درناست که این کانی‌های سپریسی پایین شده است. در کانی‌های پایین سپریسی در حال تغییر درناست که این کانی‌های سپریسی پایین شده است. در کانی‌های پایین سپریسی در حال تغییر درناست که این کانی‌های سپریسی پایین شده است. در کانی‌های پایین سپریسی در حال تغییر درناست که این کانی‌های سپریسی پایین شده است. در کانی‌های پایین سپریسی در حال تغییر درناست که این کانی‌های سپریسی پایین شده است. در کانی‌های پایین سپریسی در حال تغییر درناست که این کانی‌های سپریسی پایین شده است. در کانی‌های پایین سپریسی در حال تغییر درناست که این کانی‌های سپریسی پایین شده است. در کانی‌های پایین سپریسی در حال تغییر درناست که این کانی‌های سپریسی پایین شده است. در کانی‌های پایین سپریسی در حال تغییر درناست که این کانی‌های سپریسی پایین شده است.

جدول ۳ نسبت Ce/Yb در انواع مختلف سنگ‌ها این نسبت در سنگ‌های آسیدی و پروپری‌های داخل آنها بیشتر از بقیه سنگ‌های است

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au(ppb)</th>
<th>Cu(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-saf-285</td>
<td>946</td>
<td></td>
</tr>
<tr>
<td>87-saf-285</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>87-saf-59</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>87-sar-64</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>87-sar-66</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>87-sar-68</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>87-sar-141</td>
<td>727</td>
<td></td>
</tr>
<tr>
<td>87-sar-142</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>87-sar-143</td>
<td>643</td>
<td></td>
</tr>
<tr>
<td>87-sar-148</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>87-sar-197</td>
<td>587</td>
<td></td>
</tr>
<tr>
<td>87-sar-202</td>
<td>572</td>
<td></td>
</tr>
<tr>
<td>87-sar-21</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>87-sar-35</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>87-sar-26</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>87-sar-29</td>
<td>1425</td>
<td></td>
</tr>
<tr>
<td>87-sar-31</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>87-sar-32</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>87-sar-36</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>87-sar-38</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>87-sar-41</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>88-Niaz-78</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>88-Niaz-79</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>88-Niaz-81</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>88-Niaz-88</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>88-Niaz-92</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>88-Saf-110</td>
<td>950</td>
<td></td>
</tr>
<tr>
<td>88-Saf-118</td>
<td>940</td>
<td></td>
</tr>
<tr>
<td>88-Saf-120</td>
<td>940</td>
<td></td>
</tr>
</tbody>
</table>
است. نسبت نوره به طلا بالا و در حدود 49/1 است [24]. رگه‌های خاکستری روشن تشکیل شده‌اند. در بعضی جاها کوارتز‌ها به عنوان میکروکاسی الی‌های آهن حاشیه‌ای هوازدگی سولفیدها در اطراف روشن بهار. دیده شده‌اند. کوارتز‌های خاکستری که به صورت گل‌پوشی و مقدار طلا در آنها نسبت به کوارتز‌های بهار کمتر است. پسرهای همرار با کوارتز‌های شیروی و شفا در شب و شکل دار هستند و اقلیم تحت تأثیر هوازدگی انحلال حاصل کرده و به هیدروکسیدهای آهن تبدیل شده‌اند. سپس در مراحل آخربه صورت زل زنده و تکنولوژی فضای خالی سیلیس‌های بیشتر را پر کرده است. پسرهای همرار از آن سیلیس‌های نوئلومیکوتاند که فضای بین سیلیس‌های زه به صورت بین شکل بر کرده‌اند (شکل 9).}

![Shallow} 9 (الف) ساختار نوازی در رگه‌های کوارتز منطقه‌ای زلزکی‌های (ب) همرارهای گیپریت، آکالکوپریت، کالپوریت و استفالت و در رگه کوارتز، (ب) پسرهای ملیکوتاند به شکل به صورت پرکنده‌ای فضای خالی و (ت) بوزیت و کالکوپریت در رگه‌های کوارتز که به آکالکوپریت و کالپوریت تجزیه شده‌اند.
باتلی اصلی در رگه‌های کوارتز است که دارای بی‌رقای‌های توهد-ای، پوسته‌های (شکل 9)، کوکاد (Cockade)، کلوفرم، شانلهای، پرماند، حفره‌ای (Vuggy Quartz) و تغییرات ایست. این بی‌رقای‌ها از ویژگی‌های کوارتز در محیط‌های یوپرسال هستند. [77]

