کاربرد کانی‌های سنگین در تفسیر خاستگاه رسوپهای آواره فلاته‌های دریای عمان- ناحیه چابهار تا جاسک

صدیقه امجدی، محمدحسین محمودی قرائی، رضا موسوی حرمی، حمید علیزاده کنک لاهیجانی

1- گروه زمین‌شناسی دانشگاه علوم دانشگاه فردوسی مشهد
2- مرکز ملی ایلایوس سنگی ایران

(دریافت مقاله: 98/01/15، پذیرش نهایی: 98/05/20)

چکیده: هدف از این بررسی، شناسایی کانی‌های سنگین در رسوپهای دریای عمان و بکارگیری آنها در تفسیر خاستگاه آنها است. هفت نمونه از یک مغز از کف دریا و سه نمونه از رسوپهای پهنه‌های جز و مِدی برای این کار انتخاب شدند. برای جداسازی کانی‌های سنگین از محلول بروموفورم و نیز شناسایی آنها از میکروسکوپ بینیکولار و الالزی مجهر به استفاده درست می‌باشد. مهندسین کانی‌های سنگین نمونه‌های مورد بررسی مبتنی از آنکار، آنکار، آنتیت، هورن‌یند، گائینت، تورمالین، روکتیل، ایلچینیت، و باریت. فراوانی بالای زیرکن، آنکار، و تورمالین مؤثر خاستگاه آدرین لفیتی در خاستگاه است. با توجه به سنگ‌های انتخابی، مناطق فلورانس می‌توان سری تولیدی کارتن زد در کناره جوان و حوضه‌های پشت کمی نا را بعنوان خاستگاه اصلی این رسوپ‌ها در نظر گرفت. حضور هورن‌یند در نمونه‌ها نیز نشان دهنده بالای‌ادمک زمین‌ساختی و تشکیل افیلیت در منطقه است.

واژه‌های کلیدی: کانی‌های سنگین، سنگ خاستگاه، هورن‌یند، زیرکن، آنکار، تورمالین

مقدمه

کانی‌های سنگین در رسوپهای آواره، زرات ریز و با چگالی بالایی هستند که باید بتوان به کانی‌های دیگر دنیا اگرچه نیز و فراوانی این کانی‌ها زیاد است ولی معمولاً تعداد معده‌ای از آنها نظیر کانی‌ها گائینت، تورمالین، ایلچینیت، زیرکن و آنکار در نهشته‌های رسوبی مشاهده می‌شوند. (1) یکی از کاربردهای کانی‌های سنگین در کارگیری آنها به عنوان راهنما برای تعیین خاستگاه رسوپ‌ها است. (2) با تعیین راهنما برای تعیین خاستگاه، رسوپ‌ها می‌گویند کنک‌های سنگین در سطح منطقه به عواملی متفاوت تناژ کانی‌های سنگین در سطح خاستگاه ریخت‌شناسی محیط نشست و چگوگی حمل و نقل و تعیینی آنها در محیط رسوبی بستگی دارد. (1) همچنین شیفت‌های نیترولوژی ویژگی به جورشادگی زرات و چگالی کانی‌ها می‌توانند در تمرکز کانی‌های سنگین نقش اساسی داشته باشند. (3)

