بررسی سنج نگاری، ویژگی‌های زنوسیمایی و محیط تکنوگرافیاپی تودهی گرافیتوئیدی
میزان کانسار مس پورفیری میدوک، شهریابک-کرمان

علي علمراضی ١، فرهاد آلوی ٢، عباس مردیان ٣

چکیده: کانسار مس پورفیری میدوک در بخش شمال غربی مجموعهٔ کانشانی-نفوذی ارومیه-دختر و در ۴۲ کیلومتری شمال شرق شهرستان شهریابک قرار گرفته است. کانسار مس پورفیری میدوک با ۱۲.۵ میلیون سال، در سنجشگاه انفتخاری و آذرآوای انسان با تراکم اندامیت، اندرزیکتالاژت و داسیت (مجموعه رازک) جایگزین شده است. بررسی‌های سنجشگاهی میکروسکوپی نشان می‌دهد که این نوید از گرافیتوپرت، کوارتزپورت و دیوریت تشکیل شده است. از نظر کانشانی کانسار مس پورفیری شکل پلی‌پوکلا در نواحی تالاسی و تارالوشی و بیشتر و کوارتز و سربیت، کلزنی، اپیدوت و مکنتیت نیزگانی می‌باشند. این مجموعه را شامل می‌شوند. از نظر ویژگی‌های زنوسیمایی، سنگ‌های گرافیتوپرتویی میدوک پورفیری جزء سری میکائیلی پیلاتیان و کلنسک پیلاتیان و از نوع گرافیتمی‌های منا تا پراولومین و یک هستند. بررسی‌های زمین‌ساختی حاکی از این است که کانسار مس میدوک در زیرپوشش کانسارهای تشکیل شده در حاشیه قرارهای فعل است. همچنین این بررسی‌ها نشان دهید که کانسار مس میدوک در نواحی میکائیلی پیلاتیان پس از انحلال فروریزه‌های پوششی اقیانوسی نوین‌تراز تشکیل و چاپ‌گزن شده است.

واژه‌های کلیدی: میدوک، کمربند انفتخاری، نفوذی ارومیه، دختر، زنوسیمایی، رژیم زمین‌ساختی پس از بخور.

مقدمه
بخش جنوب شرقی کمربند انفتخاری-نفوذی ایران مرکزی که در استان گیلان واقع شده است (نوک دهک سازمانه) یکی از مناطق مهم تکنوگرام مس پورفیری در سیستم کوههای آلپ-هیمالایاگن (شکل ١) نواحی دهک سازمانه با طول ۴۲۰ کیلومتر و عرض حدود ٧٠ کیلومتر از گوشته شمال غربی و غرب استان کرمان در مناطق اطراف دهک تا گوشته جنوب شرقی بین جبال بارز جنرفت با روستان مومویی شمال غربی-جنوب شرقی گسترش دارد که کانسار مس

ali.alirezaei.ir@gmail.com

نویسنده مسئول: تلفن: ۹۱۲۶۳۷۳۱۱، نمایر: ۸۸۵۳۴۶۷، پست الکترونیکی:*
داده و به توجه به انواعی با سیس-میکروکستنی (نحوه-های نفوذی تیپ کومبین) وابسته است. از مهمترین دلایل مس پوتراژ در طول مجموعه انسانی مجمع-سارودنی می‌توان به سرچشمه می‌باشد. در به راز، نوچون، در اتیو، سرمشک و شهره اشکار کرد.

کانسار مس سرچشمه با ذخیره‌ای حدود ۱۲۰۰ میلیون تن مس با عبارت ۷۷٪ که در استان کرمان واقع شده است [۱] یکی از بزرگترین کانسار‌های دنیا در سیستم کوه‌های آلبین-هیمالایا را تشکیل می‌دهد.

کانسار مس میدوک که در ۱۲۲ کیلومتری شمال غربی کانسار مس سرچشمه قرار گرفته است، با ذخیره‌ای حدود ۱۷۰ میلیون تن مس با عبارت ۸۰٪ یکی از کاسرات مس سرچشمه، مهم‌ترین کانسار مس پوتراژی در استان کرمان است. اولین مرحله از فعالیت‌های پی‌درپی از سال ۱۳۱۴ بر روی این کانسار شروع شد و تا کنون بیش از ۵۰ جه و ۷ تنول پی‌جوی در گستره‌ای این منطقه حفر شده‌اند. از پرسی‌های انجام شده بر روی این کانسار می‌توان به [۴]-[۵] اشاره کرد.