قروان نیز کوارتز سولفیدی در رگه‌های کوارتز پیریت است که به صورت بردکنده و گاهی رگه‌های همسان به نسل‌های مختلف کوارتز تشکیل شده است (دکلدر در سهل. علاوه بر کوارتز، کالکوبایز، ترانزاوریت اچ‌پی‌روژی، پیریت، کوبایز، گالن، اسفالت، مولبدنیت و ایلمنیت به صورت اولیه و کالکوبایز، کوبایز، دیزینت، کرینت‌های سنگ، اکسید‌های آهن و متنگر به صورت نانوزن تشکیل شده است (شکل 9).

مقدار کانی‌های سنگ در رگه‌های کوارتز اطراف کوکاد سداریل (شمال محدوده) بیشتر از دیگر رگه‌های (جدول 4) طلا به صورت دو رژیم کوارتز و یا درون شکل پیریت قرار دارد.

پیشنهاد زون دگرسانی که به زنگ روتن در اطراف رگه‌های کوارتز دیده می‌شود از چند سانتی‌متر تا چندی‌متر 10 متر در تغییر است. سیلیسی‌شن، سیلیسی‌شن و دگرسانی آرژیلیک حد اصطلاع معقول ترین انوان دگرسانی همراه با رگه‌های کوارتز طلادار هستند. کوارتز، سیلیسیت، کانی‌های رسی (پلی‌کسی کمی)، کانولیت‌ها، و مونت مورونیت‌ها، پیریت، کرینت‌ها و زیبی‌های کانی‌های سیلیسیتیک که به بوده کوارتز است کوتور با اکسید و پیریت مشخص می‌شود در بالای عمق رگه‌های کوارتز قرار دارد. ضخامت این زون دگرسانی بندرت از یک متر تا چندی‌متر می‌باشد و علاوه بر سیلیسی‌های پیچ و قطعه‌های از سنگ‌های میانی‌سنگی نیز در داخل رگه‌ها به صورت کوکادی در دستگاه‌ها دیده می‌شود.

در رگه‌های کوارتز حاصل از جنوب‌غربی توده‌های نود Norfolk و شمال غربی روستای نزدک سنگ‌های کوارتز موتونژیت‌های هکتیکی به سیستم بی‌رقای‌ها پوسته بر سطح قفلات درشت (نقطه‌های تا چند ده‌متری) در داخل سنگ‌های حاکمتی مالی به سبب تکیک موتونژیت-مونوژودیورپ (شکل 6) کامی، سازی دارست‌سی و سنگ‌های کوارتز موتونژیت‌های داده این شکل رگه‌های سیلیسیتی موتونژیدار و دانه‌های پیش‌آمده سولفیدی در سنگ‌های میانی‌سنگ است. براساس بررسی‌های محلی در داخل سنگ‌های فیلیک (کانی‌های سیلیسیتی کوارتز، پیریت و پتاسیک با مجموعه‌کا کانی‌های مگنتیت،
از کالکوپریت به صورت جداشی در بورنیت (شکل 1) دیده می شود که نشانه تکثیف هزموان انگیزه است. در نتیجه آنها سنگ مینیاک، درگرسیو سریبیتیک شناس می دهند ولی گسترش آن زیاد نیست. رگچه های دراوستی کوارتز همراف با کالی های کالکوپریت و بورنیت و رگچه های مگنتیت و بیوتین در مرکز فلئسیمت های کالی سازی طلا و (early biotite) اشکال 2 (زیر) نشان می‌دهد که در اینجا می‌تواند به صورت رگچه ها و کالی های کوارتز همراف با سولفیدها تشکیل شده است. کالی ریت، کربنات و کالی های رسی نیز به مقایر کم می‌شوند. در خور از کالی گزاری کالی سازی در حساسیت غیرجمالی اهمیت مهمی دارد. نمونه آزمایشی دیده می شود که با توجه به پیشینه بودن فاصله ای بین آنها با محل کالی گزاری ارتباط دادن آنها به مشکل است. پرپت، کالکوپریت، بورنیت و مگنتیت به صورت پراکنده در سنگ سنگی در همراف با رگچه های کوارتز و کالی های مافیک تشکیل شده است (شکل 11). کالی سازی اوپاوله مس در سنگ های لوتونیتی - مونولوتونیت و دیواره و فقط اثرهای آن از اشکال گرچه سریبیت و سولفیدیهای کالی سازی مس می‌باشد. شدید باتوجه به حضور برونزیهای کوارتز مونولوتونیت در مونولوتونیت و نیز عدم وجود کالی سازی مس در مونولوتونیت، سنگ های کوارتز مونولوتونیت و کالی سازی همراف، قدمیتر از سنگ های کوارتز مونولوتونیت است. دایکسیت با ترکیب مافیکتر (لاماریایی) مونولوتونیت و گراندورپریت ها و حتی رگچه های سیلیسی را قطع کرده است (شکل 5). بنابراین لامورپریت جوی اثرات مهیه‌های سنگ‌های کوارتز مونولوتونیت سبب قطعه قطعه و متلاشی شدن سنگ‌های کوارتز مونولوتونیت و کالی سازی همراف شده و این کانال را به صورت غیر اقتصادی در ارتباط است. گرچه کالی شناسی، درگرسیو، ساخت و بافت و نوع سنگ مینیاک مشابه کالی الایهی بورنیت است ولی متلاشی شدن و به دست است که ساخت آن در اثر نفوذیهای بعید، قضاوت در مورد نوع کانالات را مشکل کرده است.

