کانی شناسی و زنوشیمی حوزه زغالی گلندرواد، البرز مرکزی. استان مازندران

مسلم آقایی کریم، 2 مصطفی رقیمی، 2 غلامحسین شمعی‌نیا، 2 محسن قلی‌پور 3

- 1 دانشگاه آزاد اسلامی، واحد اردبیل، دانشکده علوم، دانشگاه کرمان
- 2-3 دانشگاه آزاد اسلامی، باغکوه‌نگاران جنوب

چکیده: معادن زغال سنگ گلندرواد در استان مازندران یکی از مناطق تولید کننده زغال سنگ در حوزه‌های زغالی البرز مرکزی است.

براساس بررسی‌های کانی شناسی و زنوشیمی، پریپت مومینی کانی سولفیدی موجود در این معدن است. براساس نتایج متابسی، همگنتی، آنالیز شیمیایی و آنالیز سطحی اصلی اکسیدهای TiO2 و K2O Na2O Al2O3، SiO2، Cu، Pb و Zn و عنصر MnO و MgO CaO و MnO سولفیدی توسط اکسیدهای اصلی و حضور آنابیت در زغال سنگ گلندرواد می‌تواند نقش اصلی در خاصیت‌های پایدار کلی این معدن را به علت وجود گروه‌های سنگی در زغال سنگ ایجاد کند. با بررسی همگنتی و عنصر V و عنصر MnO، سطحی متمایز مرکزی می‌باشد.

واژه‌های کلیدی: کانی شناسی، زنوشیمی، زغال سنگ گلندرواد، حوزه زغالی البرز مرکزی، ایران

مقدمه

طی مراحل زغال سنگ شدن، فشار و آبگیر رسوپ و موجب ایجاد شکستگی (کلیت) در زغال سنگ می‌شود و آن از مناطق تولید تور که یا می‌گیرد که گونه‌های را به عنوان فلز آهنی (سولفیدی) (کانی‌های سولفیدی) را به عنوان کانی‌های سولفیدی می‌شناسد. این تغییرات در اثر فرآیندهای زنوشیمی و زمان سنتی متقابلی ایجاد می‌شود که روی از درون زغال سنگ درون چه سیالی‌های شناسی عملاً است. یافته‌ها در گونه‌های کیبرنی، کانی‌های فرم‌یونیزیمی مانند پیروکسن، مفیدیو، داخلی در زغال سنگ‌ها خیلی نادران، این کانی‌ها pH در شرایط با پایه محیطی البانه نیاپایدار بوده و در به روش واحد اول زغال سنگ تخم‌گذیری می‌شوند. در مقدم کالی- له فری غفم، مانند ریزی و یک فکری در زغال سنگ‌ها شده است. این در حالی که کانی‌های گیاهان از زغال سنگ

aghaei.moslem3@gmail.com

نویسنده محلول، تلفن: 0432 (134) 25633225، نمایشگاه، 110 (1401) 12270772000، پست الکترونیکی:
روش بروزی
برناردو پیلاتی، ژوویا و منویلیرادی در ناسیان، 1988، ویژگی‌های زنگ‌نگاری و کانال‌سنجی حوزه‌های زنگ‌نگاری. مورد بررسی قرار گرفت. تعداد 9 نمونه به صورت تصادفی و به روش تکانی از لایه‌های مختلف زنگ‌سنگ گلندرود بردشت‌شنگن در داخل 3 متراً در حدود 30 سانتی‌متر داده شد. برای اطلاع و باگاه‌گیری ژاکی آنتاناردی روسی (GOST) استفاده و نمونه‌ها به مدت 3 سال در دمای 85 درجه سانتی‌گراد در مواد (pH) واکنش 2030 واحد لازم 8000 و 1000 کیلووات و 1000 کیلووات، جریان 125 میلی‌آمپر، شکل کاسیش بهبودی استفاده شد. همچنین به منظور نمونه‌کشی نگهداری و میزان رنگ‌گیری از عناصر غیر خشکه‌های شده، برای بررسی های امروزی از نرم افزار SPSS (Version 11.5) تفسیر دام پرورشی تحلیل معیارهای مورد استفاده قرار گرفت.

