سنگ شناسی، شیمی کاتی و زمین دما- فشاری برونبومهای درون گند آتش‌شناختی
کوه بارنه (شرق خووف)
محمدرضا یوسفزاده ۲
میسی سیزه‌پور

چکیده: تکیه گنبد آتش‌شناختی کوه بارنه از آناتزی، آندزیت داسیتی و داسیت با ترکیب نزدیک به آهکی-قلیایی تشکیل شده است. ویژگی جامدگی این گرده، حضور انواع برونبومهای با ترکیب، شکل و اندازه منفعت است. بررسی‌های دقیق صحرای و آزمایشگاهی نشان می‌دهد که این ترکیب‌ها به‌توان به انواع زندیکی و ایونودی رده‌بندی کرد. زندیکی‌ها از سنگ اولیه و به صورت پیچ و باری دیده می‌شوند. زندیکی‌ها دو یا چند دگرگونی مشخص را نشان می‌دهد: (1) پیدایش دما‌نابینایی ناحیه‌ای که با سمت یافته‌گی واضح و بروگرگی تأیید می‌شود. (2) دگرگونی گرما که موج‌های تشکیل اندازی و سیلیمیت، کردریت و استیلیت به خرج کاتی‌های قلبی مثل بیونیت، موسوکویت و غیره در سنگ پیچ و هورنبلند سبز به خرج هورنبلند فوهای در سنگ بارنه شده است. اندازه گریزی دما و فشار نشان می‌دهد که این زندیکی گسترش دما و فشار (C>0.20) و یک یا یک دگرگونی پسوندی مجاوری تحلیل کردند.

واژه‌های کلیدی: گنبد آتش‌شناختی، برونبومهی، آندزیت، کوه بارنه، خووف.

مقدمه
منطقه موربد در ۵ کیلومتری شرق خووف (۳۵) کیلومتری جنوب غربی بیرجند، در گسترهای با مشخصات ۵۰۰۱۰۰۰۸.۰۸ ۰۸ ۰۷۲۳.۷۱۶۴.۷۳۳۲۳۰ نظر به اهمیت باد شده در این پژوهش، سنگ‌نگاری و شیمی کاتی‌های تشکیل دهنده یک برونبومهای نزدیک و سنگ‌نگاری آنها بررسی شدند.

روش کار
در این پژوهش، نشان ضمیر برونبومهای سنگ‌یاری، نمونه‌برداری کاملاً از سنگ‌های آتش‌شناختی منطقه برونبومهای آنها انجام پذیرفت. سپس اعداد زیادی مقطع نازک میکروسکوپی، آماده و یک نمونه کاتی‌شناسی و ندارن نیا با میکروسکوپ پیچیده ننوای آنتربیسی در مرحله بعد به وسیله یک

mhyousefzadeh@yahoo.com

*نویسنده مسئول: تلفن: ۱۸۸۸۱۸۱۱۷، نمایشگاه: ۹۱۵۳۶۷۳۴۰۲، پست الکترونیکی: mhyousefzadeh@yahoo.com
برونیوم های نوع هورنفلس بازیک (آمفیپلوئیتی)
برونیوم های آمفیپلوئیتی فراوان نتیجه نهایی درون این سنگ‌ها بوده و ابعاد آنها به 30 سانتی‌متر می‌رسد. در منونه‌های دسی، رزدانه میان دانه و به نتیجه درشت دانه بوده و رنگ آنها از بهری لحاظ کرده تا بهتر تعریف مقدار. برونیوم‌های بیان شده به شکل‌های مختلف و نامنظم دیده شدند و دارای مرز

شکل 1 موقعیت جغرافیایی و راه‌های ارتباطی منطقه مورد بررسی در شرق خوست [1].

برونیوم‌هایی الکترونی (EPMA) در دانشگاه منجر راکت قرار گرفت. در بیان، برای ترسیم نمودارهای مصرف ترکیب کالی از ارم افزای استفاده شد.

سنگ‌گاری سنگ‌های آتش‌نشانی کوه یارنده
مهم‌ترین کالی‌های اندزیت و آندزیت داسی کوه یارنده درشت باریکه‌ای شکل داری. نیمه شکل دار باریکه‌ای، هورنبلند سنگ، بونولیت و بلوهای رز و متوسط کالی‌های کدر (مگنتین و ایمنینت) و به ندرت کلینوپیکس و آرتوپوکس‌هستان که در یک خمیری حاوی بلوهای رز کوارتز قرار گرفته‌اند.

