کاربرد کانی‌های سنگین در تفسیر خاستگاه رسوب‌های آواری فلاته‌های دریای عمان-
ناظم چابهار تا جاکس

صدیقه اموجی، محمدحسین محمدوی قرائی، رضا موسوی حرمی، اسدالله محبوبی، حمید علیزاده کنک لاهیجانی

1- گروه زمین‌شناسی دانشکده علوم، دانشگاه فردوسی مشهد
2- مرکز مطالعات زمین‌شناسی ایران

چکیده: هدف از این بررسی، شناسایی کانی‌های سنگین در رسوب‌های دریایی جنوب شرقی ایران و باکتری‌های آنها در تفسیر خاستگاه آنها است. همت نمونه از یک مکزیک از کف دریا و سه نمونه از رسوب‌های پهن‌تر جز و میدی برای این کار انتخاب شدند. EDS برای جداسازی کانی‌های سنگین از محلول بروموفورم و تیز شناسایی آنها از میکروسکوپ بی‌نکولور و آنتی‌سمج به استفاده شد. مله‌زینی کانی‌های سنگین نمونه‌های مورد بررسی مبتنی بر آن جزئی از پان‌کامین، آنانیت، آنانیت، تورمالین، روتلیت، ایلمنیت و باریت و فرآیند بالای زیرکن، آنانیت و تورمالین و دیگر سنگ‌های آذرین نشان دادند. با توجه به همبستگی انشعاب مناطق فورورانش می‌توان سیلولاریشن کاربرد در کم‌فناه جوان و حوضه‌های پشت کمی‌گاه را به عنوان خاستگاه اصلی این رسوب‌ها در نظر گرفت. حضور این و حضور این می‌تواند در نمونه‌ها نیز نشان دهندهٔ بالا‌مدی‌گزین‌ساختهٔ و تشکیل‌افولیت در منطقه‌است.

وژه‌های کلیدی: کانی‌های سنگین، سنگ خاستگاه، هورنیت، زیرکن، آنانیت، تورمالین

مقدمه
کانی‌های سنگین در رسوب‌های آواری، در طول زمین‌شناسی بیشترین نسبت به کانی‌های دیگر دارند. اگرچه به نظر رفیق‌های این کانی‌ها زیاد است ولی معمولاً تعداد معنی‌داری از آن‌ها نظیر كانی‌های سنگی که در تورمالین، ایلمنیت، زیرکن و آنانیت در نشسته‌های رسوبی مشاهده می‌شوند [1]، کمی از کاربردهای کانی‌های سنگین بالای‌گری‌زا آنها به‌عنوان راه‌های بی‌تغییر خاستگاه رسوب‌ها است [2]. به‌عنوان نمونه راه‌های بی‌تغییر خاستگاه رسوب‌ها می‌توان گفته کنیم که با توجه این مقدمه، می‌تواند نظری‌های سنگی که در سنج، خاستگاه ریخت‌شناسی محیط‌های زنده و چگونگی حمل و نقل و تولید آنها در محیط رسوب‌های سنگی در [1] همچنین شیمی‌دانی‌ها و استحکام‌های جورش‌گذار در زمین‌شناسی مشاهده شده باشند [1].

gharaie2000@yahoo.com

نویسنده مسئول، تلفن- نمایر: 87927775 (1111)، پست الکترونیکی: ggharaie2000@yahoo.com

