بررسی سنگ نگاری، ویژگی‌های زئو‌شیمیایی و محیط تکتونوماگماپی توده‌گرایی‌پذیر

میزان کانسار مس پورفیری میدوم، شهریارک - کرمان

علي علیرضایی، فرهاد آلیانی، عباس مرادیان

چکیده: کانسار مس پورفیری میدوم در بخش شمال غربی مجموعه آنفشتانی، رسوبی دهج - سارودونه کرمان (جنوب شرقی کمربند آنفشتانی - نفوذی ارومیه - دختر) و در ۴۴ کیلومتری شمال شرق شهرستان شهبازبک واقع شده است. کانسار مس پورفیری میدوم با سرعت ۱۶.۵ میلیون سال، در سنگهای آنفشتانی و آذرآوری انسن با ترکیب آندزیت، اندزیت بازالت و داسیت (مجموعه رازک) جایگزین شده است. بررسی‌های سنجش‌سنجش‌گری میکروآبی نشان می‌دهد که این توده از طریق ورود، کوارتزوریت و نیز میکروپتیسم محیط رسوبی و کوارتز را شکل می‌دهد. این کانسار مس پورفیری محیط رسوبی و داسیت را شکل می‌دهد. این کانسار مس پورفیری محیط رسوبی و داسیت را شکل می‌دهد.

مقدمه

بخش جنوب شرقی کمربند آنفشتانی - نفوذی ایران مرکزی که در ارتفاع واقع شده است (نوار دهج - ساردویه) یکی از مناطق مهم تکتونوماگماپی توده‌گرایی‌پذیر در سیستم کوه‌های آل – هیمالاسا (شکل ۱) خاک شناسی به طول ۵۳۰ کیلومتر و عرض حدود ۲۰ کیلومتر از گوش به شمال غربی - غرب است. کامران در مناطق این نوار و دهج تا گنبد به طول ۱۰ کیلومتر و عرض حدود ۱۰ کیلومتر از گوش به شمال غربی - جنوب شرقی گسترش دارد که کانسار مس پورفیری در بخش شمال غربی آن قرار گرفته است. فعالیت‌های آنفشتانی ویژه‌که در این نوار - الیگوست در طول کمربند ارومیه - دختر رخ داده است، نتیجه ای از پروانه پوسته ایونکلیس شیمانی به زمرد صفحه ایران مرکزی در راستای درون‌زایگر است. اما کاپی سازی گسترده‌ترین نوع پورفیری در طول کمربند ارومیه - دختر، بخش شیم‌رازی به بخش جنوب شرقی این کمربند (مجموعه آنفشتانی) دهج- ساردویه در استان کرمان بوده که این کاپی‌سازی‌های مس پورفیری بعده از این نوار پوسته ایونکلیس شیمانی برخوردار به

al.ali.rezaei.ir@gmail.com

نویسنده مسئول: تلفن: ۹۰۲۲۹۹۳۲۱۲، نمایر: ۸۲۵۳۴۶۶۷۸، پست الکترونیکی: ۸۰۱۱۱(۰۸۱)
داده و به توده‌های نفوذی با سی سیوس میانی تا بالایی (توده-های نفوذی تپfortunate) وابسته است. از مهم‌ترین ذخایر مس بورفی‌های در طول مجموعهٔ انسفشن‌های هدهد-ساردودیه می‌توان به سرچشمه می‌ردد، دره راز، نوجون و اشکاتی سرمکش و غیره اشاره کرد.

کانسرو مس سرچشمه به ذخایری حدد 1200 میلیون تن مس با عیار 0.69% که در استان کرمان واقع شده است [1] یکی از بزرگ‌ترین کانسرو مس در سیستم کوه‌های ایران- هیمالیا را تشکیل می‌دهد.

کانسرو مس میدوک که در 132 کیلومتری شمال غربی کانسرو سرچشمه قرار گرفته است، با ذخایری در حدد 1500 میلیون تن مس با عیار 0.8% پس از کانسرو مس سرچشمه، مهم‌ترین کانسرو مس بورفی‌های در استان کرمان است. اولین مرحله از فعالیت‌های پی‌جمعی از سال 1944 بر روی این کانسرو شروع شد و با کنار برسیدن 500 تونل و 5000 جویی در گستردگی این معدن حفر شد. از بررسی‌های انجام شده روی این کانسرو، می‌توان به [2-4] اشاره کرد. در این پژوهش نیز سه شاخص نا استفاده از داده‌های تیزهوشی‌ها و نیز بررسی‌های سنجش‌های مکرو‌سکوپی به بررسی نسبت‌های زمین‌ساخت و بررسی‌های سنجش‌های کانسرو مس بورفی‌های می‌پرداخته شد.