منطقه‌بندی نوسانی در باریکه‌ای‌ها نشانه وجود شرایط عدم تعادل در زمان شکل به آنهاست [4] که در سنگ‌های آتش‌نشانی امروزی یافت است. نادر [43] برونیوم‌های موجود در سنگ‌های منطقه به دو گروه زاین‌لیتی و ایتولیتی تقسم می‌شوند که عبارتند از زین‌لیتی‌ها شامل هورنفلس‌های باریکه‌ای (آمفیپلوئیتی) و بلوهای (برگی) که در اینجا مورد بحث قرار می‌گیرند.

آرتوپوکس‌ها در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپасیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت می‌گردد. (نوع آمپاسیتی) در سنگ‌های آتش‌نشانی می‌توانند به شکل‌های مختلف درمانشده شوند و در نتیجه رعایت M
برونیوم‌ها نوع هورنفلس بلیتی (برگهای)

برنیوم‌ها به دو گروه ترتیبی و قوی‌ترین ترتیبی که در و
هرنفلس‌های غنی از بیونیت تفسیر می‌شوند. در نمونه‌ی
دستی، ریزانه هر گروه‌ی سرب هزینه‌ی تیره‌ی دیده شده و
دارای ابعاد ۲ تا ۳۰ سانتی‌متر و شکل‌های ناشناخته نیستند، با
مرزهای دیده نیستن. کلیپس در بخش‌هایی از سرب هورنفلس، دیده نیستن، با
و پانچ نهایت می‌دهد که به یک ابزار برای تحمیل
درکگونی ماده‌شناسی، به خوبی آثار درکگونی همه‌ی را نشان
ی دهد. تکرار رخ سنگی‌های اولتیم و برگهای نشان دهنده که
ی ابزار درکگونی ماده‌شناسی است. تکرار ابزار در
اسبت و قوی‌ترین ترتیبی به گروه‌ی مدل آنلایزند و
سیلیمانیت در بیونیت هورنفلس‌ها. نشانه درکگونی همبود
است (شکل ۳ اف). جریان ریزainted از قبیل کوانتز
لاین. سری‌سازی، الپتی و قوی‌ترین ترتیبی نشانه‌ای اصلی قلیو
اولند. گروه هورنفلس‌های غنی از بیونیت حسند که با از
نوع بیونیت که در اینجا وجود نیست. به صورت دیده شده می‌شود. بررسی‌های میکروسکوپی،
آب از ترکیب کربنیات کالکتر آنیوالوزیت بریت می‌باشد.

\[6\text{KAl}_2[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 2\text{K(Mg,Fe)}3[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 15\text{SiO}_2 \]

کورتزر یا آب از ترکیب خاصیت کالکتر آنیوالوزیت و آکش این در فضاهای ۱ تا ۲ کیلوبار به ترتیب در دمای ۵۸۰ تا ۶۵۰ درجه سانتی‌گراد صورت می‌گیرد.

\[\text{Al}_2[(\text{Si}_3\text{AlO}_10)(\text{OH})_2] + 3\text{KAl}_2[(\text{Si}_3\text{AlO}_10)(\text{OH})_2] + 3\text{SiO}_2 \]

آب آنیوالوزیت ترکیبی است که در سنگ‌های حاوی آلیت و کورتزر در دمای ۴۰۰ تا ۴۲۰ درجه سانتی‌گراد تولید می‌شود.

\[\text{Al}_2\text{SiO}_3 + \text{H}_2\text{O} \]

کورنیت نشان دهنده آب می‌باشد که در فضاهای ۳ تا ۵ کیلوبار به ترتیب در دمای ۴۰۰ تا ۴۲۰ درجه سانتی‌گراد تولید می‌شود.

\[\text{K}_2\text{Al}_2[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 4\text{SiO}_2 \]

با توجه به پرازور می‌توان آب ۲ را می‌توان در نظر گرفت که حداکثر ۳ کیلوبار در دمای ۵۵۰ تا ۶۵۰ درجه سانتی‌گراد و اکتش و آکش این در فضاهای ۱ تا ۲ کیلوبار به ترتیب در دمای ۵۸۰ تا ۶۵۰ درجه سانتی‌گراد تولید می‌شود.

