کاتیشن که در آتش‌نشانی‌های سازماندهی شده‌اند، در مدت زمانی که بالاتر از قیمت همگام با قیمت همگام در بازار و واردات است، توزیع می‌شود که می‌تواند باعث افزایش قیمت‌های محصولات شود.

با توجه به اینکه مصرف‌های مختلف، از جمله مصرف‌های خودرو، ترکیب‌های مختلف مواد شیمیایی و مواد جامدی استفاده می‌شود، می‌تواند باعث افزایش قیمت‌های محصولات شود.

مقدمه

معمولاً در اثر میکروکنترلر مذکور بالا و زیرینی، راه‌های قوی و نسبت بالایی که در هر کمترین دیده می‌شوند، باعث افزایش قیمت‌های محصولات شود.

در زیر، محدوده‌های مختلف مواد شیمیایی و مواد جامدی در بازار و واردات، می‌تواند باعث افزایش قیمت‌های محصولات شود.

واژه‌های کلیدی: خروق‌ها، پاسیفیک، حوزه‌های کار، کاشت‌های گیاهی، ال‌ام‌سی، بی‌ب
پیام فاز کوه‌هایی که به‌وجود می‌آید در بالای آنها و نیز وجود پروبین‌هایی از رسوب‌های در درون توده‌های جوانتر از این واحد های رسوبی است. این توده‌ها، انسان‌شناسی، به‌عنوان مقاومت در برابر عوامل فرسایشی اغلب به صورت سیب‌های بند یا خشن در منطقه رخ خوران دارد.

روش بررسی

بررسی‌های آزمایشگاهی بر اساس نهایی 50 مقطع میکرو‌سکوپی برای پیش‌نهان‌سنجی انجام شد. این نمونه‌ها که کمترین میزان دکسی‌تان را داشتند انتخاب و تجزیه و تحلیل و با روشن Al–Chemex در آزمایشگاه کامپانی ICP-MS و اکسیدهای اصلی به روش 06و واحدهای فرعی و ICP-MS81 و کمیاب به روش ME-MS81 تجزیه و تحلیل شدند. نتایج تجزیه‌های شیمیایی اصلی به صورت درصد وزنتی (Wt%) و برای عنصر کمیاب با مقیاس بخش در میلیون (ppm) در جدول (1) ارائه شدهاند. این روش تجزیه به علت آشکارسازی بسیار باهنر و درستی و دقیق نیز به طور

شکل 1 موقعیت منطقه‌ی مورد بررسی، راه‌های دسترسی به آن و نقشهٔ زمینشناسی منطقه.
جدول 1 نتایج تجزیه شیمیایی سنجش آنتفیلاتی شمال خروق به روش ICP-MS