در این پژوهش نیز سعی شده تا با استفاده از داده‌های زمین‌شناسی تیپ نیز بررسی‌های سهم‌شناسی میکروکستنی، به بررسی رفتارهای زمین‌ساختی و ویژگی‌های سهم‌شناسی کانسار مس پوتراژی میدوک پرداخته شود.

شکل ۱: نقشه موقعیت کمربند دهج- سارودنی روی رود ارومیه- دختر [۲۰] و ب) موقعیت کانسار مس میدوک روی نوار دهج- سارودنی- در نظر گرفته تغییرات از [۴۱].
شکل ۲ نشانگر زمین‌شناسی منطقه‌ای شهر بابک و موقعیت کانسیر مس میدوک روی آن - انتیباد با تغییرات از [۱۶].

شکل ۳ نمودار زمین‌شناسی ویژه به واحدهای آتش‌نشانی در برگیرندی کانسیر مس میدوک (مجموعه‌ی آتش‌نشانی راک).

میدوک به فعالیت‌های دگرسانی شدید همراه با این توده‌ی گرانتین‌های قهوه‌ای، دارای واحدهای میوه‌ای است (شکل ۳). بر اساس سال-۴۰\(^{149}Ar/^{39}Ar\) سنجرهای انجام شده به روش U/Pb و توسط [۲۰] بر روی کانسیر مس میدوک، به ترتیب سن‌های مجموعه‌ی آتش‌نشانی راک با توده‌ی گرانتین‌های قهوه‌ای، دارای واحدهای میوه‌ای است (شکل ۳). بر اساس سال-۴۰\(^{149}Ar/^{39}Ar\) سنجرهای انجام شده به روش U/Pb و توسط [۲۰] بر روی کانسیر مس میدوک، به ترتیب سن‌های مجموعه‌ی آتش‌نشانی راک با توده‌ی گرانتین‌های قهوه‌ای، دارای واحدهای میوه‌ای است (شکل ۳). بر اساس سال-۴۰\(^{149}Ar/^{39}Ar\) سنجرهای انجام شده به روش U/Pb و توسط [۲۰] بر روی کانسیر مس میدوک، به ترتیب سن‌های مجموعه‌ی آتش‌نشانی راک با توده‌ی گرانتین‌های قهوه‌ای، دارای واحدهای میوه‌ای است (شکل ۳). بر اساس سال-۴۰\(^{149}Ar/^{39}Ar\) سنجرهای انجام شده به روش U/Pb و توسط [۲۰] بر روی کانسیر مس میدوک، به ترتیب سن‌های
روش برنری
بررسی توده گرانیت‌تندهای دس میدوک در دو بخش صحرایی و آزمایشگاهی انجام گرفت. در بخش صحرا یک سکرتی مورد نظر تعداد ۱۵۰ نمونه از امکال مختلف گمانه‌های پی‌چویی شماره‌ی ۸۴ و ۵۷ برداشت شدند. در شکل ۴ ارائه شده‌است. تعداد ۱۰۰ مقطع نازک از نمونه‌های برداشت شده بررسی‌های سنجی‌های شناسی میکروسکوپی نهایی شدند. پس از بررسی سنج‌سانسی نمونه‌ها، تعداد ۴۶ نمونه از گمانه‌های سالم و کمتر دگرگون شده برای تجزیه‌ی شیمیایی عناصر اصلی با استفاده از ICP-MS و شیمی‌ای سنجی انتخاب و به آزمایشگاه که برای ارسال در ALS Chemex ارسال شدند. شکل ۴ نقشه زمین‌شناسی کناره‌ی میدوک پی‌چویی می‌باشد که نشان دهنده نورا ناحیه‌ی نوردیش مورد بررسی را نشان می‌دهد.
بررسی سنجشگران، ویژگی‌های زنوشیمیایی و مheits تکنولوژی‌اکیا توپری ...
و هورنلند. از کانی‌های فرعی می‌توان آبایه و زیرکن را نام برد که از درصد بسیار جزئی برخوردارند و همچنین آنها خودشکلند. بیشتر آبایه‌ها به صورت میان‌باز در بیوتی‌ها و کمی در هورنلند حضور دارند. زمینه‌های سنگ‌های مورد بررسی بیشتر از کوارتز، سرسبیت، پلاژیوکلاز، پلیپسیم فلدسپار و مقدار کمتر بیوتی‌های تشكل شده است. این سنگ‌های پورتزی و ریزدانه‌ای معمولاً است. باندهای دیگر نظر بافت انحال در حاشیه و درون پلاژیوکلازها و خاموشی موجی در کوارتز نیز مشاهده می‌شوند.