\[\text{K}_2\text{Al}_2[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 4\text{SiO}_2 \]

در فضاهای ۱ تا ۲ کیلوبار به ترتیب در دمای ۵۸۰ تا ۶۵۰ درجه سانتی‌گراد تولید می‌شود.

\[\text{K}_2\text{Al}_2[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 4\text{SiO}_2 \]

با توجه به پرازور می‌توان آب ۲ را می‌توان در نظر گرفت که حداکثر ۳ کیلوبار در دمای ۵۵۰ تا ۶۵۰ درجه سانتی‌گراد و اکتش و آکش این در فضاهای ۱ تا ۲ کیلوبار به ترتیب در دمای ۵۸۰ تا ۶۵۰ درجه سانتی‌گراد تولید می‌شود.

\[\text{K}_2\text{Al}_2[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 4\text{SiO}_2 \]

با توجه به پرازور می‌توان آب ۲ را می‌توان در نظر گرفت که حداکثر ۳ کیلوبار در دمای ۵۵۰ تا ۶۵۰ درجه سانتی‌گراد و اکتش و آکش این در فضاهای ۱ تا ۲ کیلوبار به ترتیب در دمای ۵۸۰ تا ۶۵۰ درجه سانتی‌گراد تولید می‌شود.

\[\text{K}_2\text{Al}_2[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 4\text{SiO}_2 \]

با توجه به پرازور می‌توان آب ۲ را می‌توان در نظر گرفت که حداکثر ۳ کیلوبار در دمای ۵۵۰ تا ۶۵۰ درجه سانتی‌گراد و اکتش و آکش این در فضاهای ۱ تا ۲ کیلوبار به ترتیب در دمای ۵۸۰ تا ۶۵۰ درجه سانتی‌گراد تولید می‌شود.

\[\text{K}_2\text{Al}_2[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 4\text{SiO}_2 \]

با توجه به پرازور می‌توان آب ۲ را می‌توان در نظر گرفت که حداکثر ۳ کیلوبار در دمای ۵۵۰ تا ۶۵۰ درجه سانتی‌گراد و اکتش و آکش این در فضاهای ۱ تا ۲ کیلوبار به ترتیب در دمای ۵۸۰ تا ۶۵۰ درجه سانتی‌گراد تولید می‌شود.

\[\text{K}_2\text{Al}_2[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 4\text{SiO}_2 \]

با توجه به پرازور می‌توان آب ۲ را می‌توان در نظر گرفت که حداکثر ۳ کیلوبار در دمای ۵۵۰ تا ۶۵۰ درجه سانتی‌گراد و اکتش و آکش این در فضاهای ۱ تا ۲ کیلوبار به ترتیب در دمای ۵۸۰ تا ۶۵۰ درجه سانتی‌گراد تولید می‌شود.

\[\text{K}_2\text{Al}_2[(\text{Si}_3\text{AlO}_10)\text{(OH)}_2] + 4\text{SiO}_2 \]

با توجه به پرازور می‌توان آب ۲ را می‌توان در نظر گرفت که حداکثر ۳ کیلوبار در دمای ۵۵۰ تا ۶۵۰ درجه سانتی‌گراد و اکتش و آکش این در فضاهای ۱ تا ۲ کیلوبار به ترتیب در دمای ۵۸۰ تا ۶۵۰ درجه سانتی‌گراد تولید می‌شود.
شیمی‌کاتی‌های موجود در سنگ‌های آتشنشانی کوه پارنه و پراکنت‌های آن

نقاط زیادی در بخش کناری و هسته‌های هورنزند سیز (جدول ۱) میکا (جدول ۲) و پلازیوکالر (جدول ۱) به آن‌دستیت داسیتی مزبان و کلاینپیکس (جدول ۴) کشتار و کناره‌های سیز (جدول ۵) و هسته‌های قهوه‌ای هورنیلند (جدول ۶)

جدول ۱ داده‌های آنالیز نقطه‌ای آمفیبول در آن‌دستیت داسیتی.