*
روش بررسی
نمونه‌برداری به دو صورت انجام شد. روش اول، نمونه‌برداری از روابط دریایی به شیوه تگ گرانشی (Gravity) است که توسط مرکز ملی آینوکشات‌سازی تهران انجام شده است. نمونه‌های مورد بررسی از نمونه‌های با بیش‌ترین ذرات ماسه در گسترده خلیج چابهار، با عرض جغرافیایی 15° شمالي و طول جغرافیایی 59° شرقی 446 متر بوده و طول می‌شوند 3 سانتی‌متر است که از عمق 20 متری نسبت به سطح دریای عمان گرفته شده است. از این نمونه 7 نمونه با فاصله‌ها 33 سانتی‌متر یا 4 سانتی‌متر برای بررسی کاتی‌ها سنگین انتخاب شده‌اند. روش دوم، نمونه‌برداری از روابط‌های ساحلی و پهنه بالای کشنده دریای عمان است. تعداد 3 نمونه به مختصات 34° 33' درجه شرقی و 6° 38' درجه‌شمالی (Gheshti-T01) و 34° 33' درجه شرقی و 6° 38' درجه‌شمالی (Gheshti-T03) و 35° 35' درجه شرقی و 54° 25' درجه‌شمالی (KhGB-03) برداری شده‌اند (شکل 1). دلیل انتخاب این نمونه‌ها فراوانی بالای ذرات ماسه‌های در آن‌هاست. نمونه‌نبگ‌سازی نمونه‌ها به روش لیزری با استفاده از Laser particle sizer استفاده از آزمایشگاه مرکز ملی اقیانوس‌سازی تهران انجام شد. ذرات ماسه براساس چگالی و با استفاده از محلول بروموفنل (CHBr3) تفکیک شدند. از

![Image](https://example.com/image.png)

شکل 1 محل برداشت نمونه‌ها از فلز قاره دریای عمان. نمونه‌های ساحلی خلیج چابهار.
شکل ۲ درصد فراوانی ماسه، سیلت و رس در میزان و ترکیب رسوبات ساحلی در فلاس فاره دریای عمان (منطقه چابهار تا جاسک) براساس دیاگرام مثلثی فولک (۱۹۷۴) [۵].

جدول ۱ درصد فراوانی انواع کاتی‌های سنگین در نمونه‌های رسوبات ساحلی فلاس فاره دریای عمان (چابهار- جاسک)

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>زیرکن</th>
<th>کارنات</th>
<th>آپاتین</th>
<th>تورمالین</th>
<th>روتوئیل</th>
<th>ایلمینیت و مگنتیت</th>
<th>پاریت</th>
<th>درصد کلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>KgGB-03</td>
<td>۱۲</td>
<td>۱۰</td>
<td>۴</td>
<td>۳</td>
<td>۳</td>
<td>۲</td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td>Gheshmi-T01</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۹</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۲۶</td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td>Gheshmi-T03</td>
<td>۱۷</td>
<td>۱۵</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۲۲</td>
<td>۱۰۰</td>
<td></td>
</tr>
</tbody>
</table>
کاتیشناسی کاتی‌های سنگین مقایسه‌ی کاتی‌های سنگین در نمونه‌های مغز و نمونه‌های روده پهنه‌ی کشنده نشان می‌دهدکه نوع کاتیشناسی همه نمونه‌ها کم و بیش یکسان بوده و مشابه یکدیگرند. چنین شرایطی معمولاً نشان دهنده‌ی خاستگاه نزدیک به ساحل آنهاست [6]. نتایج بررسی این نمونه‌ها با EDS و آنالیز منجر به شناسایی کاتی‌های زیر شده است:
گرانت
زیوئیسمی کاتی گرانت روش دقیق برای تعیین خاستگاه نه نشت‌های کاتی. در مولکول کلی گرانتات صفت از سدگان‌ها فرادکرانی در دیدگاه جفت‌شکنی طبیعی و SEM و آنالیز EDS نشان دهنده وجود داشته باشد [6،8]. آنالیز گرانتات در نمونه‌های مورد بررسی نوع عناصر موجود در شیکه‌ی گرانت را نشان می‌دهد (شکل 4 تا 6). مورتون و همکاران [2] از طریق آنالیز، هزار نوع گرانت را براساس ترکیب شیمیایی و خاستگاه از یکدیگر D, C, B, A

شکل 2 تصاویر SEM و آنالیز EDS گرانت در رسوب‌های ساحلی و فلات‌های دریای عمان ناحیه جابیر تا جاسک.
الیمنینت و مگنتینت

الیمنینت (FeO₃) و مگنتینت (Fe₂O₃) از مهم‌ترین کانی‌های اقتصادی هستند که در بسیاری از عملیات نماسازی، تصفیه و تولید آلی‌های مختلف استفاده می‌شوند.