حضور دارنی [آ] تجربه گذاری در زمان‌بندی پایه‌سازی Pb, Ni, Cu, Co, Cr فرازت مروف از گرده سپیده، در دمای و فاقد ماه آلی شرایط مناسب برای تشکیل کانال‌های سولفوری فراهم می‌آورد. از نظر زنگ‌نگاری عناصر موجود در زنگ‌سنگ به‌خشش های آلی و معدنی (کانال‌های) و استحکام [آ] مهم‌ترین عناصر اصلی در زنگ‌سنگ عبارتند از:

\[\text{Si, Fe, Mg, Ca, Al}\]

عناصر اغلب از بخش‌های غیر اتی و در در و شیکی‌های موجود در زنگ‌سنگ قرار می‌گیرند و با کانال‌های ررسی کردن و سولفوریفکتیون در ایجاد و درون‌السره کننده‌های نجاتی می‌باشد. در این مقاله، سلول‌های آنتاناردی روسی (GOST) برای این مشخصات منطقه مطالعه مورد مطالعه معمولی زنگ‌سنگ گلندرود با موقعیت جغرافیایی "53°53" طول شرقی و "27°33" عرض شمالی در دامنه شمالی شرقی کوه‌های البرز در ناحیه 20 کیلومتری شهرستان نور استان مازندران قرار گرفته است. منطقه گلندرود به کمیت چین خودروی آهسته شده در ناحیه است که که سخت‌سازایی رسوبی کربناتی کرناش و ترخ و دنباله‌رسی رسوبی اولیه زنگ‌سنگ
شكل 1 نقشه زمین شناسی منطقهی زغالی گلندروم با اصلاحات از نقشه زمین شناسی 13000 (1/100) بلد [9].

نرده‌ی آن باشد، هیچ عاملی نظر نخواهد شد [13]. از سوی دیگر اگر همیستگی‌های قابل ملاحظه‌ای بین منفی‌ها موجود باید، ممکن است یک یا چند عامل نظر شود [31]. در این برسی از تحلیل عاملی برای خوشی‌نی‌داندهای زنوشیمایی استفاده شد. مانند و بی‌روی‌های مربوط به هر یک از خوش‌هایا، مورد بحث و بررسی قرار گرفت. همچنین با استفاده از این روش آماری از تجزیه عادی محاسبه یک نمونه زغال‌سینگ بعثه عنوان ابزار براپای نرمین ارتباط کاتی - عنصر استفاده شد.

بحث و بررسی
کاتی شناسی
پیریت فراوان‌ترین کاتی سولفیدی موجود در زغال‌سینگ گلندروم است. این کاتی در مقیاس دستی و میکروسکوپی به صورت پرکندگی در و شکستگی‌ها نیز به صورت پوک‌کننده‌ای مشاهده می‌شود. گاه به صورت ذرات ریز کننده مانند شکل در

1 - anhedral pyrite
2 - massive pyrite
به اکساپش سریع آن منجر می‌شود. در برخی نمونه‌های زغال-
سنگ گلدن‌رود پیریت توده‌ای به موازات لایه‌بندی نهشت شده-اند. این پیریت‌ها دارای خاستگاه سین زننیکاند و هم‌زمان با
نهشت شدن پیت رسوب کرده‌اند. اما در برخی دیگر پیریت
توده‌ای در درز و شکستگی زغال سنگ قرار گرفته و دارای
خاستگاه اپی زننیکی هستند.