بر جای مانده است (شکل ۸). کانی‌های گروه دیگری از کانی‌های تیره‌تر که کمتر از ۳ درصد حجمی نمونه‌ها را تشکیل می‌دهند و بیشتر به صورت یک چهاره شکل در تمامی نمونه‌ها حضور داشته و اندازه آنها از ۱۰ تا ۱۰۰ میلی‌متر تغییر می‌کند. کانی‌های ثانویه حاصل از گذشته‌های کانی‌های اصلی و فرعی که در متن سنگ دیده می‌شوند، عبارتند از سرسبیت و فلدسپار پتاسیم حاصل از تجزیه شدید پلاژیوکلازها. کانی‌های رس حاصل از تجزیه پتاسیم فلدسپارهای زمینه، کلریت و بیوتی‌های ثانویه و سرسبیت حاصل از تجزیه بیوتی‌های اولیه.

شکل ۵ تصاویری از فوکرپیست‌های پلاژیوکلاز (Pl) با استفاده تپوگرافی میدیک پورتزی که مکان‌های بلو سنتنیک و منطقه ندی توسینی در آن‌ها دیده می‌شود و نیز تحت تأثیر دگرگساینی‌های حاصلی سرسبیتی و کلریتی شده‌اند.- نور XPL.

شکل ۶ فوکرپیست‌های کوارتز با حواشی انحلالی و خلیجی- نور XPL.

شکل ۷ انواع بیوتی‌های موجود در تپه‌گرای شاخصی میدیک پورتزی (شکل سمت راست نور PPL و شکل سمت چپ نور XPL)
گرانولوریت‌ها نیز در مقاطع میکروسکوپی اغلب دارای یافته‌هایی مانند کلر یا کلسیت با تعداد کمتر قرار گرفته‌اند. البته در بعضی از نمونه‌هایی که به وسیله الکترونیکی نگهداری شده بودند، این یافته‌ها بیشتر بودند.

ترکیب الکترونیک

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۱، ۲، ۳، ۴، ۵ و ۶

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۷، ۸ و ۹

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۱۰ و ۱۱

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۱۲ و ۱۳

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۱۴ و ۱۵

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۱۶ و ۱۷

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۱۸ و ۱۹

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۲۰ و ۲۱

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۲۲ و ۲۳

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۲۴ و ۲۵

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۲۶ و ۲۷

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۲۸ و ۲۹

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۳۰ و ۳۱

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.

شماره۳۲ و ۳۳

در این بخش، بررسی‌های میکروسکوپی و نظر به کلاسیک قلیایی در نمودارها و یافته‌های مختلفی در نوارهای اصلی و اضافی گزارش گردیده است.
شکل 9 تعیین دگرگونی نمونه‌های وابسته به توده گرایندریزی میدوک پورفلری با استفاده از نمودارهای [18, 19].

شکل 10 نمودار نامگذاری سنگ‌های گرایندریزی میدوک که در ناحیه میدوک [10].
نمودار [12] ویژگی‌های شاخه اسپسی یک زمانه را نشان می‌دهد که در شکل 12 آورده است. جنگله در این نمودار دیده می‌شود. نمونه‌های مورد بررسی در گستره‌های مختلف تا پرآهنی قرار می‌گیرند. با توجه به حضور کانی‌های آلماسی هورتیندن و بودیت در سنگ‌های منطقه و عدم حضور کانی‌های آلماسی، ماهیت پرآهنی‌وس آنا را نمی‌توان به فرآیندهای هضم در بخش‌های میانی و بالایی پوزنتئی قرار داده و لازم است.

نمونه‌های R1 از میدوک سنگ‌های مورد بررسی است و ماهیت پرآهنی‌وس آنا را دارا می‌باشد. همچنین در شکل 12 نشان‌دهنده شکل [15] نشان‌دهنده شکل فیزیکی میدوک ویژگی‌های پوزنتئی در سنگ‌های اسپسی‌ای مانند میدوک ضروری است. ساختار سنگ‌های منطقه، نشان‌دهنده‌ی تغییر آنها در مراحل نهایی کاملاً متفاوت است (نوار هج ساردونیه). در نهایی کاملاً متفاوت است (نوار هج ساردونیه).