<table>
<thead>
<tr>
<th>نقطه</th>
<th>Hbl</th>
<th>Hbl</th>
<th>Hbl</th>
<th>Hbl</th>
<th>Hbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO۲</td>
<td>42.1</td>
<td>45.5</td>
<td>45.6</td>
<td>45.7</td>
<td>45.5</td>
</tr>
<tr>
<td>TiO۲</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>11.8</td>
<td>11.7</td>
<td>11.6</td>
<td>11.7</td>
<td>11.8</td>
</tr>
<tr>
<td>FeO</td>
<td>4.0</td>
<td>4.8</td>
<td>4.9</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>MnO</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>MgO</td>
<td>12.5</td>
<td>13.3</td>
<td>12.4</td>
<td>13.2</td>
<td>12.4</td>
</tr>
<tr>
<td>CaO</td>
<td>10.6</td>
<td>10.5</td>
<td>10.6</td>
<td>10.5</td>
<td>10.6</td>
</tr>
<tr>
<td>Na۲O</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>K۲O</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>94.0</td>
<td>96.0</td>
<td>95.0</td>
<td>96.0</td>
<td>96.0</td>
</tr>
</tbody>
</table>

جدول ۲ داده‌های آنالیز نقطه‌ای میکا در آن‌دستیت داسیتی.

<table>
<thead>
<tr>
<th>نقطه</th>
<th>Biot</th>
<th>Biot</th>
<th>Biot</th>
<th>Biot</th>
<th>Biot</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO۲</td>
<td>38.3</td>
<td>38.2</td>
<td>37.5</td>
<td>37.3</td>
<td>38.2</td>
</tr>
<tr>
<td>TiO۲</td>
<td>3.8</td>
<td>3.7</td>
<td>3.5</td>
<td>3.6</td>
<td>3.5</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>14.8</td>
<td>14.7</td>
<td>14.6</td>
<td>14.7</td>
<td>14.8</td>
</tr>
<tr>
<td>FeO</td>
<td>13.6</td>
<td>13.5</td>
<td>13.4</td>
<td>13.5</td>
<td>13.6</td>
</tr>
<tr>
<td>MnO</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>MgO</td>
<td>14.0</td>
<td>14.2</td>
<td>14.3</td>
<td>14.2</td>
<td>14.0</td>
</tr>
<tr>
<td>CaO</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Na۲O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K۲O</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>94.9</td>
<td>95.2</td>
<td>95.2</td>
<td>95.2</td>
<td>95.2</td>
</tr>
</tbody>
</table>

جدول ۳ داده‌های آنالیز نقطه‌ای پلازیوکالر در آن‌دستیت داسیتی.

<table>
<thead>
<tr>
<th>نقطه</th>
<th>Plg</th>
<th>Plg</th>
<th>Plg</th>
<th>Plg</th>
<th>Plg</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO۲</td>
<td>45.7</td>
<td>45.7</td>
<td>45.8</td>
<td>45.8</td>
<td>45.7</td>
</tr>
<tr>
<td>TiO۲</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>23.2</td>
<td>23.3</td>
<td>23.4</td>
<td>23.4</td>
<td>23.3</td>
</tr>
<tr>
<td>FeO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MnO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MgO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CaO</td>
<td>4.8</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td>Na۲O</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>K۲O</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>101.2</td>
<td>101.8</td>
<td>101.8</td>
<td>101.8</td>
<td>101.2</td>
</tr>
</tbody>
</table>
جدول 4 داده‌های آنالیز نطفه‌ای کلینوبیروکسن در برونیوم پیروکسن‌آمیفیولیتی.

جدول ۶ داده‌های آنالیز نقطه‌ای هورنیلسید فیوهای و کناره‌های سرسب‌ان در پروکسی پیریکسی آمپیبولینی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>کاربر</th>
<th>حساسیت</th>
<th>هسته</th>
<th>کاربر</th>
<th>حساسیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۵۴۸۲</td>
<td>۴۷۱۷</td>
<td>۴۷۱۷</td>
<td>۴۷۱۷</td>
<td>۴۷۱۷</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>FeO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>MnO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>MgO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>CaO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>K₂O</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>Total</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
</tbody>
</table>

جدول ۷ داده‌های آنالیز نقطه‌ای پلاژیوکلز در پروکسی پیریکسی آمپیبولینی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>کاربر</th>
<th>حساسیت</th>
<th>هسته</th>
<th>کاربر</th>
<th>حساسیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۵۴۸۲</td>
<td>۴۷۱۷</td>
<td>۴۷۱۷</td>
<td>۴۷۱۷</td>
<td>۴۷۱۷</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>FeO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>MnO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>MgO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>CaO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>K₂O</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>Total</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
</tbody>
</table>