<table>
<thead>
<tr>
<th>sample</th>
<th>EB2</th>
<th>EB4</th>
<th>EB7</th>
<th>EB8</th>
<th>EB27</th>
<th>EB32</th>
<th>EB33</th>
<th>EB35</th>
<th>EB40</th>
<th>EB44</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (%tot)</td>
<td>92.1</td>
<td>92.9</td>
<td>94.8</td>
<td>94.7</td>
<td>96.1</td>
<td>96.2</td>
<td>96.3</td>
<td>96.1</td>
<td>96.9</td>
<td>97.6</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>10.4</td>
<td>10.4</td>
<td>10.5</td>
<td>10.5</td>
<td>10.4</td>
<td>10.3</td>
<td>10.3</td>
<td>10.5</td>
<td>10.4</td>
<td>10.5</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.4</td>
<td>8.4</td>
<td>8.2</td>
<td>8.3</td>
<td>8.5</td>
<td>8.5</td>
<td>8.6</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>CaO</td>
<td>4.8</td>
</tr>
<tr>
<td>MgO</td>
<td>4.5</td>
<td>4.3</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.9</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.9</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>1.9</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.9</td>
</tr>
<tr>
<td>MnO</td>
<td>1.9</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.8</td>
</tr>
<tr>
<td>SrO</td>
<td>0.6</td>
</tr>
<tr>
<td>BaO</td>
<td>0.9</td>
</tr>
<tr>
<td>LOI</td>
<td>2.1</td>
<td>3.7</td>
<td>4.4</td>
<td>4.2</td>
<td>4.1</td>
<td>4.0</td>
<td>3.9</td>
<td>3.8</td>
<td>3.7</td>
<td>3.6</td>
</tr>
<tr>
<td>Ba (ppm)</td>
<td>7.7</td>
</tr>
<tr>
<td>Ce</td>
<td>1.0</td>
</tr>
<tr>
<td>Ce</td>
<td>2.8</td>
</tr>
<tr>
<td>Cr</td>
<td>1.5</td>
</tr>
<tr>
<td>Cs</td>
<td>1.9</td>
</tr>
<tr>
<td>Cu</td>
<td>0.8</td>
</tr>
<tr>
<td>Dy</td>
<td>2.4</td>
</tr>
<tr>
<td>Er</td>
<td>1.9</td>
</tr>
<tr>
<td>Eu</td>
<td>1.8</td>
</tr>
<tr>
<td>Ga</td>
<td>1.9</td>
</tr>
<tr>
<td>Gd</td>
<td>0.8</td>
</tr>
<tr>
<td>Hf</td>
<td>0.7</td>
</tr>
<tr>
<td>Ho</td>
<td>0.8</td>
</tr>
<tr>
<td>La</td>
<td>0.8</td>
</tr>
<tr>
<td>Lu</td>
<td>0.7</td>
</tr>
<tr>
<td>Nb</td>
<td>2.3</td>
</tr>
<tr>
<td>Nd</td>
<td>0.8</td>
</tr>
<tr>
<td>Ni</td>
<td>0.7</td>
</tr>
<tr>
<td>Pb</td>
<td>0.8</td>
</tr>
<tr>
<td>Pr</td>
<td>1.8</td>
</tr>
<tr>
<td>Rb</td>
<td>0.8</td>
</tr>
<tr>
<td>Sm</td>
<td>0.8</td>
</tr>
<tr>
<td>Sn</td>
<td>0.8</td>
</tr>
<tr>
<td>Sr</td>
<td>1.0</td>
</tr>
<tr>
<td>Ta</td>
<td>0.9</td>
</tr>
<tr>
<td>Th</td>
<td>0.8</td>
</tr>
<tr>
<td>Tm</td>
<td>0.8</td>
</tr>
<tr>
<td>U</td>
<td>1.8</td>
</tr>
<tr>
<td>V</td>
<td>1.2</td>
</tr>
<tr>
<td>W</td>
<td>0.8</td>
</tr>
<tr>
<td>Y</td>
<td>1.4</td>
</tr>
<tr>
<td>Yb</td>
<td>1.3</td>
</tr>
<tr>
<td>Zn</td>
<td>0.8</td>
</tr>
<tr>
<td>Zr</td>
<td>2.5</td>
</tr>
<tr>
<td>MgO</td>
<td>0.5</td>
</tr>
</tbody>
</table>
گالی فرعی موجود در نمونه‌ها به صورت کانه‌های گلی تا متوسط و به رنگ فله‌های دیده می‌شود. اپیسره شدن بیونیت و هورنمبند که از حاشیه شروع شده و گاهی تا یکخ‌اره مزقی پیشرفته می‌کند، نشان دهنده ایالات گریزندگی اکسیژن و فشار بخار آب خشکین شکل این کانه‌ها از دست داده آب حین فروم‌سپاریست. [8] بافت گالی سنگ‌های انتقالی منطقه‌های میکروتیوی بیورپری و بلافاصله فرعی آن عبارتند از تراکنی، آمیگالودین، قلومورپرپری هستند. بیونیت و بدون این که این بیونیت کوپولیتویی احتمالاً یک بیونیت همراه و هم‌پایه‌ای (شکل 2 ح). در منطقه‌های موردر بررسی کانه‌هایی که در مناطق اطراف به سطح نمسغا و به‌دوک با توجه به دیده می‌شوند، اپیدوت و کلسیت هستند که گاهی به دو محيط هم شرطبی اسکارنی و دگرگونی نوع مجاوری به وجود می‌آیند (شکل 2 ح).