امامی کمیابی، ناحیه مورد بررسی از نوع A با علائم ستاره نشان داده شده است.

پنوماتولوژیک نیز دیده می‌شود که در این صورت حضور
شکل‌های کانی مگنتینت قابل تشخیص است [17]. آنالیز EDS نمونه‌های مورد بررسی حضور Si در کانی مگنتینت را نشان می‌دهد (شکل 4). با توجه به تصویر EDS کانی مگنتینت، حفره‌هایی در سطح کانی دیده می‌شود (شکل 5) که می‌تواند در توجهی فرایند‌های رشوبی و انحلال ایجاد شده باشد [17].

زیرکن (ZrSiO₄) در سنگه‌های آذرین و دگرگونی شکل می‌شود. نمونه‌های کانی از سنگه‌های آذرین سیلیسی یا قابلیت غیرتودش‌یابی پیش کننده به مرزهای این کانی در سنگه‌های بلورنگین اسیدی سدیمی سیلیسی فراوان نمی‌شود. کانی این پتاسیت‌ها و سیستم‌ها و احیا در دیواری‌ها قابل مشاهده است [17].

فردی یک گونه از کانی‌های رشوبی در سنگه‌های آذرین است و EDS می‌تواند در هر سنگه‌های آذرین دیده شود. این گونه در سنگه‌های فلزیک و حد واسط باشد.

مگنتینت پیک از کانی‌های فریغ سنگه‌های آذرین است و
نیز در دگرگونی شدن سنگه‌های آذرین و سنگ‌های حاوی
لیمونینت و سپیدریت به وجود می‌آید. کانی این پیک در سنگ‌های آذرین و چاه‌ها در کلرینیت شیست، و گاهی در رگه‌های گرانیت‌های و
که معمولاً می‌تواند در بخش از یک دوره‌ی رسوب‌گذاری پایدار بماند. زیرکن ذرات عناصر کم‌رای اندک به‌طوری است که بازتاب دهنده‌ی ترکیب سنج شناسگه‌های هستند [2019]. در شکل 7 تصویر EDS و آنالیز SEM زیرکن در نمونه‌ای مورد بررسی نشان داده شده‌اند. کاپیت‌زیرکن در این نمونه‌ها به شکل منشور با سطوح بلوری مشخص است. در نمونه‌های مورد بررسی به‌دست‌آمده (Zr) دلیل خیلی مشخص، وجود عناصر اصلی و نیوترونی در شبکه این کانال می‌توان نتیجه‌گیری کرد که سنجش‌های با ترکیب مناسب به‌ساده‌ای نشانگاه احتمالی زیرکن هستند [2019].

شکل ٦ تصاویر EDS و آنالیز SEM ابلمینینت (الف) و مگنتیت (ب) در رسوب‌های ساحلی و فلاته‌های دریای عمان ناحیه‌ی چابهار تا جاسک.