جدول ۸ نتایج آنالیز نقطه‌ای ارتوپییکسی در پروکسی آندرزی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>کاربر</th>
<th>حساسیت</th>
<th>هسته</th>
<th>کاربر</th>
<th>حساسیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>FeO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>MnO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>MgO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>CaO</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>K₂O</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
<tr>
<td>Total</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
<td>۴۱۳۷</td>
</tr>
</tbody>
</table>
جدول 11 نتایج آنالیز تپه‌ای پلاژیوکلاز در بیروق‌سن آندرزیت و بخش سیلیکات

<table>
<thead>
<tr>
<th>اهنی در بروکس</th>
<th>اهنی در بروکس</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>2544</td>
</tr>
<tr>
<td>TiO2</td>
<td>278</td>
</tr>
<tr>
<td>Al2O3</td>
<td>100.4</td>
</tr>
<tr>
<td>FeO</td>
<td>1.2</td>
</tr>
<tr>
<td>CaO</td>
<td>204</td>
</tr>
<tr>
<td>K2O</td>
<td>991</td>
</tr>
<tr>
<td>MgO</td>
<td>173</td>
</tr>
<tr>
<td>Na2O</td>
<td>14.8</td>
</tr>
<tr>
<td>Fsp</td>
<td>49.1</td>
</tr>
<tr>
<td>Total</td>
<td>993</td>
</tr>
</tbody>
</table>

جدول 12 نتایج آنالیز وLAST و GROZOLAR در کاد سیلیکات آهنی در بروکس بروگرگی - سیلیکات - آهنی

<table>
<thead>
<tr>
<th>اهنی</th>
<th>XWA</th>
<th>YWx</th>
<th>ZWx</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>32.0</td>
<td>32.0</td>
<td>32.0</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>FeO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K2O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Fsp</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>99.1</td>
<td>99.1</td>
<td>99.1</td>
</tr>
</tbody>
</table>

جدول 13 نتایج آنالیز تپه‌ای فلدسبار در بروکس بروگرگی

<table>
<thead>
<tr>
<th>اهنی</th>
<th>XWA</th>
<th>YWx</th>
<th>ZWx</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>32.0</td>
<td>32.0</td>
<td>32.0</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>FeO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K2O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Fsp</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>99.1</td>
<td>99.1</td>
<td>99.1</td>
</tr>
</tbody>
</table>

گستره‌ی بین آنت- فلوگوپیت (شکل 6 ف) میکاهای سنگ
میزبان نمونه‌ی بروکس آندرزیت در گستره‌ی آنت- فلوگوپیت و میکاهای نوار بروگرگی بروکس تقریباً در مزر بین
فلوگوپیت و استوئید (شکل 6) قرار می‌گیرد. BCa + BNa به‌نظر آرا در نمودار BNa نسبت به BCaAMENT بی‌روفیلولی و یا انت‌های بروکس آندرزیت و بروگرگی می‌باشد
Mg(Mg + Fe + 2) نسبت به Mg(Mg + Fe + 2) نسبت به Mg(Mg + Fe + 2)
BSi سانتیب دستگاه در گستره‌ی ازته نوردنبند و تعداد کمی در گستره‌ی
سوف پاراگی ترونربند (شکل 5 و 6) و آمفی‌یا پار
سانتیب بروکس آندرزیت در گستره‌ی هاستته بنگ و
منیزیم هاستته بنگ (شکل 5 و 7) جای‌گیری
Fe(Fe + Mg) گیرنده براز در نمودار AIIV نسبت به BCa + BNa می‌باشد و به سنگ میزبان نمونه‌ی آندرزیت داستائی در
گستره‌ی گسترده‌ای از دما (150-1150°C) و فشار (0-22Kb) موجود در ترکیب امفیبول، به فشار، دما و برخی‌الدین‌ها وسایل بازیابی‌یافته‌اند (۱). کلیت‌بندی میزان Si و فشار مقدار AlIV می‌شود که افزایش میزان Ti و نیز فشار مقدار AlIV می‌شود که افزایش می‌شود. بررسی [۸] در نمودار کلینپتربَکس‌ها نشان داده‌اند که در گستره‌ی Ca-Mg-Fe-Cpx-En-Fs، Wo نمونه‌ای آن‌ها متداول است. به‌طور معمول حدود ۱۱۱ کلیت‌بندی کلینپتربَکس‌ها با فاز‌‌های دی‌آبی‌کلونه‌ای در گستره‌ی Ca-Mg-Fe-Cpx-En-Fs روند در نمودار (۲) و پیروکس‌های سنگ میزان در گستره‌ی استاتی‌تی در نمودار (۳) در نمودار (۲) و پیروکس‌های سنگ میزان در گستره‌ی استاتی‌تی در نمودار (۳) می‌گردد.