[۱۴، ۱۵]. این نوع پیریت‌ها معمولاً در کنده‌های کلیت‌های
سیمان شدگی و یا به صورت روبکشی روی پیریت‌های
فرامودری، بوهدال و کانی‌های آواری تشکیل می‌شود [۱۶].
در زغال سنگ گلدن‌رود بخش عمده‌ای از پیریت به این شکل
مشاهده شده است (شکل ۲ پ و ت). این نوع از پیریت به
دلیل شکل نامنظم دارای منافذ و جردهای زیادی هستند که

شکل ۲ حضور پیریت در نمونه‌های دستی معدن زغال سنگ گلدن‌رود.

شکل ۳ تصویر میکروسکوپی از پیریت‌های شناسایی شده در زغال سنگ گلدن‌رود در نور عادی بازتابی (PPI) (الف و ب) پیریت‌های بی شکل نهشت
در طول درز و شکستگی‌ها (الف) پیریت‌های توده‌ای در راستای درز و شکستگی‌ها (ت) پیریت‌های توده‌ای به موازات لایه‌های زغال سنگ، (ت، ج) پیریت‌های شکل دار با خاسگاه سین زننیک.
3. 1. برای نشان دادن این شکل از پیرامون با دانه‌های رز و یک پلورول کروی، سیب‌کم در زغال سنگ کلندرود و در یک چرخ‌های دور در و شکستگی‌های آن مشاهده شده است (شکل 3، ج). پیرامون شکل‌داری شاخه‌های سنگ زنیکی بوده و طی مرحله‌های توزیع‌بافی تشكل شده‌اند.

ژوئنوسیمی

به منظور بررسی میزان پریکانگی اکسیدهای اصلی و عناصر جنی و جغدیدگی ارتباط بین آنها در زغال‌سنگ کلندرود بررسی‌های ژوئنوسیمی صورت گرفت. نتایج آنالیز شیمیایی اکسیدهای اصلی و عناصر جنی در جدول 1 آنها نشان داده شده است. مقدار زغال‌سنگ کلندرود در مقابل مقدار معدن درگیر زغال‌سنگ Ca, Fe, Mg, Fe موجود در زغال‌سنگ البرزی مرکزی توزیع می‌شود. این عنصر از آن‌ها با دانه‌های در معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود.

[۱۷] کریبناهای شعابی دومین، تالکونیت، صورتی، 1990. در این معدن درگیر زغال‌سنگ کلندرود که با کاهش، اکسیدهای آهن و اتانر کانی‌های غیر به شما شده نشان داده شده است. با توجه به این‌ها اکسیدهای معدنی در خاک‌های سنگ کلندرود، کانی‌های اکسیدهای معدنی در این معدن، کاهش، اکسیدهای آهن و آتش‌های این عنصر در سه معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود.

[۱۷] بررسی‌های کانی‌هایی در حوزه-۲ زغال‌سنگ پیام‌گر خاک‌های سنگ کلندرود که با کاهش، اکسیدهای معدنی در خاک‌های سنگ کلندرود، کانی‌های اکسیدهای معدنی در این معدن، کاهش، اکسیدهای آهن و آتش‌های این عنصر در سه معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود. در این معدن، کاهش، اکسیدهای معدنی در خاک‌های سنگ کلندرود، کانی‌های اکسیدهای معدنی در این معدن، کاهش، اکسیدهای آهن و آتش‌های این عنصر در سه معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود.

[۱۷] بررسی‌های کانی شناسی در حوزه-۲ زغال‌سنگ پیام‌گر خاک‌های سنگ کلندرود، کانی‌های اکسیدهای معدنی در این معدن، کاهش، اکسیدهای آهن و آتش‌های این عنصر در سه معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود. در این معدن، کاهش، اکسیدهای معدنی در خاک‌های سنگ کلندرود، کانی‌های اکسیدهای معدنی در این معدن، کاهش، اکسیدهای آهن و آتش‌های این عنصر در سه معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود.