ملاحته میدوک ویژگی‌های پوزنتئی باید در مواردی مانند نمودار [12] از نظر قرار گرفتن در گستره‌های امکان‌پذیر از نظر سپاسی و مولوتی‌نتی نیمه قلابی، ماهیت نیمه قلابی داده.

شکل 13 نمودار [12] که نشان‌دهنده موقعیت نمونه‌های مورد بررسی در گستره متالومنی تراپالومین است.

به مانور جدایی گرانیت‌های نوع 1 از A، نمونه‌ها در R1 - R2 نسبت به Y + Nb [14] برای نمودار Rb - SiO2 نسبت به SiO2 به Zr و Zr به SiO2 نسبت به SiO2 [16] پیشنهاد شده است، رسم شده‌اند (شکل 14) که نمونه‌های مورد بررسی در گستره گرانیت‌های نوع 1 قبلی می‌گیرند. نسبت A/CNK نسبت علاوه بر این مقادیر Zr و Zr به علت درمان K2O/Na2O و Ni و Cr حضور کاتیون‌های مافیک هوریلند و پیوسته، بافت هم‌مانی منابع تا ریزدان و بافت پورفیری، تبدیل بافت پیگمنتی و در نهایت عدم وجود پورفیری، های با مختلف گستره قرارهای در سنجش‌های گرانیت‌نیک کاسی در می‌باشد نشان‌دهنده این امر به داشتن گرانیت‌های نوع 1 هستند.

شکل 12 نمودار [12] نشان‌دهنده موقعیت نمونه‌های مورد بررسی در گستره متالومنی تراپالومین است.

زنوشیمی عناصر نادر خاکی و عنصر فرعی میدوک پورفیری استفاده از عناصر نادر خاکی و عنصر فرعی به دلیل آنکه این عنصر خاکی بالا ساخته است و در به‌دست‌آمده‌ای این عنصر مربوط به که توسط کمترین تأثیر را را را در نظر می‌گیرد. تازه‌گیری سختگی نیز نشان‌دهنده در تیز و زنوشیمی‌های خاکی می‌باشد از همین‌روی برای نکستگی نمونه‌های تندوپری میدوک به روش‌های که توسط [17] تریم شده است (شکل 15). در این نمودار شیب نمودار از سمت گرافی نادر خاکی سبک به سمت عنصر نادر خاکی سبک. کم می‌شود. به عبارتی در نمودار توده‌ای LREE پورفیری یک غنی شدگی زیاد در نمونه‌های میدوک می‌باشد. به نمودار [17] تریم شده است (شکل 15). در این نمودار شیب نمودار از سمت گرافی نادر خاکی سبک به سمت عنصر نادر خاکی سبک. کم می‌شود. به عبارتی در نمودار توده‌ای LREE پورفیری یک غنی شدگی زیاد در نمونه‌های میدوک می‌باشد.
به کانسار مس میدوک، از جمله غنی‌شدنی عناصر Lu و P, Zr, Eu, Y و Ce و Th, K منفی و Nb و Ti مبهم می‌باشد. شیلی این عناصر در سنگ‌های گرانیت‌وارد کانسار مس میدوک با مناطق قوم می‌دهد که کانسار مس پورفری "Chimboraza, Zaldivar, Scandida" مانند کانسارهای شیلی، دارای ویژگی‌های کانسارهای مس پورفری تشکیل شده در کانسارهای فعال قرار است.

با توجه به ویژگی‌های زئوشیمیایی و نیز با در نظر گرفتن موکتزين‌زمانی و مکانی توده‌های گرانیت‌وارد کانسار مس میدوک به نظر می‌رسد که این توده در یک محیط زمین- ساختی پس از برخورد و وابسته به کانسارهای فعال تشکیل شده است.

شکل 15 نمودار عکبیتی عناصر نادر خاکی توده‌های نفوذی میدوک پورفری هنجار شده بر اساس داده‌های [117].

شکل 14 نمودارهای Zn-SiO$_2$ و Zr-SiO$_2$ توسط کانسارهای زئوشیمیایی به دست آمده نسبت به گونه‌های اولیه بهینه شده‌اند [117]. در این نمودار رفتار عناصر فرعی و اصلی وابسته
شکل ۱۵ مقایسه رفتار عنصر فرعی و اصلی اساس ماده نقوشی کلانترایی در کاساری‌های مس پورفیری

شلی [۱۸] با رفتار این عنصر در توده گراینتوئیدی میدوک پورفیری- هنگر شده بر اساس داده‌های [۱۹].