زمن دما-فشار-سنجی

امفیبول‌ها از نظر ترکیب شیمیایی و ساختار کانی شناسی در این کانال‌های میکرو‌گره‌های بوده [۱۹] به‌طور کلی در محدوده میانگین سنج‌های آدرین فلزیک، حدود و مافیک و در...

شکل ۵ ترکیب امفیبول‌های ألف و ب) و این با استفاده از نمودار داسی (۴) و پیروکس‌های برگه‌ای - سیلیکات‌ها و پیروکس‌های سنگ میزان در نمودار این گستره‌ی استاتی‌تی قرار می‌گیرند.

آنندین و به‌دلیل اولای لابرادوریت و پلازیوکلازا (۵) در حدود ۲۵٪ آن‌ها دارای آن‌ها در اواخر پیروکسی و فلدسپارهای تانسم نوار برگه‌ای در گستره‌ی سنگ‌های (۶) قرار گرفته‌اند.

۱۳۹۱ جلد ۲۰ شماره ۳، پاییز
شکل ۶ ترکیب میکاهای ال‌ف) وایسته به آندزیت داسیت و برونیوم امفیبولیتی آن و ب) وایسته به پیروکسین آندزیت و برونیوم برگه ای آن به نظر [۱۶۱].

شکل ۷ ال‌ف) ترکیب پلازیوکلازهای وایسته به آندزیت داسیتی و ب) پلازیوکلازهای وایسته به پیروکسین آندزیت و فلدسریتی بنیادی درون برونیوم برگه ای به نظر [۱۶۱].

شکل ۸ ال‌ف) ترکیب پیروکسین‌های ال‌ف) وایسته به آندزیت داسیتی و ب) وایسته به پیروکسین آندزیت و بخش سیلیکات آهکی برونیوم بر اساس [۱۸۱].
زمین فشارسنجی بر اساس مقدار آمونیوم موجود در هورنبلند

ترکیب آمینو، علاوه بر فشار به درجه حرارت، فوگاسیته اکسیژن، ترکیب کل و فازهای همزیست وابسته می‌باشد [21]. با لحاظ پارامترهای فوق، به ویژه میزان AlTotal، نا به حال فرمول های متعددی، برای ارزیابی فشار ارائه شده که بهترین آنها [22] می‌باشد. طبق این زنده‌مرور، فشار از رابطه زیر به دست می‌آید [14]:

\[
P = \frac{0.67 K}{\text{Bar}} - 4.89 + \frac{\text{YAb}}{0.003144\text{Ln}(\text{Si} - 4)} / (\text{Si} - 4) \times \text{XAb}
\]

در این فرمول، P فشار بر حسب کیلوبار و AlTotal میزان آمونیوم کل در ترکیب آمینو است.

زمین دماسنجی

برای دماسنجی نمونه‌های منطقه، از [19] استفاده شد (جدول 12). در این رابطه آنها ارتباطهای ممکن بین فشار، دما و ترکیب شیمیایی، فرمول زیر را برای ارائه گربه دما ارائه کردند:

\[
T = 25.3P + 654.9
\]

در این رابطه، دما بر حسب درجه سانتی‌گراد و فشار بر حسب کیلوبار است.

روش دیگر دماسنجی استفاده از ترکیب هورنبلند و پلاژیوکلاز است. هر چند هنوز تردیدهایی در مورد روش دماسنجی هورنبلند-پلاژیوکلاز وجود دارد، ولی فعالیت‌های کیکی از روشهای رایج برای دماسنجی سنگ‌های آهکی-قلیایی به حساب می‌آید [24]. روش محاسبه‌ای دما، با این روش، با استنیزی زوج درشت بیان‌کننده آمینو، کلسیم و پلاژیوکلاز به صورت همزیست بوده و آمینو، فاقد حاشیه‌ای اکسیژنی باشند [25]. این روش روش-دمسنجی از بیک زمین-دماسنجی تبادلی استفاده می‌شود که بر اساس واکنش‌های زیر انجام می‌شود:

\[
\text{Adiabat} + 4 \text{ کوارتز} = \text{ ترمولیت} + \text{ Albit}
\]

\[
\text{Adiabat} + \text{ Albit} = \text{ ریتریت} + \text{ آنتیروسن}
\]