gharaie2000@yahoo.com

*نویسندگان مسئول، تلفن-نомер: 8746577767/5111. پست الکترونیکی: gharaie2000@yahoo.com
روش بررسی
نمونه‌برداری به دو صورت انجام شد. روش اول، نمونه‌برداری از روی پهنه گردانش (Gravity) رسوب‌های دریایی به شیوه مغزه گیری کرده است که توسط مرکز ملی اقیانوس‌شناسی نهان انجام شده است. نمونه‌های مورد بررسی از مغزه‌ای به پیکره‌ای برداشته شده‌اند مانند در گستره خلیج چابهار با عرض جغرافیایی ۱۵° غرب شمایی و طول جغرافیایی ۶° غرب شمایی در ۸۰ متر به و طول مغزه ۴۴۰ متری است که از عمق ۳۰ متری نسبت به سطح دریای عمان گرفته شده است. از این نمونه ۷ نمونه گرفته شده است. روش دوم، نمونه‌برداری از روی رسوب‌های ساحلی و پهنه بالای کشیدی دریای عمان است. تعداد ۳ نمونه به مختصات ۴۲° جغرافیایی شرقی، ۳۵° جغرافیایی شمالی و ۴° جغرافیایی غربی (Gheshmi-T01) در محوطه شرقی (۳۱° جغرافیایی شمالی و ۶۳° جغرافیایی شرقی) (Gheshmi-T03) و نیز (۳۵° جغرافیایی شمالی و ۵۸° جغرافیایی شرقی) (KhGB-03) برداشت شدند. (شکل ۱). دلیل انتخاب این نمونه‌ها فراوانی بالای ذرات ماسی اکسترالی در آن‌هاست. نمونه‌برداری با روشنی نیروی Laser particle sizer استفاده از آزمایشگاه مرکز ملی اقیانوس‌شناسی نهان انجام شد. در این مسیاب روش بررسی با (CHBr۳) تهیه شدند. از

شکل ۱ محل برداشت نمونه‌ها از فلات قاره دریایی عمان، نمونه‌ها ساحلی KhGB-03 , Gheshmi-T03 , Gheshmi-T01

کلیه با ۹۰۰ میکروسکوپ دوچشمی برای شناسایی اولیه کانی‌های سنگین (LEO 1450 VP SEM) و از میکروسکوپ الکترونی (EDS) مدل مجهز به آزمایشگاه مرکزی دانشگاه فردوسی برای آنالیز دقیق این کانی‌ها استفاده شده است.

بحث و بررسی
انالیز دانسنجی نمونه‌های مغزه و رسوب‌های روی پهنه کشیدی در ۲ نشان داده شده است. چنانچه در نمودار مشاهده می‌شود رسوب‌های پهنی کشیدی مشابه با نمونه‌های مغزه برخوردارند. کانی‌های سنگین موجود در این نمونه‌ها شامل هورنیتند، مگنتینت و امپتینت، گرانیت، تورمالین و باریت است (شکل ۲). فراوانی کانی‌های سنگین در نمونه‌های مغزه شامل هورنیتند ۱۲ حوزه در حدود ۲۱٪ تورمالین۲۱، آپاتین۱۴، مگنتینت و امپتینت۹٪ و باریت۷٪ از دور ۱٪ رویه کشیدی سنگین ضرر زیرکن ۱۲ حوزه در حدود ۲۱٪ تورمالین۲۱، آپاتین۱۴، مگنتینت و امپتینت۹٪ و باریت۷٪ از دور ۱٪ رویه کشیدی (نمونه ۲) از نظر پایدار است که نویس خاکی دارند (جدول ۱). در نمونه‌های روی پهنه کشیدی سنگین شامل نسبت ۱۲ حوزه در حدود ۲۱٪ تورمالین۲۱، آپاتین۱۴، مگنتینت و امپتینت۹٪ و باریت۷٪ از دور ۱٪ رویه کشیدی می‌باشد. از نظر پایداری این کانی‌ها جزو کانی‌های نیمه پایدار و بسیار پایدار محصول می‌شوند. [۲].
شکل 2 درصد فراوانی ماسه، سیلت و رس در مزرعه و نمونه‌های رسوب‌های ساحلی در فلات قراردهی دربای عمان (منطقه جاهاز تا جاسک) براساس دیاگرام مثلثی فولک (۱۹۷۴) [۵].

جدول ۱ دصد فراوانی انواع کانی‌های سنگین در نمونه‌های رسوب‌های ساحلی و فلات قراردهی دربای عمان (جاسک - جاهاز).

