بررسی سنج نگاری و یزی‌گرهای زئو‌شیمیایی و محیط تکنولوژی‌های توده‌گرایی قابل استفاده

میزان کانسار مس پورفیری میدوک، شهریارک - کرمان

علي علیرضايوی، فرهاد آبیانی، عباس مرادیان

چکیده: کانسار مس پورفیری میدوک در بخش شمال غربی مجموعه‌ای از کانسارهای مس (جنوب شرقی کمربند) که در انتهای شمال شرقی شهریارک واقع شده است. کانسار مس پورفیری میدوک با سطح متوسطی و ارتفاع متوسطی از آن را می‌توان به عنوان دسته‌بندی می‌کرد. این سرگرمی‌های بزرگی با سطح پوشش و در نظر گرفتن گروه‌های زئو‌شیمیایی، سنگ‌های گرانیتندی میدوک پورفیری جزء سری ماگمایی قلبی و کلیسیک قلبی و از نوع جنگه‌های متراکم است. این مجموعه‌ها از نظر شیمیایی از نظر ویژگی‌های بیونیک و کوارتز، کمند، و میکتسل نیزکانی همان دسته از دسته‌بندی می‌شوند. از نظر شیمیایی کانسار مس پورفیری میدوک در بخش شمال غربی مجموعه‌ای از کانسارهای منطقه از شمال شرقی کنار توده‌گرایی قابل استفاده است. امکان کارگیری این کانسار مس پورفیری در بخش شمال غربی کرمان در مراحل نهایی کوه‌های (زئیم تکنولوژی‌های فارشی) و پس از اتمام فرآیند بیشتری اقیانوسی ازدیاد نشودیت تشکیل و جایگزین شده است.

واژه‌های کلیدی: میدوک، کمربند، نفوذی ارموزی - دختر، زئیم‌ساختی تریاژ زمین‌ساختی پس از درختور.

مقدمه

بخش جنوب‌شرقی کمربند آتش‌نشانی - نفوذی ایران مرکزی که در استان کرمان واقع شده است (نوار دهجه-ساردtmlه). بکر از مناطق مهم تشکیل کانسارهای مس پورفیری در سیستم کوه‌های آلب-هیمالایا (شکل 1) نوار دهجه-ساردtmlه با طول 400 کیلومتر و عرض حدود 90 کیلومتر از گونه‌ی شمال غربی و غرب استان کرمان در مناطق انار و دهجه تا گونه‌ی جنوب شرقی بعنی جبال بارز جیرفت با رودند عمومی شمال غربی-جنوب شرقی گسترش دارد که کنار مس

ali.alirezaei.ir@gmail.com
دانه و به توده‌های نفودی با سن میوزن کمیتی تا بالایی (تنوده- های نفودی تبی کومنج) واپسین است. از مهم‌ترین ذخایر مس بورفی‌زایی در طول مجموعه‌ای انشفتالحی همگد- ساردوتیه، مشاخصه می‌توان به سرچشمه، میدوک، دره زار، نوجون، درالو، سرمشک و غیره اشاره کرد.

کانسار مس سرچشمه با ذخایری حدود ۱۲۰۰ میلیون تن مس با عیار ۰.۶۹ درصد که در استان خراسان واقع شده است [۱]، یکی از بزرگترین کانسارات مس با زیادی در سلسله کوه‌های آلب- هیمالیا را تشکیل می‌دهد.

کانسار مس میدوک که در ۱۲۳ کیلومتری شمال غربی کانسار مس سرچشمه قرار گرفته است، با ذخایری در حدود ۱۷۰ میلیون تن صربا عیار ۰.۸ درصد کانسار مس سرچشمه، مهم‌ترین کانسار مس بورفی‌زایی در استان خراسان است. اولین مرجع از تولیدهای میس حج طی سال ۱۳۹۴ بر روی این کانسار شروع شد و تا کنون بیش از ۵۰ هزار و ۷ هزار تن نیز از تولیدات این کانسار به وجود آمده است. این کانسار احتمالاً ویژگی‌هایی ندارد که تا به حال داشته باشد.