شکل ٧ تصاویر EDS و آنالیز SEM زیرکن در رسوب‌های ساحلی و فلاته‌های دریای عمان ناحیه‌ی چابهار تا جاسک.
روتیل
روتیل (TiO₂) یک کانی بسیار پایدار است که در همیشه رسوب‌های آواری قندی و انی زمان وجود دارد. انی کانی در پارازنه‌ها سبک‌های آذرین و دگرگونی درکرده است. روتیل به‌صورت کانی فرعی در گرانش‌ها و یک شیمی‌های گلی ناپیدا شده و در رگ‌های کوارتز از باختگان یا پنوماتولوئیدکه تا به‌حال به وجود می‌آید [17]. این‌کانی همچنین در اثر دگرگونی سنجگاه‌های مسی و سنجگاه‌های آهنی و دولومیتی رس‌داد شکل‌داده می‌شود. از طرفی در میکاسپیت، گنیس و دگر سنجگاه‌های دگرگونی از قبل اکزکوزیت، امپیفلیت و روتویل نیز وجود دارد [21]. به‌دلیل پایداری بالای روتویل، روتویل و سنجگاه‌های رسوب‌های دارنده در اثر اکسیژن وجود دارد و سنجگاه‌های رسوب‌های دارنده است. در ترکیب 60 درصد اینفلول (M) و 40 درصد اکسیژن وجود دارد و سنجگاه‌های رسوب‌های دارنده است. در همیشه رسوب‌های اکسیژن وجود دارد و سنجگاه‌های رسوب‌های دارنده است. در همیشه رسوب‌های اکسیژن وجود دارد و سنجگاه‌های رسوب‌های دارنده است. در همیشه رسوب‌های اکسیژن وجود دارد و سنجگاه‌های رسوب‌های دارنده است.
شکل ۸ تصویر EDS و آنالیز SEM روثیل در رسوبه‌های ساحلی و فلاته‌های دریایی عمان ناحیه چابهار تا جاسک.

شکل ۹ تصویر EDS و آنالیز SEM اپاتین در رسوبه‌های ساحلی و فلاته‌های دریایی عمان ناحیه چابهار تا جاسک.

شکل ۱۰ تصویر EDS و آنالیز SEM امفیبول (الف) کومگنوت و (ب) هورتین، رسوبه‌های ساحلی و فلاته‌های دریایی عمان ناحیه چابهار تا جاسک.
جرد 20 شماره ۳ ۱۳۹۱

توردالین

توزیع آلیاژی و حاویتی موجود در توده‌های سنتی در تغییر خاصیگی رسوب‌های زیر زمینی را می‌تواند در این مورد بررسی شود.

برای بررسی توزیع آلیاژی و حاویتی موجود در توده‌های سنتی، تصویر EDS در توده‌های مورد بررسی در شکل ۱۱ نشان داده شده است.

نحوه نمایش گرافیکی و حاویتی موجود در توده‌های سنتی در تغییر خاصیگی رسوب‌های زیر زمینی را می‌تواند در این مورد بررسی شود.

شکل ۱۱: تصویر EDS و SEM توزیع آلیاژی و حاویتی موجود در توده‌های سنتی.

برای بررسی توزیع آلیاژی و حاویتی موجود در توده‌های سنتی، تصویر EDS در توده‌های مورد بررسی در شکل ۱۱ نشان داده شده است.

نحوه نمایش گرافیکی و حاویتی موجود در توده‌های سنتی در تغییر خاصیگی رسوب‌های زیر زمینی را می‌تواند در این مورد بررسی شود.

شکل ۱۱: تصویر EDS و SEM توزیع آلیاژی و حاویتی موجود در توده‌های سنتی.

برای بررسی توزیع آلیاژی و حاویتی موجود در توده‌های سنتی، تصویر EDS در توده‌های مورد بررسی در شکل ۱۱ نشان داده شده است.

نحوه نمایش گرافیکی و حاویتی موجود در توده‌های سنتی در تغییر خاصیگی رسوب‌های زیر زمینی را می‌تواند در این مورد بررسی شود.

شکل ۱۱: تصویر EDS و SEM توزیع آلیاژی و حاویتی موجود در توده‌های سنتی.
شکل 24 تشخیص خاستگاه تورمالین براساس نمودار مثلثی برطن و همکاران (2002) [28]، ستاره موقعیت تورمالین‌های ناحیه‌ی مورد بررسی را تغییر می‌دهد. (ناحیه‌ی 1، گرانتونیوده، گیاه‌های غنی از La ناحیه‌ی 2، گرانیتولیوده، گیاه‌های غنی از A ناحیه‌ی 3، مناپاسیت، مناپاسیت‌ها و کلی سیلیکات‌های غنی از Ca ناحیه‌ی 4، مناپاسیت‌ها و سنگ‌های تورمالین کوارتزی فقیر از Ca ناحیه‌ی 5، مناکرنته‌ها و ناحیه‌ی 6، مناپاسیت‌ها).