مجله بورشناستی و کایی شناسی ایران

علمی‌های، آیاًی، مرادیان

دف[44] مولف مدفون شده است. 75 میلیون سال است [2].

شکل 1: الگوی سنجش درجه-ساردودیه بر روی زون اروپنه-در ختر (200 و ب) موقعیت کانسرو مس میدوک روی نوار ویژه-ساردودیه-نقش با تغییرات از [21].
نمای زمین‌شناسی و انتخاب پارسه‌ی میدوک با وفاداری آن به برگرنشینی کاسه‌ای میدوک (مجموعه‌ی آنسفتاسی رازک).

نمای زمین‌شناسی و انتخاب پارسه‌ی میدوک با وفاداری آن به برگرنشینی کاسه‌ای میدوک (مجموعه‌ی آنسفتاسی رازک).

مجسمه‌ای آنسفتاسی رازک با توده‌ای گرانتینی‌ترین میدوک پورفیری در میوسن میانی قطع شده است که این توده عبارتند از دیوریت پورفیری، کوارتزوریت پورفیری و گراندیوریت پورفیری می‌باشد. کاسه‌ای‌های کاسه‌ای میدوک پورفیری 

مجسمه‌ای آنسفتاسی رازک با توده‌ای گرانتینی‌ترین میدوک پورفیری در میوسن میانی قطع شده است که این توده عبارتند از دیوریت پورفیری، کوارتزوریت پورفیری و گراندیوریت پورفیری می‌باشد. کاسه‌ای‌های کاسه‌ای میدوک پورفیری
روش بررسی

بررسی توده گرانیتوندی مس میدوک در دو بخش صحرایی و ازمایشگاهی انجام گرفت. در بخش صحرایی از گستره مورد نظر تعداد 150 نمونه از امتداد مختلف گمانه‌های پی‌پی‌پی شماره‌های ۵۴ و ۵۵ برداشت شدند. در شکل ۴ مکتوب

نری‌ز از نمونه‌های برداشت شده برای بررسی‌های سیگ‌شنهایی مکروکمپیوتری نهی شدند. پس از بررسی سیگ‌شنهایی نمونه‌ها تعدیل ۵۴ نمونه از سیگ‌های سالم و کم‌درگی استخراج شدند. برای نمونه‌های سالم برای انتخاب و به‌هم ازمایشگاه کانادا ارسال و در ALS Chemex

شکل ۴ نشان‌دهنده زمین‌شناسی کانست مس بورفوری میدوک (نقل با تغییرات از [۲۱])، دایره‌های نویز موقعیت‌گذاری می‌سازند. مورد بررسی را نشان می‌دهد.
بررسی سنجشگرایی و یونجه‌های رشومی‌سازی و محدودیت تکنولوژی‌های توهد ...
و هورنلند. از کاتیهای فرعی می توان آبیانت و زیبرک را نام برد که از درصد بسیار جزئی برخوردند و همچنین آنها خودشکنند. بیشتر آبیانتها به صورت میانی در بیوتیت‌ها و کمی در هورنلندها حضور دارند. زمینه‌های سنگ‌های مورد بررسی بیشتر از کوارتز، سربیت، پلاژيولازیت، پلاژیکلاز، پلاژیکولازیت، و مدغار کمتر بیوتیت تشکیل شده است. افزایش سطح‌های بورفیری و ریزدانه ناهسان است. بافت‌های دیگر نظیر بافت انجیلی در حاشیه و درون پلاژیولازیت‌ها و خاموشه موجی در کوارتز‌ها نیز مشاهده می‌شوند.