سیمی‌زیررایزی بررسی‌های زئوستی‌سنجی روی ۱۰ نمونه از سنگ‌های منطقه خروقات‌های انجام شد (جدول ۱). نمونه‌های مورد بررسی بر اساس افزایش درجه بندی [۶] تغییرات Zr/TiO2 نسبت به افزایش میزان NB/Y در گستره‌ی بازالت قلبی‌های قرار گرفته است (شکل ۳). NB/Y

[۶] نمونه‌های Zr/TiO2 در شکل ۲ بندی سنگ‌های مورد بررسی با استفاده از نمودار NB/Y.

[۷] تغییرات منطقه‌ای شاخص‌های P-T با استفاده از نمودار ۵.

[۸] تغییرات شاخص‌های P-T با استفاده از نمودار ۴.
کرد که شیب اگوی عنصر کمیاب خاکی (REE) می‌تواند نشان‌دهنده میزان دوب پخشی باشد. به این صورت که در درجه‌های بالایی از دوب پخشی، شیب این منحنی به‌طور بسیار (LREE) غنی شدگی بسیار (HREE) منحنی به‌طور غنی شدگی عنصر کمیاب خاکی سبک غنی شدگی نشان می‌دهد. این غنی شدگی عنصر کمیاب خاکی در گروه عنصر کمیاب سنجگی منطقه به صورت موازی دیده می‌شود (شکل ۶). این نمودار نشان می‌دهد که عنصر کمیاب خاکی سبک غنی شدگی نشان می‌دهد. این غنی شدگی عنصر کمیاب خاکی در گروه عنصر کمیاب سنجگی منطقه به صورت موازی دیده می‌شود (شکل ۶).

۲- ذوب پخشی گوشتی غنی شده در فرآیند درگیری‌های تحت تأثیر شارهای با گذازه‌های حاصل از ورقه فرورونده (۱۰۱) با استفاده از نسبت‌های (La₆/Yb₆) (La₆/Nb₆) و (La₆/Sm₆) و (Ce₆/Yb₆) و (Ce焚烧, جماهیر و تأمین‌های ایران

شکل ۶ نمودار عناصر گونه‌ی سنجگی شده به کندریت [١٩]
هنگامی که نسبت $La/Nb > 2$ و $La/Ta > 1.5$ هستند [17] مقدار این نسبت در سنگ‌های برنزی سبز به ترتیب 28-40 و 1-5/2 است که تاثیر آلودگی پواتیه را نشان می‌دهد. برای نشان دادن نقش آلودگی پواتیه در سنگ‌های منطقه از نسبت Rb/Ba نسبت به Rb نمودار $\mathrm{Ba/Rb}$ در این نما نشان می‌دهد. نسبت به نمودار ورود بررسی در این نما نشان می‌دهد. نسبت به پواتیه بالایی را نشان می‌دهد (شکل 8). سرب در کانی‌های پتاسیم‌دار به صورت یک عصر پذیرفته شده و درآمده و با پیشرفت جدایی، نسبت Rb/Ba به سرب زیاد می‌شود [18]. میانگین سرب در پاتاسیم و در این نما نسبت به Rb و در نمونه HAT رابطه -0.5 نسبت به Rb و در نمونه HAT رابطه -0.5 نسبت به Rb و در نمونه HAT رابطه -0.5 نسبت به Rb و در نمونه HAT رابطه -0.5 نسبت به Rb و در نمونه HAT رابطه -0.5 NMin نسبت به Rb و در نمونه HAT رابطه -0.5 NMin نسبت به Rb و در نمونه HAT رابطه -0.5 NMin نسبت به Rb و در نمونه HAT رابطه -0.5 NMin نسبت به Rb و در نمونه HAT رابطه -0.5 NMin نسبت به Rb و در نمونه HAT رابطه -0.5 NMin نسبت به Rb و در نمونه HAT رابطه -0.5 NMin نسبت به Rb و در نمونه HAT رابطه -0.5 NMin دارای نسبت Rb نسبت به Rb و در نمونه HAT رابطه -0.5 NMin دارای

شکل 7 نمودار $\mathrm{Ba/Rb}$ نسبت به Ba [15]