واکنش اول برای سنگ‌های دارای کوارتز و واکنش دوم بدون سنگ‌های کوارتز است [25]. بر اساس واکنش ادیبت ترمولیت فرمول زیر برای دماسنجی آمینو، پلاژیوکلاز گرایه می‌شود:

\[
\text{زیمین فشارسنجی بر اساس مقدار آمونیوم موجود در هورنبلند}
\]

\[
\text{ترکیب آمینو، علاوه بر فشار به درجه حرارت، فوگاسیته}
\]

\[
\text{اکسیژن، ترکیب کل و فازهای همزیست وابسته می‌باشد [21].}
\]

\[
\text{با لحاظ پارامترهای فوق، به ویژه میزان AlTotal، نا به حال فرمول های متعددی، برای ارزیابی فشار ارائه شده که}
\]

\[
\text{بهترین آنها [22] می‌باشد. طبق این زنده‌مرور، فشار از رابطه زیر به دست می‌آید [14]:}
\]

\[
P = \frac{0.67 K}{\text{Bar}} - 4.89 + \frac{\text{YAb}}{0.003144\text{Ln}(\text{Si} - 4)} / (\text{Si} - 4) \times \text{XAb}
\]

\[
\text{در این فرمول، P فشار بر حسب کیلوبار و AlTotal میزان آمونیوم کل در ترکیب آمینو است.}
\]

\[
T = 25.3P + 654.9
\]

\[
\text{در این رابطه، دما بر حساب درجه سانتی‌گراد و فشار بر حساب کیلوبار است.}
\]

\[
\text{روش دیگر دماسنجی استفاده از ترکیب هورنبلند و پلاژیوکلاز است. هر چند هنوز تردیدهایی در مورد روش دماسنجی هورنبلند-پلاژیوکلاز وجود دارد، ولی فعالیت‌های کیکی از روشهای رایج برای دماسنجی سنگ‌های آهکی-قلیایی به حساب می‌آید [24]. روش محاسبه‌ای دما، با این روش، با استنیزی زوج درشت بیان‌کننده آمینو، کلسیم و پلاژیوکلاز به صورت همزیست بوده و آمینو، فاقد حاشیه‌ای اکسیژنی باشند [25]. این روش روش-دمسنجی از بیک زمین-دماسنجی تبادلی استفاده می‌شود که بر اساس واکنش‌های زیر انجام می‌شود:}
\]

\[
\text{Adiabat} + 4 \text{ کوارتز} = \text{ ترمولیت} + \text{ Albit}
\]

\[
\text{Adiabat} + \text{ Albit} = \text{ ریتریت} + \text{ آنتیروسن}
\]

\[
\text{واکنش اول برای سنگ‌های دارای کوارتز و واکنش دوم بدون سنگ‌های کوارتز است [25]. بر اساس واکنش ادیبت ترمولیت فرمول زیر برای دماسنجی آمینو، پلاژیوکلاز گرایه می‌شود:}
\]
ده درصد دماجاتی، دوباره به هورنلند سیز بیشترین 28 کیلومتری بوده و کمترین مقادیر با خش کنار آنها وابسته است که نسل‌های هورنلندیان سیز بخش میزبانند.

جدول ۱۴: دما و فشار براورد شده برای اندرزیت‌های داسیتی کوه بارنده و برونیوم امفیبولیتی .