در این پژوهش نیز سعی شده تا با استفاده از داده‌های زئوسیماتی و نیز بررسی سل‌گشت‌های سیگنال‌سی میکروسکوپی، به بررسی خاستگاه زئوسیماتی و ویژگی‌های سیگنال‌سی کانسار مس بورفی‌زایی میدوک پرداخته شود.

شکل ۱: مکان‌یابی کمربند دهه- ساردوتیه روی زون ارومیه- دختر [۱۲۰ و ب] مکان‌یابی کانسار مس میدوک روی نوار دهه- ساردوتیه- نقش با تغییرات از [۱۰۴].
میدوک به فعالیت‌های دگرسانی شدید هرما با این توده‌ی گرانیتوئیدی، میدوک پورفیری در میانه میانی قطع شده‌است که این توده عبارتند از دیوبورفیری، کوارتزدیورپورفیری و گرانودیورپورفیری می‌باشد. کانسیزای کانسیز میدوک پورفیری

Scheme 2: نقشه‌ی زمین‌شناسی منطقه‌ی شهریاک و موقعیت کانسیز میدوک روبی آن- انتشار با تغییرات از [6].

Scheme 3: نماینده زمین‌شناسی وابسته به واحدهای آتش‌نشانی در برگیرندی کانسیز میدوک (مجموعه‌ی آتش‌نشانی رازک).
روش بررسی
بررسی توده‌گرایی گرانیت‌های مس میدوک در دو بخش صخره‌ای و ازمایشگاهی انجام گرفت. در بخش صخره‌ای از گستره‌ای مورد نظر تعداد ۱۵۰ نمونه از املاک مختلف قم‌های یی‌پی‌چیوی شماره‌های ۵۵ و ۴۵ در پوشش مشده. در شکل ۴ موفقیت گم‌بی‌های مورد بررسی نشان داده شده است. تعداد ۱۰۰ مقطع نازک از نمونه‌های برداشت شده برای بررسی‌های سنجشی میکروسکوپی نهی شدند. پس از بررسی سنجشی‌سنجشی نمونه‌ها، تعداد ۴۶ نمونه از سنجش‌های سالم و کیفی دیگرسان شده برای تجزیه‌ی شیمیایی عناصر اصلی با دستگاه XRF و ICP-MS نیز انتخاب گردیده و مقدار نادری با وجود در ALS Chemex کانادا ارسال و در انتخاب و به ازمایشگاههای زمین‌شناسی کانسار مس پورفیری میدوک (قلی با تغییرات آر۴۱۲) دایره‌های توده‌ی فوق‌العاده مورد بررسی را نشان می‌دهد.

شکل ۴: نقشه زمین‌شناسی کانسار مس پورفیری میدوک (قلی با تغییرات آر۴۱۲) دایره‌های توده‌ی فوق‌العاده مورد بررسی را نشان می‌دهد.
بررسی سنجشگرایی و یکسانی زبان‌شماری‌های مختلف و محیط تکثیف‌گام‌های توده ...
بر جای مانده این است (شکل 8). کانی‌های کادره‌ی دیگری از کانی‌های تیراند که کم‌تر از ۳ درصد حجمی نمونه‌ها را تشکیل می‌دهند و بیشتر به صورت یک شکل در تمامی نمونه‌ها حضور داشته و اندازه‌ای آنها از ۰.۵ تا ۱ میلی‌متر تغییر می‌کند. کانی‌های ثانویه‌ی حاصل از درگیری‌های کانی‌های اصلی و فرعی که در متن سگ دیده می‌شوند، عبارتند از: سرسپیت و فلدسپار پتاسیم حاصل از تجزیه شیبدپلاژیوکلازها. کانی‌های رسی حاصل از تجزیه سیانیت‌های پتاسیمی و کربندی در نمونه‌های ثانویه و رسیسپیتی حاصل از تجزیه پتاسیمی اولیه.

شکل ۵ تصاویری از فنوتیسته‌های پلاژیوکلاز (PI) وابسته به توده‌ی نفوذی میدوک پوهریزی ک مالک حاصل خاکی‌سانی و منطقه‌ی توسانی. در این دیده‌ی می‌شود و بیشتر کاهش سطحی سیانتی، سرسپیتی و کربندی شده‌اند. نور XPL.

شکل ۶ اینکریسته‌های کوارتز با حاشیه‌ی انحلالی و خلوجی-نور XPL.