شکل 8 نمودار $\mathrm{Ba/Rb}$ نسبت به Ba [18]
كردن محيط حاشئي فعال قارآیه یhb ad [23] تستیه Krb/Yb، تستیه Ta/Yb، تستیه Nb/Ta، تستیه Ba/Ta و تستیه Th/Ta در نمونه Zr/Sm و تستیه Ti/Th در نمونه Ti/Th تستیه Ta/Yb، تستیه Nb/Ta، تستیه Ba/Ta و تستیه Th/Ta در نمونه Ti/Th تستیه Ta/Yb

گوشته‌ی قارآیه یhb ad [23] تستیه Krb/Yb، تستیه Ta/Yb، تستیه Nb/Ta، تستیه Ba/Ta و تستیه Th/Ta در نمونه Ti/Th تستیه Ta/Yb

گوشته‌ی قارآیه یhb ad [23] تستیه Krb/Yb، تستیه Ta/Yb، تستیه Nb/Ta، تستیه Ba/Ta و تستیه Th/Ta در نمونه Ti/Th تستیه Ta/Yb
جدول ۲ مقایسه عناصر کمیاب بارالت‌های جهشی پشت کمان با سیگنالی منطقه‌ای خروق East Scotia Sea

<table>
<thead>
<tr>
<th>عنصر</th>
<th>بارالت‌های جهشی پشت کمان</th>
<th>East Scotia Sea منطقه‌ای خروق</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba/Nb</td>
<td>< 70</td>
<td>175 - 300</td>
</tr>
<tr>
<td>Ce/Pb</td>
<td>> 2</td>
<td>11 - 13.6</td>
</tr>
<tr>
<td>Rb/Sr</td>
<td>25 - 400</td>
<td>44 - 210 - 440</td>
</tr>
<tr>
<td>Zr/Rb</td>
<td>16 - 54</td>
<td>293 - 687</td>
</tr>
</tbody>
</table>

شکل ۱۱ نمودار Ba/Nb نسبت به Ce/Pb برای مقایسه سیگنال‌های منطقه‌ای خروق با نواحی دیگر پشت کمان تمادین [۲۳۵].

شکل ۱۰ نمودار Ta/Yb نسبت به Th/Hf سیگنال‌های جهشی فعال قرار گرفتند [۲۲۳]. برابری جدایی مشابهی در سیگنال‌های منطقه‌ای خروق از سیگنال‌های جهشی فعال قرار گرفتند [۲۴۱].

اسبیسین- لرزوپتیک- گارنت- لرزوپتیک را نشان می‌دهد. در اثر ذوب بخشی یک خانگه گوشتهای استیلیس- لرزوپتیک، نسبت غیره کنن، زیرا Sm/Yb در اثر ذوب بخشی و عمق سنگ خاستگاه استفاده کرد. در اثر نسبت درجه‌های ذوب و گرون کلی جهشی محل خاستگاه ماده‌ای قلبی، از نمودار نسبت به Sm/Yb نسبت به La/Sm نمودار استفاده شد (شکل ۱۲ و ۱۳). این نمودارها تغییرات درجه‌های ذوب در دو محل خاستگاه گوشتهای از نسبت‌های عناصر کمیاب و کمیاب خاکی می‌توان برای شناسایی معنی‌دار گوشتهای و نیز تغییر ترکیب، درجه‌های ذوب بخشی و عمق سنگ خاستگاه استفاده کرد. در اثر نسبت درجه‌های ذوب و گرون کلی جهشی محل خاستگاه ماده‌ای قلبی، از نمودار نسبت به Sm/Yb نسبت به La/Sm نمودار استفاده شد (شکل ۱۲ و ۱۳). این نمودارها تغییرات درجه‌های ذوب در دو محل خاستگاه گوشتهای
با توجه به شواهد زمین شناسی و روش سیمیایی منطقه، محفظه زمین شناسی این سگنه نشان دهنده وجود یک محفظه کشمی در زمان مناسب است. در مرحله بعد از برخوردار بیشتر عربستان با پلیت آفریقای مرکزی خروج گذاره ممکن است تا خاستگاه غوشته‌ای می‌شود. در این نمودارها WAM بانگن‌گر گوشته نابه‌نجر آتولوی غربی است. خط متمدن نشان دهنده آراپر گوشته است که با استفاده از روندهای تکراری گذاری (DMM) و الگوی‌های پهپاده (PM) می‌باشد و جفت‌های مربوط به خاستگاه‌های به‌دست آمده در این دسته‌ای در مقایسه با خاستگاه‌های اصلی نیز که خاستگاه‌های برای پالسی‌های پهپاده میان DMM اقیانوسی در نظر گرفته می‌شود و به عنوان خاستگاه پالسی‌های درون صفحه‌ای نوع OIB است توجه به این نمودارها اساس می‌تواند شباهت پالسی‌های این سگنه آن به دو چشمی یک تا پنج درصدی یک خاستگاه غوشته‌ای نشان می‌دهند. لرزش‌های با کارایی بالا در محل خاستگاه تا کمک شده در دو چشمی نمودارها، ممکن است به فلورمیدمی و نیز حکم کم این عنصر طی دگرسانی می‌توان برای تشخیص حضور امپیپیل در محل خاستگاه نسبت به Nb-Th استفاده کرده در نمودار (شکل ۱۴) نسبت این عنصر استفاده شده است که روند تغییرات مشاهده شده حضور فاقد فلورمیدمی را در خاستگاه نشان می‌دهد. [۲۷]}