شکل 12 تصویر EDS پاریت در روسپه‌های ساحلی و فلز فنر در فرآیند مکانیکی با دوکی ناپ. SEM

بحث

با توجه به خاستگاه مختلف کانی‌های سنگین، آن‌ها را می‌توان از نظر مناطق پتروگننزیک به سه دسته تقسیم کرد: (1) کانی‌های با پایداری بالا از قبل زیبرن، تورمالین، روتنیل، آپاتیت، و باریت که از روسپه‌ها و سنگ‌های آذرین فلسفک حاصل شده‌اند. (2) کانی‌هایی که بیشتر از سنگگویی دگرگونی (OS، CPX، OPX، Hb) پیروکسن‌ها، البا و اسپینل، لاسونتون، کلنیزونیت، زوریزنت، الابت، کارفلیت، حامل شدید 3 کاتی‌های که در درجه‌ی دگرگونی بالا تشکیل شده و شامل: استارولیت، انالوسینت، گرگونیت و سیلیمانت هستند. همچنین می‌توان به امپتروپ (Hb) پیروکسن‌ها (OS، CPX، OPX) ارجاع داد.
اهام کرده که به مقدار فراوانی از ستگ خاتم‌آدنی اولترافلیک، مافیک و حدودی حاصل می‌شود [۲۵].

گرچه کانی‌های سنگین معمولاً به صورت کم‌جمع‌آوری باهم یافته می‌شوند ولی هر یک از نظر مکان زندگی‌نامه‌ای ممکن است متفاوت باشد [۲۶, ۲۷]. به عنوان مثال وجود هورنیلند نشان دهنده بی‌بسیاری خاتم‌آدنی در طول شکاف‌ها و صفحه‌های کراتونی است. از طرفی افزایش نسبت هورنیلند سیز دلیل بر فرسایش کانی‌های باری درون هسته باتولیتی است [۲۷].

خاتم‌آدنی اولترافلیک رسوب‌ها با ماسه‌های حاوی خرد الی کوارتز، آمفیوبال ایدیت و گرانیت مشخص می‌شود. کانی‌های سنگین ممکن است از این بار بر محلولی گرچه رسوبی قرار گیرد. کانی‌های این پدیده ضعیف به شکل مدور بوده و گوشه‌های آن است کمتر را دارد.

در دیگر عمان فراوانی کانی‌های سنگین که نشان دهنده ی برافارزی و فرایش بوسیله آبی‌نوسی است بوسیله کانی‌های مافیک و اولترافلیک از قبیل هورنیلند سیز حاصل از فلایشک و فرسایش اهلیتی مشخص می‌شود. رخت‌مونه‌های اهلیتی نیز در منطقه‌های کانی‌های سنگین است. بروز کم‌رنگ‌های اهلیتی در شمال شرقی دریای عمان نشان دهنده کم‌رنگ‌های است که در منطقه فراراونی

شبه بایندن، نشان دهنده این است که خاتم‌آدنی رسوب‌ها، از مناطق مجاور و متصرف به ساحل بوده است [۲۸]. با توجه به ویژگی‌های زمین‌ساخت فعال و وجود زون فراراونی در منطقه‌ی مکان سنگ‌آدنی، این تأثیر زیادی بر توسعه کانی‌های سنگین داشته باشد.