<table>
<thead>
<tr>
<th>درصد کلی</th>
<th>باریت</th>
<th>روتیل</th>
<th>پتاسیت و اورتیلین</th>
<th>کارنت</th>
<th>لیسونتن</th>
<th>هورنلند</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

شماره نمونه: خیگ-۰۳

شماره نمونه: جاسمی-۰۱

شماره نمونه: جاسمی-۰۳
کاتیشناسی کاتی‌های سنگین مقایسه‌ی کاتی‌های سنگین در نمونه‌های غیره و نمونه‌های روی به‌هم‌کنش کشنده‌ی نشان می‌دهدکه نوع کاتیشناسی همه نمونه‌ها کم و بخش یکسان بوده و شانه‌ی یکدیگرند. چنین شرایطی معمولاً نشان دهنده‌ی خاستگاه نزدیک به ساحل اقیانوسنتای بررسی این نمونه‌ها با SEM و آنالیز EDS منجر به شناسایی کاتی‌های زیر شده است:

گزارندهننی‌شی (Al,Cr,Ti,Fe3+)2SiO12 تمایل کلی گدارن در نشسته‌ای. فرمول کلی گدارن (Mg,Fe2+,Mn,Can)3+ تواند در شیب‌های وجود داشته باشد [8,9] آنالیز EDS گدارن در نمونه‌های مورد بررسی توان عناصر موجود در شبکه گدارن را نشان می‌دهد (شکل 4).

مورتون و همکاران [2] از طریق آنالیز، مرکز نوع گدارن با بررسی ترکیب شیمیایی و خاستگاه از یکدیگر D, C, B, A ترکیب 3 تصاویر SEM و آنالیز EDS گدارن در روباه‌های ساحلی و فلاته دریای عمان ناحیه جبهه‌ی تا جاسک. شکل
الايمينيت و مگنتیت

ایمینیتیت (FeTiO₃) و مگنتیت (Fe₂O₃) از مهم‌ترین کانی‌های اقتصادی هستند که در بررسی‌های تکمیل‌کننده می‌توان از آنها استفاده کرد. [1, 12, 13]. بنابراین ایمینیتیت با تا 60 درصد TiO₂، از سنگ‌های درگوگونی و با حدود ۲۰ تا ۵۰ درصد TiO₂ از سنگ‌های آدنین ریشه می‌گیرد. [14]. بنابراین ایمینیتیت می‌تواند در سنگ‌های درگوگونی از نظر مقدار TiO₂ بیشتر از سنگ‌های آدنین است.

هزینه که در سنگ‌های آدنین و درگوگونی تشکیل می‌شود، در سنگ‌های آدنین و درگوگونی تشکیل می‌شود. به‌طوری‌که در سنگ‌های آدنین سیلیسی از قبیل ZrSiO₄، C½SiO₄ و C½ZrO₄ تشکیل می‌شود. به‌طوری‌که در سنگ‌های آدنین سیلیسی از قبیل ZrSiO₄، C½SiO₄ و C½ZrO₄ تشکیل می‌شود.

به‌طوری‌که در سنگ‌های آدنین سیلیسی از قبیل ZrSiO₄، C½SiO₄ و C½ZrO₄ تشکیل می‌شود.

به‌طوری‌که در سنگ‌های آدنین سیلیسی از قبیل ZrSiO₄، C½SiO₄ و C½ZrO₄ تشکیل می‌شود.

به‌طوری‌که در سنگ‌های آدنین سیلیسی از قبیل ZrSiO₄، C½SiO₄ و C½ZrO₄ تشکیل می‌شود.

به‌طوری‌که در سنگ‌های آدنین سیلیسی از قبیل ZrSiO₄، C½SiO₄ و C½ZrO₄ تشکیل می‌شود.
که معمولاً میتواند در بیش از یک دوره رسوب گذاری پایدار بماند. زیرکن در این صورت کمیاب مختلی است که بازتاب دهنده ترکیب سنگ خاستگاه هستند [19, 20]. در شکل 7 تصویر EDS و آنالیز زیرکن در نمونه‌های مورد بررسی نشان داده شده است. کانی زیرکن در این نمونه‌ها به شکل نمونه‌ای با ترکیب مخصوص به اسیدی خاستگاه احتمالی زیرکن هستند [19].