<table>
<thead>
<tr>
<th>شماره</th>
<th>نوع سنگ</th>
<th>نقطه تجزیه شده</th>
<th>Br اساس [Kbar]</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۱۰۱</td>
<td>Hbl1 (کناره)</td>
<td>۶۱۹۵۸۴</td>
<td>۸۱۱۶۵۴۵</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۰۲</td>
<td>Hbl3 (هسته)</td>
<td>۶۸۵۷۱۲</td>
<td>۸۱۱۶۵۴۵</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۰۳</td>
<td>Hbl3 (هسته)</td>
<td>۴۱۸۴</td>
<td>۷۶۶۸۴۲۵</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۰۴</td>
<td>Hbl4 (کناره)</td>
<td>۵۳۶۸۴</td>
<td>۷۹۵۷۱۸۵</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۰۵</td>
<td>Hbl5 (میانه)</td>
<td>۳۷۸۷۲۸</td>
<td>۷۵۰۵۱۸۵</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۰۶</td>
<td>Hbl6 (کناره)</td>
<td>۳۶۳۲</td>
<td>۷۶۶۷۴۵۶</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۰۷</td>
<td>HblV (هسته قهوه‌ای)</td>
<td>۶۹۵۰۸</td>
<td>۸۳۹۵۹۵۲</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۰۸</td>
<td>Hbl8 (کناره سبز)</td>
<td>۶۱۰۴</td>
<td>۸۰۹۳۶۶۶۲</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۰۹</td>
<td>Hbl9 (هسته قهوه‌ای)</td>
<td>۵۴۳۷۶</td>
<td>۷۹۲۵۷۶۱</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۰</td>
<td>Hbl11 (هسته قهوه‌ای)</td>
<td>۵۵۷۰۴</td>
<td>۷۹۵۹۹۹۱</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۱</td>
<td>Hbl12 (میانه سبز)</td>
<td>۵۷۶۴۴</td>
<td>۷۰۰۸۱۶۲</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۲</td>
<td>Hbl13 (کناره سبز)</td>
<td>۶۳۸۶۴</td>
<td>۸۱۶۴۷۱۸</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۳</td>
<td>Hbl2۲ (هسته قهوه‌ای)</td>
<td>۶۸۶۹۵</td>
<td>۸۳۱۴۶۰۸</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۴</td>
<td>Hbl2۳ (هسته قهوه‌ای)</td>
<td>۵۷۱۵۰</td>
<td>۷۹۹۶۱۵۲</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۵</td>
<td>Hbl1۴ (هسته قهوه‌ای)</td>
<td>۵۸۵۷۸۸</td>
<td>۸۰۳۱۴۳۶</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۶</td>
<td>Hbl1۵ (هسته قهوه‌ای)</td>
<td>۶۱۰۴</td>
<td>۸۰۹۳۶۶۶۲</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۷</td>
<td>Hbl1۶ (کناره سبز)</td>
<td>۵۶۸۱۷۶</td>
<td>۷۹۸۸۴۸۵</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۸</td>
<td>Hbl1۷ (هسته قهوه‌ای)</td>
<td>۵۳۲۹۵</td>
<td>۷۸۹۷۳۶۵</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۱۹</td>
<td>Hbl1۸ (هسته قهوه‌ای)</td>
<td>۶۳۸۱۴۸</td>
<td>۸۱۶۳۵۱۴</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۲۰</td>
<td>Hbl1۹ (هسته قهوه‌ای)</td>
<td>۵۸۶۹۲</td>
<td>۸۰۳۸۸۶۷</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۲۱</td>
<td>Hbl2۰ (کناره سبز)</td>
<td>۵۵۱۵۱</td>
<td>۷۹۴۳۳۴۵</td>
<td></td>
</tr>
<tr>
<td>۱۱۱۲۲</td>
<td>Hbl2۱ (کناره سبز)</td>
<td>۵۱۹۶۴</td>
<td>۷۸۶۳۶۴۸</td>
<td></td>
</tr>
</tbody>
</table>
جدول 15 فشار و دما محاسبه شده برای اندرزی داسیتی کوه بارنه و زینپلت های آمپبیولیتی آن [24].

<table>
<thead>
<tr>
<th>اندرزی داسیتی</th>
<th>زئوکلیو</th>
<th>ترمودینامیک</th>
<th>نقطه</th>
<th>دما و فشار برای آن [24]</th>
</tr>
</thead>
<tbody>
<tr>
<td>hbl1</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 744 771 799 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 713 739 741 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbl8</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 719 747 764 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 741 755 764 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbl13</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 744 771 799 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 713 739 741 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbl16</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 744 771 799 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 713 739 741 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbl20</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 744 771 799 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 713 739 741 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbl11</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 744 771 799 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 713 739 741 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbl4</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 744 771 799 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 713 739 741 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbl11</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 744 771 799 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 713 739 741 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbl4</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 744 771 799 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 713 739 741 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbl6</td>
<td>P</td>
<td>0 10 15 kbar</td>
<td>T (cd-tr) 744 771 799 degC</td>
<td></td>
</tr>
<tr>
<td>T (cd-ri) 713 739 741 degC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