شکل ۷ انواع بیوتیسته‌های موجود در توده‌ی گراین‌دهی میدوک پوهریزی (شکل سمت راست نور PPL و شکل سمت چپ نور XPL).
گرانودوریت ها نیز در مقاطع میکروسکوپی اغلب درازای یافته پورفیری و دانه ای بوده و گاه بانفیت های انحلالی در حاشیه پلاژیوکلازها و خاوشی موجب کارترنگ نیز نشان می‌دهد. کاتی‌های آنها را کارترنگ (22 تا 30 درصد) به صورت بی شکل و نیمه خود ریخت، پلاژیوکلاز (40 تا 50 درصد) با ترکیب الیت‌وکلاز- آندزین، منطقه‌بندی عایل و نوسانی مالک چندبه‌مختشی و به صورت خود شکل و نیمه خود شکل و فلسفی قلب‌پایی (حدود 10 تا 16 درصد) بیشتر از نوع ازترنش تشکیل می‌دهد. بلوه‌بریه‌ها به صورت یا شکل و هم‌شکل دار بوده و حالی قابل اندازه‌گیری در سطح تعریز از آنها دیده می‌شود. کاتی‌های نیمه‌ای این سنگ‌ها نیز نیایراندر از امیفیولیت (حدود 7 درصد) با پروتیت (حدود 100 درصد) و همچنین آپتیت، اسفین و ژرژن به عنوان کاتی‌های فرعی.

золотی‌شیمی‌دان‌انصاری‌المی

در این بخش ویژگی‌های زئوستیمی‌دان‌های یی‌های جویین شماره ۳۸۴، ۵۸ و ۵۸ وایسه به توده‌های گرانیت‌نیز میدوک پورفیری سورد بررسی قرار گرفتند. از انجا که در بسیاری از بررسی‌های زئوستیمی‌دان‌های گرانیت‌نیز هرچه ذخیره مس پورفیری دگرانیز و فیلتره‌های گرانیت‌نیز حاصل اهمیت‌اند، لذا در این بخش می‌توان به استن‌اخ طیف‌های میکروسکوپی و نظر گرفتن LOI علاوه بر بررسی‌های میکروسکوپی و در نظر گرفتن نمونه‌ها، از نمونه‌های (۱۰٪) اینستاده شود. در این نمونه‌ها با استفاده از شاخص‌های بانفیت، سدی، دگرانیز و نیز نیایراندر با استفاده از شاخص‌های بازی و نیایراندر SiO2 (شکل ۹) نسبت به SiO2 می‌توان (شکل ۸) نسبت به SiO2 می‌توان (شکل ۸)
شکل 9 تعبیه دگرگانی نمونه‌ها وابسته به توده‌گرانتولوئید میدوک پورفیری با استفاده از نمودارهای [8,9].

شکل 10 نمودار نام‌گذاری سنگ‌های گرانتولوئید میدوک که بررسی می‌شود [10].
شکل 11 الف - نمودار تغییرات SiO2, Na2O, CaO و Fe2O3 پر از تغییرات K2O, Al2O3, Fe2O3, SiO2 و MgO 

نمودار [11] ویژگی‌های شاخه اشباع از آلومینیوم را نشان می‌دهد که در شکل 12 اورده شده است. جانکی در این نمودار دیده می‌شود. نمونه‌های مورد بررسی در گستره‌ی متألیفین تا برآوری‌های قرار می‌گیرند. با توجه به حضور کانی‌های ته‌های آسیا‌های برون‌پویه و پویه در سنگ‌های آنها، نیز با توجه به اینکه پویه‌های آسیا‌های برون‌پویه در آنها، ماهیت پراکنده‌های آن‌ها نیز توان به فراپنده‌های پویه در بخش‌های میانی و بالایی پویه‌های قرار داشته و دانست. 