به سطوح بلوری مشخص است. در نمونه‌های مورد بررسی به‌دنبال ریخت‌شناسی مشخص، وجود عناصر اصلی (Zr) و نیود عناصر دیگر در شبکه این کانی می‌توان نتیجه گرفت که سنگ‌های با ترکیب مناسب به اسیدی خاستگاه احتمالی زیرکن هستند [19].

شکل 6 تصویر EDS و آنالیز ابلمینیت (الف) و مگنتیت (ب) در رسوب‌های ساحلی و فلات قاره دریای عمان ناحیهی چابهار تا جاسک.

شکل 7 تصویر EDS و آنالیز زیرکن در رسوب‌های ساحلی و فلات قاره دریای عمان ناحیهی چابهار تا جاسک.
روتیل (TiO₂) یک کاتی بسیار پایدار است که در همه رسوی‌های آواره قطبی و این زمان وجود دارد. این کاتی در پارانژیت‌های ماسانگیتیک سیگنیه‌های آدنی و دگرگونی پراکند. است. روتیل به‌صورت کاتی ترکیب در گرین‌های و پیگمانیت‌های گریشی یافت شده و در رگنهای کوارتز از خاستگاه پونومانولیت‌های تا به‌طور کامل به وجود می‌آید [17]. این کاتی همچنین در اثر دگرگونی سنگ‌های رس و یا سنگ‌های آهکی و دولومیتی رس دارد. شکل 9. به طرفی در میکائیست، گنیس و دیگر سنگ‌های دگرگونی از قبیل آلوده‌های میکائیست، روتیل نیز وجود دارد [21]. به‌دلیل پایداری بالای روتیل این کاتی به‌طور کاملاً در نمونه‌های مورد بررسی حالت مدور دارد. نشان دهنده فردی جاپی در دوره‌های رس‌گذاری دیوبار است. در ترکیب روتیل 60 درصد تیتانیوم و 40 درصد اکسیژن وجود دارد و می‌توان انتظار این مقدار اکسی نیوترون را در نظر داشت. این انتظار بر این است که در سنگ‌های برتری که در روتیل قرار دارد، به‌طور عمده در نشان دهنده سنگ‌های فضایی می‌باشد و نبود این عنصر در روتیل نشان دهنده سنگ‌های فضایی است. [17]. آنتی‌کا EDS نشان دهنده روتیل نشان دهنده Crها مورد بررسی به‌طور عمده به‌طور عمده در نشان دهنده های سنگ‌های فلزیکست. [17]. آنتی‌کا EDS روتیل در نمونه‌های مورد بررسی به‌طور عمده Hمره بوده، به‌طور عمده در نشان دهنده این سول‌ها به‌طور عمده در آنتی‌کا EDS.

روتیل (TiO₂) یک کاتی بسیار پایدار است که در همه رسوی‌های آواره قطبی و این زمان وجود دارد. این کاتی در پارانژیت‌های ماسانگیتیک سیگنیه‌های آدنی و دگرگونی پراکند. است. روتیل به‌صورت کاتی ترکیب در گرین‌های و پیگمانیت‌های گریشی یافت شده و در رگنهای کوارتز از خاستگاه پونومانولیت‌های تا به‌طور کامل به وجود می‌آید [17]. این کاتی همچنین در اثر دگرگونی سنگ‌های رس و یا سنگ‌های آهکی و دولومیتی رس دارد. شکل 9. به طرفی در میکائیست، گنیس و دیگر سنگ‌های دگرگونی از قبیل آلوده‌های میکائیست، روتیل نیز وجود دارد [21]. به‌دلیل پایداری بالای روتیل این کاتی به‌طور کاملاً در نظر می‌شود. نشان دهنده فردی جاپی در دوره‌های رس‌گذاری دیوبار است. در ترکیب روتیل 60 درصد تیتانیوم و 40 درصد اکسیژن وجود دارد و می‌توان انتظار این مقدار اکسی نیوترون را در نظر داشت. این انتظار بر این است که در سنگ‌های برتری که در روتیل قرار دارد، به‌طور عمده در نشان دهنده سنگ‌های فضایی می‌باشد و نبود این عنصر در روتیل نشان دهنده سنگ‌های فضایی است. [17]. آنتی‌کا EDS نشان دهنده روتیل نشان دهنده Crها مورد بررسی به‌طور عمده به‌طور عمده در نشان دهنده های سنگ‌های فلزیکست. [17]. آنتی‌کا EDS روتیل در نمونه‌های مورد بررسی به‌طور عمده Hمره بوده، به‌طور عمده در نشان دهنده این سول‌ها به‌طور عمده در آنتی‌کا EDS.