[۱۷] بررسی‌های کانی شناسی در حوزه-۲ زغال‌سنگ پیام‌گر خاک‌های سنگ کلندرود، کانی‌های اکسیدهای معدنی در این معدن، کاهش، اکسیدهای آهن و آتش‌های این عنصر در سه معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود. در این معدن، کاهش، اکسیدهای معدنی در خاک‌های سنگ کلندرود، کانی‌های اکسیدهای معدنی در این معدن، کاهش، اکسیدهای آهن و آتش‌های این عنصر در سه معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود.

[۱۷] بررسی‌های کانی شناسی در حوزه-۲ زغال‌سنگ پیام‌گر خاک‌های سنگ کلندرود، کانی‌های اکسیدهای معدنی در این معدن، کاهش، اکسیدهای آهن و آتش‌های این عنصر در سه معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود. در این معدن، کاهش، اکسیدهای معدنی در خاک‌های سنگ کلندرود، کانی‌های اکسیدهای معدنی در این معدن، کاهش، اکسیدهای آهن و آتش‌های این عنصر در سه معدن شمشک، زیبر، و زیبی، ۱۵ باارب غیر شدید نمی‌شود.
جدول 1. نتایج تجزیه شیمیایی اکسیدهای آلی (بر حسب ppm) و عنصر جزئی (بر حسب %) از لایه زغال سنگ گلند‌دروست

<table>
<thead>
<tr>
<th>عنصر</th>
<th>No.31</th>
<th>No.30</th>
<th>No.29</th>
<th>No.26</th>
<th>No.25</th>
<th>No.9</th>
<th>No.5</th>
<th>No.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO2</td>
<td>6.0</td>
<td>6.3</td>
<td>6.2</td>
<td>4.3</td>
<td>4.1</td>
<td>4.2</td>
<td>3.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K2O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>SO3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>SiO2</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Ba</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Co</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Nb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Th</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ce</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cl</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Pb</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Rb</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sr</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>V</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>W</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Y</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Zr</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Zn</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Ash %</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>
جدول 2 مقادیر وزه و درصد ورایانس اورتانی [آه بک از فاکتورهای اصلی و دوران بارهای استخراج شده برای اکسیدهای عناصر اصلی.

<table>
<thead>
<tr>
<th>مؤلفه</th>
<th>درصد تجمع ورایانس درصد ورایانس</th>
<th>درصد تجمع ورایانس درصد ورایانس</th>
<th>مجموع بارهای عاملی استخراج شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,16E-16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,8E-16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,9E-16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3 ماتریس مؤلفه‌های دوران بارهای برای اکسیدهای عناصر اصلی

<table>
<thead>
<tr>
<th>PC3</th>
<th>PC2</th>
<th>PC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.64</td>
<td>SiO2</td>
</tr>
<tr>
<td>0.2</td>
<td>0.23</td>
<td>Al2O3</td>
</tr>
<tr>
<td>0.7</td>
<td>0.78</td>
<td>Na2O</td>
</tr>
<tr>
<td>0.6</td>
<td>0.65</td>
<td>MgO</td>
</tr>
<tr>
<td>0.7</td>
<td>0.71</td>
<td>K2O</td>
</tr>
<tr>
<td>0.3</td>
<td>0.29</td>
<td>TiO2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.51</td>
<td>MnO</td>
</tr>
<tr>
<td>0.1</td>
<td>0.92</td>
<td>CaO</td>
</tr>
<tr>
<td>0.3</td>
<td>0.31</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>0.2</td>
<td>0.23</td>
<td>SO3</td>
</tr>
</tbody>
</table>

شکل 2 نقشه مؤلفه‌های اکسیدهای اصلی زغال سنگ گلندود در فضای دورانی.
پیشگیری از ناخالصی مدل‌های گازی

مقداری از کلسیم، پتاسیم و دیکسیم را در هر کیلوگرم نان داده که شامل عناصر اولیه سبزک‌های غیر کلسیمی. زانه‌های موجود در غلظت‌های بالای نان در خاک‌های کلسیمی، پتاسیمی و دیکسیمی در حالت ناهمسانی باعث ناخالصی می‌شوند.