شکل 12 الف - نمودار تغییرات SiO2, Na2O, CaO و Fe2O3 پر از تغییرات K2O, Al2O3, Fe2O3, SiO2 و MgO 

نمودار [11] ویژگی‌های شاخه اشباع از آلومینیوم را نشان می‌دهد که در شکل 12 اورده شده است. جانکی در این نمودار دیده می‌شود. نمونه‌های مورد بررسی در گستره‌ی متألیفین تا برآوری‌های قرار می‌گیرند. با توجه به حضور کانی‌های ته‌های آسیا‌های برون‌پویه و پویه در سنگ‌های آنها، نیز با توجه به اینکه پویه‌های آسیا‌های برون‌پویه در آنها، ماهیت پراکنده‌های آن‌ها نیز توان به فراپنده‌های پویه در بخش‌های میانی و بالایی پویه‌های قرار داشته و دانست. 

شکل 12 الف - نمودار تغییرات SiO2, Na2O, CaO و Fe2O3 پر از تغییرات K2O, Al2O3, Fe2O3, SiO2 و MgO 

نمودار [11] ویژگی‌های شاخه اشباع از آلومینیوم را نشان می‌دهد که در شکل 12 اورده شده است. جانکی در این نمودار دیده می‌شود. نمونه‌های مورد بررسی در گستره‌ی متألیفین تا برآوری‌های قرار می‌گیرند. با توجه به حضور کانی‌های ته‌های آسیا‌های برون‌پویه و پویه در سنگ‌های آنها، نیز با توجه به اینکه پویه‌های آسیا‌های برون‌پویه در آنها، ماهیت پراکنده‌های آن‌ها نیز توان به فراپنده‌های پویه در بخش‌های میانی و بالایی پویه‌های قرار داشته و دانست. 

شکل 12 الف - نمودار تغییرات SiO2, Na2O, CaO و Fe2O3 پر از تغییرات K2O, Al2O3, Fe2O3, SiO2 و MgO 

نمودار [11] ویژگی‌های شاخه اشباع از آلومینیوم را نشان می‌دهد که در شکل 12 اورده شده است. جانکی در این نمودار دیده می‌شود. نمونه‌های مورد بررسی در گستره‌ی متألیفین تا برآوری‌های قرار می‌گیرند. با توجه به حضور کانی‌های ته‌های آسیا‌های برون‌پویه و پویه در سنگ‌های آنها، نیز با توجه به اینکه پویه‌های آسیا‌های برون‌پویه در آنها، ماهیت پراکنده‌های آن‌ها نیز توان به فراپنده‌های پویه در بخش‌های میانی و بالایی پویه‌های قرار داشته و دانست.
شکل 12 نمودار [12] که نشان دهنده موقعیت نمونه‌های مورد بررسی در گسترده‌ی متالومین تا پرانه‌ای است.


زنتشیمی عناصر نادر خاکی و عناصر فرعی میدوک پورفیری

استفاده از عناصر نادر خاکی و عناصر فرعی به دلیل اینکه این عناصر غالباً ساکن هستند و فرا بوده‌های درگرسیو و گرمایی کمترین تأثیر را روی این عناصر دارند. در این الگوی بررسی چگونگی زمین‌ساختی سبک‌ها و نیز شناخت و یزی‌های زئونیشیماپی مانگا سبب اهمیت دارد. اگر پراکندگی عناصر نادر خاکی نمونه‌های میدوک پورفیری برآسال داده‌های کنتریت [11] ترتیب شده است (شکل ۱۵). در این نمودار شیب نمودار از سمت عناصر نادر خاکی سبک به سمت عناصر نادر خاکی سبک، کمی شود. به عبارتی در نمودار توده‌ای میدوک پورفیری یک غنی شدگی زیاد در LREE و یک غنی

به‌منظور جدایی گرایی‌هاً نوع I از A، نمونه‌ها در نمودار Pb-SiO2 نسبت به Zr و SiO2 نسبت به Pb نشان داده شده است. در این نمودار Zr به دوره‌های کبودره‌ای (K2O/Na2O) و Nb به دوره‌های میزان Cr و Ni، به عنوان میانگین K2O/Na2O هورنblend و بپتیت، بافت همسان میان دنا ریزدان و بافت پورفیری، نبود به اکسپلیسیا و در نهایت عدم وجود بروتونیم- های با خاستگاه پیشنهای قیرار در ستره‌های گرایی‌هاً گرایی کاس افرم میدوک، نشان دهنده‌ی وابستگی ستره‌های پاد شده به گرایی‌هاً نوع I هستند.
به کانسار مس میدوک، از جمله غی شدگی عناصر 

Lu و P, Zr, Eu, Y منفی Ce و Th, K

می‌تواند کانسار بازی و در کانسار مس میدوک به نظر گرفته موقتیت زمانی و مکانی تبدیلی را که این تبدیل در زمین اتفاق می‌افتد. نشانه‌ی این در برخورد و واکنش به کانسارهای خاصی از فعالیت تشکیل شده است.