کالی سازی‌هایی از مس به صورت رگچه‌های کوارتز سولفیدزد همراف با رگچه‌های مگنیتیت و کالی‌های مافیک (آمفسیون و بیوتین) در شمال رستاوهای سنگی خالدار بوده و بالا در سی در دوی اللف کوارتز مونولوتونیت تشکیل شده است (شکل 11). پرپت، کالکوپریت، بورنیت، کوبیت و بیورتین همراف این کالی سازی‌ها دیده می‌شوند (شکل 11) و (ب) و (ب) تیتانیک می‌باشد.
شکل 11 - (الف) رگچه‌های تیره رنگ مگنتیت، بوتیت و آمفیبول همراه با کانی سازی مس در شمال صفي خالعلو. ب و پ) همراهی آکسیده‌ای آهن با کانی‌های سولفاتیدی مس در کانی سازی رگچه‌ای.

شکل 12 - جدايش كالکوبایرت در بورنیت. در اثر هوازدگی بورنیت به كالکوبایرت تبدیل شده و لی تیغه‌های كالکوبایرت سالم مانده است.

برداشت
نوده‌های نقش‌های سورد بررسی از نوع 1 (یا سری مگنتیتی) و میانه‌مینوس بوده و از یک مگماتی آبی دار تفریق یافته و در اثر تبیور بخشی هورنلند و تحت شرایط آکسیدی شکل گرفته و به محتیت زنین ساخته‌ای پس از برخورد حواشی قاره‌ای وابسته هستند. ترم‌های اسیدی گراجبه به سری آکسیدی قلبایی و ترم‌های باریک گراجبه به سری قلبایی دارند. همراهی

سری‌های ماگماتی آکسیئ، رادیوم و قلبایی (شوشنوئنی) در قوس‌های قاره‌ای و محیط‌های پس از برخورد، در مناطق مختلف دنا در زمان‌های مختلف از جمله کالدونی، وارسکن و کاینوژنیک (Cainozoic) غارش شده است [18-23]. ترکیب نوده یا S، سازوکار جدايش، درجه نکامل ترکیبی، حالت اکسید و فاکتورهای فیزیکی از جمله عمق جاگذاری نوده‌های نقش‌هایی از عواملی هستند که نوع کانسارهای
ارتباط کانی سازی‌های مس و طلا با فازهای مختلف مagmaی در ...
[35] Lobach-Zhuchenko S.B., Rollinson H., Chekulaev V.P., Savatenkov V.M., Kovalenko A.V., Martin H., Guseva N.S., Arestova N.A., "Petrology of a Late Archaean, Highly Potassic,