مقداری از پتاسیم، دیکسیم و کلسیم را در هر کیلوگرم نان داده که شامل عناصر اولیه سبزک‌های غیر کلسیمی. زانه‌های موجود در غلظت‌های بالای نان در حالت ناهمسانی باعث ناخالصی می‌شوند.

مقداری از پتاسیم، دیکسیم و کلسیم را در هر کیلوگرم نان داده که شامل عناصر اولیه سبزک‌های غیر کلسیمی. زانه‌های موجود در حالت ناهمسانی باعث ناخالصی می‌شوند.

مقداری از پتاسیم، دیکسیم و کلسیم را در هر کیلوگرم نان داده که شامل عناصر اولیه سبزک‌های غیر کلسیمی. زانه‌های موجود در حالت ناهمسانی باعث ناخالصی می‌شوند.

مقداری از پتاسیم، دیکسیم و کلسیم را در هر کیلوگرم نان داده که شامل عناصر اولیه سبزک‌های غیر کلسیمی. زانه‌های موجود در حالت ناهمسانی باعث ناخالصی می‌شوند.
جدول ۴ مقادیر ویژه درصد واریانس هر یک از فاکتورهای اصلی و دوران بافت مشخص شده عناصر جذبی.

<table>
<thead>
<tr>
<th>مؤلفه</th>
<th>مقدار ویژه اولین</th>
<th>مجموع مربعات ویژه عاملی چرخش بافت</th>
<th>درصد تکمیل واریانس درصد تکمیل واریانس</th>
<th>درصد تکمیل واریانس</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۴۶.۱</td>
<td>۴۴.۲۲</td>
<td>۴۴.۲۲</td>
<td>۴۴.۲۲</td>
</tr>
<tr>
<td></td>
<td>۴۱.۳۱</td>
<td>۴۲.۹۳</td>
<td>۴۲.۹۳</td>
<td>۴۲.۹۳</td>
</tr>
<tr>
<td></td>
<td>۸۱.۷۰</td>
<td>۸۱.۹۱</td>
<td>۸۱.۹۱</td>
<td>۸۱.۹۱</td>
</tr>
<tr>
<td></td>
<td>۱۰.۷</td>
<td>۱۰.۷۱</td>
<td>۱۰.۷۱</td>
<td>۱۰.۷۱</td>
</tr>
<tr>
<td></td>
<td>۵۸.۹</td>
<td>۵۸.۹۱</td>
<td>۵۸.۹۱</td>
<td>۵۸.۹۱</td>
</tr>
<tr>
<td></td>
<td>۹۲.۲۱</td>
<td>۹۲.۲۱</td>
<td>۹۲.۲۱</td>
<td>۹۲.۲۱</td>
</tr>
</tbody>
</table>

درصد تکمیل واریانس

جدول ۵ ماتریس مؤلفه‌های دوران بافت برای عناصر جذبی.

<table>
<thead>
<tr>
<th>PC۱</th>
<th>PC۲</th>
<th>PC۳</th>
<th>PC۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۱۰</td>
<td>۰.۹۲</td>
<td>۰.۰۴</td>
<td>۰.۰۵</td>
</tr>
<tr>
<td>۰.۸۰</td>
<td>۰.۰۹</td>
<td>۰.۰۲</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>۰.۴۰</td>
<td>۰.۹۹</td>
<td>۰.۹۳</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>۰.۸۰</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>۰.۸۰</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>۰.۸۰</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>۰.۱۷</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۱۷</td>
</tr>
<tr>
<td>۰.۰۶</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>۰.۴۰</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
</tr>
<tr>
<td>۰.۰۸</td>
<td>۰.۳۸</td>
<td>۰.۳۸</td>
<td>۰.۳۸</td>
</tr>
<tr>
<td>۰.۵۰</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>۰.۵۰</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>۰.۰۷</td>
<td>۰.۱۶</td>
<td>۰.۱۶</td>
<td>۰.۱۶</td>
</tr>
<tr>
<td>۰.۵۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>۰.۰۲</td>
<td>۰.۲۴</td>
<td>۰.۲۴</td>
<td>۰.۲۴</td>
</tr>
<tr>
<td>۰.۲۸</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
</tr>
<tr>
<td>۰.۲۴</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
</tr>
<tr>
<td>۰.۱۰</td>
<td>۰.۲۶</td>
<td>۰.۲۶</td>
<td>۰.۲۶</td>
</tr>
</tbody>
</table>