شکل ۱۴ نمودارهای Zn-SiO۲ و Zr-SiO۲ (۱۷) نشان می‌دهد که نمودارهای منطقه‌ای مورمور فلزی در گستره گرانیت‌های نوع ۱ قرار گرفته‌اند.

شکل ۱۵ نمودار عکبوتی عناصر نادر خاکی توده میدوک پرآکنده هنجار شده بر اساس داده‌های (۱۷).
میدوک، ویژگی‌های زنوشیمیایی این توده مانند مقدار پایین‌تر عدت ویژگی‌های ۳۸-۴۹ میلی‌میکروجرنیک (Mg%) در مقابل با مگان‌های حامل شده از ذوب پوسته ایالیسیس‌های فورور (۴۸-۵۰) و قرار گرفتن نمونه‌های این سنگ‌ها در موقعیت زمین-ساختی پسا و Sr/Y>۴۰ ppm و پر‌حوز و نیز میزان مقایسه‌ای این ویژگی‌ها با توده‌های نویز کوژن به سن میوئیس می‌رسد. با این حال، دستگاه وونگ [۱۹] می‌توان به این نتیجه رسید که توده‌های گریتیوندن میدوک پورفریه نمونه‌هایی از دوب پوسته ایالیسیس فورورند. 

حالت شده باشد. بنابراین مانند کالسارهای فوق به دو بخش‌های زیرپیستی پوسته قاره‌ای ضخیم شده و استبداد باشد. در این سنگ‌ها را نیز می‌توان به دخالت یک خاستگاه آمپیلولیتی با مقدار نسبتاً زیاد گارنت (حداقل ۲۵-۴۰ درصد) در آنها وابسته دانست که به ویژگی‌های سنگ‌های آدمی‌کی انجامیده از ذوب به شکل‌های نیز پوسته‌های قاره‌ای آمپیلولی و گارنت در خاستگاه و در یک محیط زمین-ساختی برخورده و فشاری همکاری دارد [۲۲].

بردشت

براساس اطلاعات به دست آمده از بررسی‌های صحرایی، سنگ‌شناسی، کمیت‌ساختی و زنوشیمیایی روز توده گریتیوندن میدوک پورفریه، می‌توان به این نتیجه رسید که:

- این کاسار مس میدوک در کریستال انثفاسی-پورفریکی ارومیه-دخت-نادرج-سادوئیه قرار دارد. کاسار سازی در

- خاستگاه احتمالی توده گریتیوندن میدوک پورفریه: زنور و نظریه زمین‌ساختی توده گریتیوندن میدوک پورفریه نشان داد که این توده در موقعیت انسان دار در مرحله‌ی پسی نیز و مراحل نهایی کوژنی که با اندام‌های همراه بوده است. تشکیل شده است. به عباراتی این توده زمین-ساختی و ژاپنی شده است که فورعات پوسته‌ای اکوکولی‌های نویزی که از زمان کرانش آغاز شده بود در پایان پاترون-آغاز نئوژنی نیز کروزیر، به ویژه در صفحات غرب و جنوب به پایان رسیده و ویژه

زمن ساختی فشاری و شرایط کوژنی بسیاری ایران حکمرانی شده است. با توجه به مطالعه‌ای این توده از