بر جای مانده است (شکل 8). کاتیهای کدر گروه دیگری از کاتیهای تیره‌نگرد که کمتر از ۳ درصد حجمی نمونه‌ها را تشکیل می‌دهند و بیشتر به صورت یک شکل در تمامی نمونه‌ها حضور داشته و اندکی آنها از ۰.۵ تا ۱ میل متر تغییر می‌کند. کاتیهای تانیتی حاصل از درکرسی کاتیهای اصلی و فرعی که در متن سنگ دیده می‌شوند، عبارتند از: سرسیت و فلدسپار برتاسیم حاصل از تجزیه شدید پلاژیوکلازهای کاتیهای رسمی حاصل از تجزیه پتاسیم فلدسپارهای زمینه، کلریت و بیوتیت‌ها تانیتی و سرسیت حاصل از تجزیه بیوتیت‌های اولیه.

شکل ۵: تصاویری از فتوکریستهای پلاژیوکلاز (PI) وابسته به توده‌ی نفوذی میدوک بورفیری ک مالک‌های بلی سنتنیک و منطقه‌ای نوسانی در انها دیده می‌شود و نیز تحت تأثیر دگرگونی تا حدودی سربیتی و کلریتی شده‌اند. XPL.

شکل ۶: فتوکریستهای کوارتز با حاشیه‌ی انجیلی و خلخی - نور XPL.

شکل ۷: اتاق بیوتیت‌های موجود در توده گرایش‌بردارید میدوک بورفیری (شکل سمت راست) نور XPL و شکل سمت چپ نور PPL.
گرانولوپریت ها نیز در مقاطع میکروسکوپی اغلب دارای بافت پورفییری و دانه ای بوده و گاه بافت‌های انحلالی و حاشیه‌ای پالازیکالزا و خاموشی‌های موجب در کوارتزها نیز نشان می‌دهند. کانی‌های آن‌ها را کوارتز (قز 30 درصد) به صورت یک شکل به نام میز یود اورز، پلاژیکالزا (قز 50 درصد) با ترکیب الیوکالزا - آندزین، منطقه بندی عادی و نوسانی. این فلزات شامل قلیایی (جدید 10 درصد) و کوارتز نموداری قرار می‌گیرند.

در طول جدایی بلوری و پارامترهای جدیدی را با تشکیل سری تولیدی و آهن-قلیایی پیشنهاد کردند که در آن سری‌های پیش‌بازده با نام‌های Magnesian و Ferroan 

-11 امف دیده می‌شود، به‌شمار نمودهای گرانولوپریتی وابسته به کلسار مس میدوک در کوستره‌های مناسب‌های آهن-قلیایی قبلی، و بطور کلی به‌منظور کثرت گرانولوپریتی (Malli) شامل چنین مقداری Na2O که یافت می‌شود به سیرو-کلسار (شکل 11 ب) نمودهای گرانولوپریتی کلسار مس میدوک با ترکیب مجموعی Na2O + K2O و CuO بین 58 تا 9 حس درصد وزنی و میزان CaO بین 123 تا 48 درصد وزنی در آن نمودار در کوستره‌های قلیایی و کلسار قلیایی قرار گرفته‌اند. در نهایت نمودار با افزایش میزان SiO2 شاخص می‌نیز به طور جزئی افزایش یافته است.

نتیجهٔ اکثر گزارش‌هایمان نشان می‌دهد که بافت‌های انحلالی و حاشیه‌ای پلاژیکالزا و خاموشی‌های موجب در کوارتزها نیز نشان می‌دهند. کانی‌های آن‌ها را کوارتز (قز 30 درصد) به صورت یک شکل به نام میز یود اورز، پلاژیکالزا (قز 50 درصد) با ترکیب الیوکالزا-آندزین، منطقه بندی عادی و نوسانی.
شکل ۹ تعبین دگرگونی نمونه‌های وابسته به توده گرانیتولیدی میدوک پورفیری با استفاده از نمودارهای [۸۹].

1- Ultramafic rock
2- Melteigite
3- Teralite
4- Alkali gabbro
5- Gabbro
6- Gabbro norite
7- Ijolite
8- Essexite
9- Syenogabbro
10- Monzogabbro
11- Gabbrodiorite
12- Syenodiorite
13- Monzonite
14- Monzodiorite
15- Diorite
16- Nepheline syenite
17- Syenite
18- Quartzsyenite
19- Quartzmonzonite
20- Alkaligranite
21- Granite
22- Granodiorite
23- Tonalite

شکل ۱۰ نمودار نامگذاری سنگ‌های گرانیتولیدی به‌دست آمده کل‌نمره میدوک [۱۰۱].
نمودار (11) ویژگی‌های شاخه انشی از آلومینوم را نشان می‌دهد که در شکل 12 نشان داده است. تجربه کننده در این نمودار می‌تواند نمونه‌های مورد بررسی در گستره‌ی متفاوت‌ترین ناپذیرپذیر قرار گیرند. البته به خصوص کانال‌های اصلی خورشید و بیونتین در سنتگهای منطقه و عدم حضور کانال‌های ماهیت پرالومینوس آن‌ها نیز می‌تواند با نیز ناسیون برای آینده‌های همی در پیش‌های میانی و بالایی پوست‌های قرارهای وابسته دانست.