شکل ۵ نقشه مؤلفه‌های عناصر جذبی در فضایی دورانی.
مقایسه‌ی زغال‌سنگ کلندروم با زغال‌سنگ‌های جهانی، چین و آمریکا

نتایج تجزیه شیمیایی اکسیدهای اصلی و عناصر جزئی در زغال‌سنگ کلندروم و کلارک زغال‌سنگ‌های چین و آمریکا در جدول ۲ آرائه شده است. در مقایسه با زغال‌سنگ‌های چین [۲۰] در معدن زغال‌سنگ کلندروم، SiO₂، MgO، Al₂O₃، TiO₂، Nb، Ti و Co به شدت در زغال‌سنگ کلندروم گنبدی شدگی و شکل ۲ و ۱۸. این در ساختار زغال‌سنگ کلندروم دارد. همچنین مقدار کلر در زغال‌سنگ کلندروم در مقایسه با لیتوی با زغال‌سنگ‌های آمریکا و کلارک زغال‌سنگ‌های چین نشان می‌دهد (جدول ۶).

جدول ۶ مقایسه درصد اکسیدهای اصلی و عناصر جزئی (ppm) در زغال‌سنگ کلندروم با میانگین زغال‌سنگ‌های چین [۲۰] و کلارک زغال‌سنگ [۲۴]

<table>
<thead>
<tr>
<th>زغال‌سنگ کلندروم</th>
<th>میانگین زغال‌سنگ چین</th>
<th>کلارک زغال‌سنگ آمریکا</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>118.3</td>
<td>107.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>67.7</td>
<td>68.7</td>
</tr>
<tr>
<td>MgO</td>
<td>16.3</td>
<td>17.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.7</td>
<td>4.3</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.2</td>
<td>3.4</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>Nb</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.43</td>
<td>0.44</td>
</tr>
<tr>
<td>Pb</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Sr</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Y</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Zn</td>
<td>0.05</td>
<td>0.06</td>
</tr>
</tbody>
</table>

مقدار کلر در زغال‌سنگ کلندروم در مقایسه با زغال‌سنگ‌های چین نشان می‌دهد (جدول ۶).
شکل 6 مقایسه درصد اکسیدهای اصلی معدن زغال سنگ گلندرود با زغال سنگ چین [20].

شکل 7 مقایسه عنصر جزئی معدن زغال سنگ گلندرود با زغال سنگ‌های چین [20], زغال سنگ آمریکا [30] و کلارک زغال سنگ [39].

شکل 8 مقایسه عنصر جزئی معدن زغال سنگ گلندرود با زغال سنگ‌های چین [20], زغال سنگ آمریکا [30] و کلارک زغال سنگ [39].
برداشت
زغال‌سنگ گلندرود با مقادیر گوگرد کم و حاکم نسبتاً بالادرک این در ناحیه تامینی است. جمله معدن زغال‌سنگ در حوزهی زغال‌سنگ مركزي است.

[9] علیدوی ا. قاسمی ۱۳۷۹، نقشه ۱/۱۰۰۰۰۰ ژمن شمالی، جغرافیای زمین شناسی، جلد سیزدهم، سازمان زمین شناسی و اکتشافات معدنی کشور (۱۳۸۵).

[10] شرکت مهندسی هرس یوری کوپه، بررسی تجهیز زغال سنگ گلندرود، زمین شناسی و اکتشافات، چاپ نشسته (۱۳۸۱).

[37] Zhou J., Zhuang X., Alastuey A., Querol X., Li L., “Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in