پاور کلی چهار دسته از ستگ‌های انسان‌ساخت وابسته به مناطق فراراونی عبارتند از [۲۷]: (۱) سری تولولیتی کوارتز‌دار که در کانی‌های جوان و در حوضه‌های بست کننف مناهده شده و شامل بارتولیتی، سنگ‌های حذف‌دست و استدیت است. (ب) سری تولولیتی هیبریست که مانند دسته‌ی تولولیتی غنی از سیلیس است و درصد تولولیتی در ۱۷/۶۹ به شکل قابلی بقیه از سیلیس، عناصر قلیایی، عناصر نادری کانی‌های وار ناپذیر و از پیوسته و پیوندی و حاوی الیوبن پادره و دارات فللباولینتی (فلسفیت – الیوبن) بوده و در داخل صفحات قراری و الیوبنی دیده می‌شوند. (د) دسته‌ی شوستونیتی داخلی که در سطح دسته‌ی بدن آن اهمیت زیادی دارد و درایی تناسب زیاد و نسبت ۱ به سه منطقه در حال فراراونی فراوان است ویلی مانند گروه اهکی قلیایی نمی‌تواند شاخص خوبی برای این مناطق باشد. زیرا دسته‌ی شوستونیتی در صفحات قراری نیز دیده می‌شود.

و وجود دسته‌‌سنتگ‌های وابسته به اپاکیوهای و لوکانیسم حاصل از فراراونی زون مکان در نقشه‌های زمین‌ساخت تفتانت و بزمان در شمال منطقه‌ی مورد بررسی گزارش شده است [۲۸]. بنابراین می‌تواند به عنوان سنگ خاتم‌آدنی رسوب‌های مورد بررسی نشان دهنده این است که پیشرفت این کانی‌های سنگین در رسوب‌های مورد بررسی نشان دهنده این است که پیشرفت این کانی‌های سنگین در رسوب‌های مورد بررسی منطقه‌ای شده است که گرچه به داشته‌ای وابسته به کانی‌های سنگین و سرب سنگ‌های موجود در منطقه‌ی فراراونی زون مکان (نقشه‌های زمین‌ساخت تفتانت و بزمان) می‌توان سری تولولیتی کوارتز‌دار را که در کانی‌های
آنتالیز کالی‌های سنگین روی مناسب برای بررسی خاسگاه ماسه سنگ‌ها است. کالی‌های سنگین در ناحیه مورد بررسی شامل زیرک، گرانیت، آبیانی، هوئرنلند سیز و ثورمالین با بیشترین درصد فراوانی و روشنی، باریت و ایورمینت و مگنتینی با کمترین فراوانی دیده می‌شوند. وجود هوئرنلند سیز در نمونه‌ها نشان دهنده بیلینگ‌ها زمین‌ساخت و خرساب روس‌هاست. از افزایش هوئرنلند، کالی‌های آهن‌دار (مگنتینت و ایورمینیت) بیشتر شده بنا بر اینکه بالای سنگ‌های خاسگاهی اقلیم‌های باریک و استراخ‌های آتی‌ئینی اقلیم‌های حاصل شدیدان. از اینجا که نوع کالی‌های سنگین در تمام نمونه‌ها (مومه‌های انتخاب شده از موارد و روس‌های ساحلی) شبیه یکدیگرنشین می‌دهد که سنگ‌های خاسگاه کالی‌ها به ساحل نزدیک است.

بنابراین بررسی کالی‌های سنگین با توجه به سنگ‌های آتش‌سوز آنتفاسیا مناطق فوران‌دار، می‌توان آن‌دان را از سنگ‌های سری تولیدی کوارتز نارنجی که در قوس‌های جوان و در حوضه‌های بخش قوی مورد بررسی در فاصله عمان در نظر گرفت.

cالی‌های سنگین روش‌های معمول در دانشگاه‌های حوزه زمین‌شناسی فرودیوی مفهوم بیشتر در اعتبار قرار دادن امکانات و استفاده از

[37] [ژمانآشک] [37] سهندی، پر.، پاداشی، ه.، زمینشناسی ساختمانی صفحه‌ای، چاپ اول، (۱۳۷۸) ص. ۲۴۷–۲۸۹.

[38] [38] سهندی، پر.، پاداشی، ه.، زمینشناسی برزاس و تفتان، مقياس ۱۰۰۰۰۰۰۰:۱، سازمان زمینشناسی کشور (۲۰۰۵).