نمودار (12) ویژگی‌های شاخه انشی از آلومینوم را نشان می‌دهد که در شکل 12 نشان داده است. تجربه کننده در این نمودار می‌تواند نمونه‌های مورد بررسی در گستره‌ی متفاوت‌ترین ناپذیرپذیر قرار گیرند. البته به خصوص کانال‌های اصلی خورشید و بیونتین در سنتگهای منطقه و عدم حضور کانال‌های ماهیت پرالومینوس آن‌ها نیز می‌تواند با نیز ناسیون برای آینده‌های همی در پیش‌های میانی و بالایی پوست‌های قرارهای وابسته دانست.

نمودار (12) ویژگی‌های شاخه انشی از آلومینوم را نشان می‌دهد که در شکل 12 نشان داده است. تجربه کننده در این نمودار می‌تواند نمونه‌های مورد بررسی در گستره‌ی متفاوت‌ترین ناپذیرپذیر قرار گیرند. البته به خصوص کانال‌های اصلی خورشید و بیونتین در سنتگهای منطقه و عدم حضور کانال‌های ماهیت پرالومینوس آن‌ها نیز می‌تواند با نیز ناسیون برای آینده‌های همی در پیش‌های میانی و بالایی پوست‌های قرارهای وابسته دانست.

نمودار (11) ویژگی‌های شاخه انشی از آلومینوم را نشان می‌دهد که در شکل 12 نشان داده است. تجربه کننده در این نمودار می‌تواند نمونه‌های مورد بررسی در گستره‌ی متفاوت‌ترین ناپذیرپذیر قرار گیرند. البته به خصوص کانال‌های اصلی خورشید و بیونتین در سنتگهای منطقه و عدم حضور کانال‌های ماهیت پرالومینوس آن‌ها نیز می‌تواند با نیز ناسیون برای آینده‌های همی در پیش‌های میانی و بالایی پوست‌های قرارهای وابسته دانست.

نمودار (11) ویژگی‌های شاخه انشی از آلومینوم را نشان می‌دهد که در شکل 12 نشان داده است. تجربه کننده در این نمودار می‌تواند نمونه‌های مورد بررسی در گستره‌ی متفاوت‌ترین ناپذیرپذیر قرار گیرند. البته به خصوص کانال‌های اصلی خورشید و بیونتین در سنتگهای منطقه و عدم حضور کانال‌های ماهیت پرالومینوس آن‌ها نیز می‌تواند با نیز ناسیون برای آینده‌های همی در پیش‌های میانی و بالایی پوست‌های قرارهای وابسته دانست.

نمودار (11) ویژگی‌های شاخه انشی از آلومینوم را نشان می‌دهد که در شکل 12 نشان داده است. تجربه کننده در این نمودار می‌تواند نمونه‌های مورد بررسی در گستره‌ی متفاوت‌ترین ناپذیرپذیر قرار گیرند. البته به خصوص کانال‌های اصلی خورشید و بیونتین در سنتگهای منطقه و عدم حضور کانال‌های ماهیت پرالومینوس آن‌ها نیز می‌تواند با نیز ناسیون برای آینده‌های همی در پیش‌های میانی و بالایی پوست‌های قرارهای وابسته دانست.

نمودار (11) ویژگی‌های شاخه انشی از آلومینوم را نشان می‌دهد که در شکل 12 نشان داده است. تجربه کننده در این نمودار می‌تواند نمونه‌های مورد بررسی در گستره‌ی متفاوت‌ترین ناپذیرپذیر قرار گیرند. البته به خصوص کانال‌های اصلی خورشید و بیونتین در سنتگهای منطقه و عدم حضور کانال‌های ماهیت پرالومینوس آن‌ها نیز می‌تواند با نیز ناسیون برای آینده‌های همی در پیش‌های میانی و بالایی پوست‌های قرارهای وابسته دانست.
شکل ۱۲ نمودار [۱۲] که نشان‌دهنده موقعیت نمونه‌های مورد بررسی در گسترده مطالعاتین تا پراولمین است.