پریروج کم‌ال‌کاری‌های اولیه که در تناول با کالی‌سنجی شاخص گوشته‌ی فوقال (آبیوئین + اتومیروکسن + گارنیت + اسپینل) قرار داشته باست دارای مقدار (V = 0-۲۰ ppm، Cr = 1۴۰-۲۵۰ ppm، Ni = 2۰-۲۲۰ ppm) کمتر از ۵۰ درصد باشند. [۱۸] با این حال یک میکرومیکت بازی ممکن است بچای مشتق شده از یک گوشته به‌جا می‌آید. منطقه‌ها و مناطقی با خاستگاه‌های مشتق شده باشند که این میکرومیکت بازی، گیره‌های منطقه‌ای از میزان در بررسی کاسته می‌شود. در سنگ‌های منطقه‌ای نسبت Rb/Sr conveying از ۵۰ ppm در حدود ۲۴ ppm است. مقدار Ni = ۲۲-۱۱ ppm، Cr = ۱۵۰ ppm، با این نتیجه گرفته که میکرومیکت می‌باشد. است. نتایج است. با این نتیجه گرفته که میکرومیکت این سگنه گروه میکرومیکت اولیه و در حال تغییر با گوشته‌های فوقال نیوپ و پس از مشتق کردن گوشته اعیاد دستخوش پیش‌گیری‌های میکرومیکت شده و با میکرومیکت است. که از گوشته‌های دگرگونه مشتق شده‌اند.
یک گوشته‌ی غنی‌تر از رفتاری در فناوری گوشته‌ی ریشه‌ای La گرفته‌اند. همچنین نمونه‌های ترسم شده بر اساس عناصر Sm و Nb و Ta مشخص می‌شود. این امر نشان می‌دهد که بر اثر این کش ماده‌ای قلیایی در آن پدیدار می‌شود و آنها در ارتباط با یک حاکم از ماده‌ای گوشته‌ای در اعماق به هگام فروارش اولیه و حتی وعیکش به پوسته‌های قرار می‌گیرد.

برخی از نمونه‌های مشابه در ماهیت ناحیه‌ای مورد بررسی انجام شدند.

مقداری

نویستگان مقاله مراتب سیاس و تشکیل حوزه با داوران مجله

ی بلورشناسی و کانیشناسی ایران و نیز انتقاد برگزاری دکتر

مودن به خاطر اظهار نظرهای سازندگان ایران می‌دانند.

مراجع

[29] عبادی، حاج علی‌بی، پرسی پتروژیکی و روشنگری‌بیگی سلطان‌خانی-پیکرینی و آتشفشانی هزاران خروناق-سرق دستتجرد (شمال غرب ایران)، پایان‌نامه کارشناسی ارشد، دانشگاه تبریز، ۷۷ صفحه.

[20] Pearce J.A., "Role of the Sub-continental Lithosphere in Magma Genesis at Active