خاستگاه احتمالی توده گراینتوئیدی میزبان کانسار مس

میدوک، ویزگی‌های زئوسیمبیاژ این توده مانند مقایسه پایین‌تر
عدد بیتوم (۱۰) = ۳۸ ۵امال مگنیوم (Mg$_{88}$) و قرار
گرفتن نمونه‌های این سنگ‌های مواقعی زئوسیمبیاژ
در موضع زئوسیمبیاژ را در پرکوری پورفیری
و Sr/Y>۴۰ ppm Sr>۴۰۰ ppm
برخوردار و نیز میزان
مقاومی‌های این ویزگی‌ها توده‌های نوع کوئنیچ به سن
می‌توان به این نتیجه رسید که توده گراینتوئیدی میدوک
پورفیری نمونه‌های از ذوب پوسته‌ی زئوسیمبیاژ
حامی شده‌اند. نتیجه این تهیه نمونه در سنگ‌های
در این سنگ‌ها را نیز می‌توان به دلایل
بک خاستگاه آمفیپلونی با مقایسه نسبت یازد گارن (حداکثر
+۳۰۰ کمس) در آنها باشته دانست که ویژگی
های سنگ‌های آداکیشی انجامیده از ذوب بخش‌های زئوسیمبیاژ
پوسته‌های اطراف دارای آمفیپلونی و گزنده در خاستگاه و در که
پوسته‌های گرانی‌دان نسبتاً زیاد گزارن (حداکثر
نیم گرانی‌دان) با مقایسه نسبتاً بزرگ که
+۳۰۰ کمس) در آنها باشته دانست که ویژگی

بردشته

بر اساس اطلاعات به دست آمده از بررسی‌های صحرایی،
سنگ‌شناسی، کاوش‌شناسی و زئوسیمبیاژ روی توده
گراینتوئیدی میدوک پورفیری، می‌توان به این نتیجه رسید که
۱. کاسار مس میدوک در کوه‌های آنششانی-پورفیریکی
ارومه‌ی دختر (نواردهج-ساردونیه) قرار دارد. کاسار سازی در

بررسی ویژگی‌های زئوسیمبیاژ و زئوسیمبیاژ توده
گراینتوئیدی میدوک پورفیری نشان داد که این توده در
موقعیت‌های پس از پایان فوران باعث در مرحله پس برخوردار
و مراحل نهایی کوئزیاژ که با بالا آمدن حمیر بوده است
تشکیل شده است. به عباراتی این توده تهیهای تمیز

و جایگزین شده است که فرورانش پوسته‌ی زئوسیمبیاژ نتوانی
که از زمان کرانه آغاز شده بود در پایان پوسته‌ی آغاز نتوان
با برخوردار ساخته کرده و ایران به پایان رسیده و زئوسیم
سختی فشاری و شرکت کوئزیاژ بر سرای ایران
جک‌فراش طی است. با توجه به مطالعات را و نیز مقدار بالای
عنوانی کلی در پیمان حاصل از ذوب‌خنثی نشان‌دهی
را اینکه که است. نابودی‌های پلاژیک‌کرده‌ها و ذوب‌شدن
فرآیندهای در سمن‌ها در مدت حال این
نحوه وابسته به این سنگ‌ها شده است.
اگر نظر خاستگاه تشکیل توده گراینتوئیدی میزبان کاسار مس

Chimborazo و Zaldivar

ب ۱۹۸۴۹ (Mg$_{88}$)
قدروانی

از آنجا که که به حساب‌های یافته‌های همان جغدان مجتمع مس سرچشمه، به ویژه امور تحقیقات این مجتمع و همچنین مجتمع معدنی مس میدوک انجام شده است، لذا از این دانه

از مدیریت حرفه‌ای امور تحقیق و تولید مجتمع مس سرچشمه جناب آقای مهندس فاضلی، رئیس مدیریت امور تحقیق و تولید این مجتمع مس میدوک جناب آقای مهندس صالحیان و رئیس مدیریت یکی از زمین شناسی مس میدوک جناب آقای مهندس رضایی، به خاطر همکاری‌های جانبه شان در انجام این پروژه سپاسگزاری کنیم. همچنین از داوران حرفه‌ای که به نظارت‌هایی ارزشمند خود بر غنی علی‌این مقاله افزودن نشان می‌کنیم.

مراجع

[22] علی ضاربی علی، رژتسبانی سیستم‌های کرانتزیتودی معدن مس میدوک و رابطه آن با کلینکراسوری مس، پایان نامه کارشناسی ارشد، دانشگاه پویلی سینا همدان، (1388).