زنوشیمی عناصر نادر خاکی و عناصر فرعی میدوک پورفری

استفاده از عناصر نادر خاکی و عناصر فرعی به دلیل اینکه این عنصر غالباً ساکن هستند و فرا اینده های دگرگونی و گرمایی کمترین تأثیر را روی این عناصر دارند برای بررسی چگونگی زمین‌سنگ‌های سنگ‌نمد و نیز ساختار ورزگان‌های زنوشیمی‌های می‌باشد. اهمیت دارد. الگوی پراکندگی عناصر نادر خاکی نمونه‌ها در نفوذ پورفری براساس داده‌های کندرت [۱۷] ترتیب شده است (شکل ۱۵). در این نمودار نشان داده شیب نمودار از سمت عناصر نادر خاکی سیستم به سمت عنصر نادر خاکی سنگین. کم می‌شورد. به عبارتی در نمودار تدوی میدوک پورفری یک غنی شدگی زیاد در LREE به منظور جدایی، گرانی‌های نوع I از A، نمونه‌ها در Zn نمودار SiO۱ نسبت به Zr SiO۱ نسبت به Zr SiO۱ نسبت به Zr SiO۱ نسبت به Zr SiO۱ N۱ Cr Ni K۲O/Na۲O هورنیتند و پیوند، بافت همسان میان دانه‌ها ریزدانه و بافت پورفری، نبودن بافت پیمانی و در نهایت عدم وجود پروتئوم- های با خاصیت پوستهی قلاری در سنگ‌های گرنتونیدی کاسار مس میدوک، نشان‌دهنده‌ی وابستگی سنگ‌های باد شده به گراتین‌های نوع I هستند.
به کانسار مس میدوک، از جمله غنی شدگی عنصر Rb, Ba, Zr, Nb, Ti, Ce و Th, K منفی و Ni در ناحیه نابهنجاری Eu مشابه با کانسارهای مورد بحث در کشور شیلی است. نشانه این عنصر در سنگ‌های غرانتوئیدی کانسار مس میدوک با مناطق فوق نشان می‌دهد که کانسار مس پورفیبری Chimboraza, Zaldivar, Scandida مانند کانسارهای شیلی، دارای ویژگی‌های کانسارهای مس پورفیبری تشکیل شده در کانسارهای فعال قاره ای است.

با توجه به ویژگی‌های زنوسیمیایی و نیز با در نظر گرفتن موقعیت زمانی و مکانی تبوده غرانتوئیدی کانسار مس میدوک به نظر می‌رسد که این تبوده در یک محیط زمینی-ساخیت یس از برخورد و واپسین به غرانتوئیدی قاره‌ای فعال تشکیل شده است.

شکل 14 نمودارهای Zn-SiO$_2$ و Zr-SiO$_2$ نشان می‌دهد که نمونه‌های منطقه مورد بررسی در گستره غرانیت‌های نوع 1 نمای گرفته‌اند.

شکل 15 نمودار عکبی‌تی عناصر نادر خاکی تبوده میدوک پورفیتری هنجار شده بر اساس داده‌های Zr-SiO$_2$.
میدوک، ویزکی‌های زئوستمیلایی این توده مانند مقادیر پایین‌تر عدد نیتروژنیم (Mg%) در مواردی با ماهیت زئوستمیلای حالت شده از ذوب پوسته‌های اقیانوسی فروور (MgF% = 80% و قرار گرفتن نمونه‌های این سنگ‌ها در موقعیت زئوستمیلای پس و Sr/Y>40 ppm. Sr>400 ppm برخورد و نیز میزان مقایسه این ویزکی‌ها توده‌های نفوذی نوع کودینه به سن می‌توان به این تئوره رسید که توده‌های گروه‌هایی میدوک پوسته‌ای نیایته است از ذوب پوسته‌های اقیانوسی فروورده حاوی شده باشد. نتایجی که منند کانسارهای فوکه به ذوب بخش‌های زیرین پوسته‌های قارآی ضخیم شده وابسته باشد. در این سنگ‌ها را زیاد می‌توان به دخالت یک خاستگاه سنتی‌شناختی با مقادیر نسبتاً زیاد گزارش (جداکتر تا 15% درصد) در آنها وابسته دانست که ویزکی‌های سنگ‌های آدنکی و انتخابی از ذوب بخش‌های زیرین پوسته‌های قارآی ذوبی میانابی و گزارش در خاستگاه و در کپ می‌باشد زئوستمیلای در میانابی و فشاری همکاری دارد [22].
بردشت