چکیده: نسبتاً بالای عناصر نادر خاکی Eu و نیوبن‌هایی آرتیموی منفی در ال‌ا،‌ای نیوبن-۲۰۰ ppm یادگیری و بوانتهای نمونه‌هایی که در آنها نیز کالسکالوک‌های حضور داشته است و یا آمپیلولی به عنوان یکی اصلی در پسماند حاصل از ذوب‌خیشی نقش اصلی را از آن کرده است. با استفاده از ال‌ا،‌ای نیوبن-۲۰۰ ppm در ماکم‌های مادر این Eu و Sr تأثیرگذار بوده، باعث میزان Sr مورد حاصل بازی در نیوبن‌هایی منفی این دو عنصر در نمودارهای عنکبوتی وابسته به این سنگ‌ها شده است. از نظر خاستگاه تشکیل توده گریتیوندن میدوک پورفریه نمایش داده شده است. این نتیجه می‌تواند در صورت استفاده از "نمودارهای عنکبوتی" به دست آمده از بررسی‌های صحرایی، سنگ‌شناسی، کمیت‌ساختی و زنوشیمیایی روز توده گریتیوندن میدوک پورفریه، می‌توان به این نتیجه رسید که:

- این کاسار مس میدوک در کریستال انثفاسی-پورفریکی ارومیه-دخت-نادرج-سادوئیه قرار دارد. کاسار سازی در
ان کاسار و استنیه به نموده‌ی فنودی‌ی دانشی‌تر تشکیلی از گرانیوبوریت، کوارتزدوریت و دیوریت با سن میوسین میانی است، که این نمودنی‌نبلانی استنیشانی وابسته به همبافت رازگه به سنسی را قطع کرده است.

2- از نظر ویژگی‌های سینشانی‌های میکروسکوپی، توده، نیمه عمیق میزبان کانسار مس میدوک (میکروبیوریت) از کوارتزدوریت، دیوریت و گرانیوبوریت تشکیل شده است.

کانسی تشکیل دهنده این مجموعه عبارت است از یلزاپولکلار، فلدسیپر یاناسیم و گوارنتر. بیوپتیت و هورونیند نیز کانسی‌های تبیدی این توده را شامل می‌شوند. سرسپتیت شدی در این توده با رگه‌های سیلیسیک بیوپتیت‌های نانویی، درگریننیکاپ نانویی گروه گنتیکی زیرین شدن که گروه‌گی کانسی‌های یلزاپولکلار، فلدسیپر یاناسیم و کانسی‌های تبیده حاصل شده، کانسی نانویی نانویی این مجموعه را تشکیل می‌دهد.

همچنید در مقاطع میکروسکوپی می‌تواند دو نوع بیوپتیت شدید بیوپتیت‌های ماگماتیک و بیوپتیت‌های نانویی مشاهده کرد.

3- این سنگ‌های از نظر ویژگی‌های زئوشیمیایی، ماهیت کلسیک و کلسیک غنی‌دلی را نشان می‌دهند. علی‌رغم این سنگ‌ها از نواحی LILE و فلایور شدن آنها از نواحی HFS با هندسه‌ی آنها و توده‌ی غیر مس-بیوپتیت‌های نانویی به حاشیه‌ی قرار گرفتن نشان می‌دهد.

4- میزان کلسیک و پلیلسیک بیوپتیت‌های نانویی که در توده‌ی غیر بیوپتیتی نیز به دنبال وجود می‌تواند در مراحل پس از بروخار و مراحل نهایی کوه‌های بی‌پالا آمدگی همراه بوده است. همچنین تشکیل شده است.

5- از نظر خاستگاه تشکیل توده‌ی گرانیوبوریت میزبان کانسار مس میدوک و بیوپتیت‌های زئوشیمیایی این توده از منطقه ویژه، قرار گرفتن نمونه‌های این سنگ‌ها در منطقه به دنبال پس از بروخار و مقایسه‌ی این نمونه‌ها با نمونه‌های غیر بیوپتیتی این توده به دنبال پیشنهاد می‌گردد. میزان بیوپتیت‌های نانویی که در توده‌ی گرانیوبوریت میزبان کانسار به دنبال بروخار و مراحل نهایی کوه‌های بی‌پالا آمده است. همچنین تشکیل شده است.


جرد 20 شماره 3، 1391
بررسی سینگنگاری، ویژگی‌های زئوشیمیایی و محیط تکثبات میزبان توده‌های شیروشمالی-غربی کرمان 453

فارسی
[22] علی‌رضایی علی، رژا‌شیمنی سنگ‌های شناسایی را راپید آن برای کارشناسان مس، بارزان تهران کارشناسی ارشد، دانشگاه بروکلین سیتی همدان (1388).