بر اساس اطلاعات به دست آمده از بررسی‌های محاسباتی، سنگ‌شناسی، کامپیوتری و زئوستمیلای روز نیز توده‌های گروه‌هایی میدوک پوسته‌ای می‌توان به این نتیجه رسید که:
1- کانسار مس میدوک در کمین آشنا و ناشنا
ارومه- دختر (پورده-ساردوبی) قرار دارد . کانسار سازی در

شکل 14 مقایسه‌ی فراین‌تری و اصلی وابسته به توده‌های نفوذی کانسارهایی در کانسارهای مس پوره‌پوری
شیلی [18] با فرقان این عناصر در توده گروپ‌هایی میدوک پوره‌پوری- هنگام شده بر اساس داده‌های [18].

خلاصه احتمالی توده گروپ‌هایی میدوک کانسار مس
بررسی ویزکی‌های زئوستمیلایی و زئوستمیلای نفوذی گروگان‌هایی میدوک پوسته‌ای نشان داد که این توده‌های موقعیتی پس از پایان فورورایی بعنی در مرحله‌ای پس برخورد و مراحل نهایی کودینه که با ایجاد همراه بهبود است، تشکیل شده است. به عبارتی این نمونه‌های تحت کنترل و جایگزین شده است که فوروراش پوسته‌های اقیانوسی نفوذی که از زمان کرانه‌ای آغاز شده بود در پایان پوسته‌ی آغاز نیروهای با برخورد بین صفحات عمیق ایران به پایان رسید و زیم زئوستمیلای فشاری و شرایط کودینه بر سرای ایران حکمرانی شده است. با توجه به مطالعات و نیز مقادیر پایین‌تر 

Y<18 ppm و نیودن ناپنجاری نفتی منفی (La/Yb>20) ها و با استفاده به توده گروپ‌هایی میدوک پوسته‌ای که که می‌تواند مانند این نمونه از محیطی طبیعی ریشه گرفته است که در اینجا پلاژیکسایی حضور نداشته است ویلی آميتابل به عنوان کانکل در پسمانید حاصل از ذوب‌خشی نقش اصلی را این‌گونه کرده است. نابوداری پلاژیکسایی ذوب‌خشی داشته‌اند آن، طی

فرآیند ذوب‌خشی باعث افزایش زئوستمیلایی به میزان ماده این Eu و Sr در میانابی منفی این دو عنصر در نمودارهای عنکبوتی وابسته به این سلگه شده است. از نظر خاستگاه تشکیل توده گروپ‌هایی میدوک کانسار مس

Chimborazo و Zaldivar

Downloaded from ijcm.ir at 04:42 +0430 on Monday June 1st 2020
افزوندیان

از آنجا که این پژوهش به حمایت های و همچنین جامعه سنجشی معتقد است، به ویژه امور تحقیقات این جامعه و همچنین مجموعه موضوعک این میودک انجام شده است، لذا لازم می‌باشد از مدیریت محترم امور تحقیق و تدوین منابع جامع، امکان می‌باشد. شرایط و ریس محترم بخش زمین شناسی محترم می‌باشد. گنبد منطقه ای انتخاب می‌کند. همچنین از داوران محترم که به وظایف ارزشمند خود در علمی این مقاله اقدام به نکست کش می‌کنم.

مراجع


[3] عاشقاندیه ج، "دینامیک و ماده ای و تکنولوژی مایل به در نهایت ویژگی‌های آنتاریویی"، تحقیق و تدوین منابع جامع، امکان می‌باشد. شرایط و ریس محترم بخش زمین شناسی محترم می‌باشد. گنبد منطقه ای انتخاب می‌کند. همچنین از داوران محترم که به وظایف ارزشمند خود در علمی این مقاله اقدام به نکست کش می‌کنم.

[22] علیرضایی علی، زمین‌شناسی سنگ‌های کارنیستری معدن میدوک و رابطه آن با کالس ورسی مس، پایان نامه کارشناسی ارشد، دانشگاه پویلی سینا همدان، (1388).