روتیل (TiO₂) یک کاتی بسیار پایدار است که در همه رسوی‌های آواره قطبی و این زمان وجود دارد. این کاتی در پارانژیت‌های ماسانگیتیک سیگنیه‌های آدنی و دگرگونی پراکند. است. روتیل به‌صورت کاتی ترکیب در گرین‌های و پیگمانیت‌های گریشی یافت شده و در رگنهای کوارتز از خاستگاه پونومانولیت‌های تا به‌طور کامل به وجود می‌آید [17]. این کاتی همچنین در اثر دگرگونی سنگ‌های رس و یا سنگ‌های آهکی و دولومیتی رس دارد. شکل 9. به طرفی در میکائیست، گنیس و دیگر سنگ‌های دگرگونی از قبیل آلوده‌های میکائیست، روتیل نیز وجود دارد [21]. به‌دلیل پایداری بالای روتیل این کاتی به‌طور کاملاً در نظر می‌شود. نشان دهنده فردی جاپی در دوره‌های رس‌گذاری دیوبار است. در ترکیب روتیل 60 درصد تیتانیوم و 40 درصد اکسیژن وجود دارد و می‌توان انتظار این مقدار اکسی نیوترون را در نظر داشت. این انتظار بر این است که در سنگ‌های برتری که در روتیل قرار دارد، به‌طور عمده در نشان دهنده سنگ‌های فضایی می‌باشد و نبود این عنصر در روتیل نشان دهنده سنگ‌های فضایی است. [17]. آنتی‌کا EDS نشان دهنده روتیل نشان دهنده Crها مورد بررسی به‌طور عمده به‌طور عمده در نشان دهنده های سنگ‌های فلزیکست. [17]. آنتی‌کا EDS روتیل در نمونه‌های مورد بررسی به‌طور عمده Hمره بوده، به‌طور عمده در نشان دهنده این سول‌ها به‌طور عمده در آنتی‌کا EDS.
روش‌یابی روش‌های اسیدفکسی و انتقال پودر کریستال‌های سالم را در حالت دی‌دی‌آری و خاک نشان می‌دهد. این مطالعه نشان می‌دهد که انتقال پودر کریستال‌های سالم را در حالت دی‌دی‌آری و خاک نشان می‌دهد. این مطالعه نشان می‌دهد که انتقال پودر کریستال‌های سالم را در حالت دی‌دی‌آری و خاک نشان می‌دهد.
پروپسترین و همکاران (2004) ناحیه 1 را نشان داده و به خاستگاه گرانیتونیدها، پیگمنت‌ها و ایلیتهای غنی از Li\(\text{Li}^+\) (شکل 12). کربن‌زه (1964) نشان داد که تغییرات در خاستگاه گرانیتونیدها، پیگمنت‌ها و ایلیتهای غنی از Li\(\text{Li}^+\) کاربرد کاتی‌های سنجین در تفسیر خاستگاه رسوپ‌های آوارگی...
بنا بر توجه به خاستگاه مختلف کانی‌های سنگین، آن را می‌توان از نظر مناطق پتروژئوگرافیک به دو دسته تقسیم کرد: ۱) کانی‌های با پایداری بالا از قبیل زیرکن، تورمالین، روئیل، آپاتیت، و باریت که از رسوب‌ها و سنگ‌های آذرین فلسفی حاصل شده‌اند؛ و ۲) کانی‌هایی که به‌طور مشابه در سنگ‌های دگرگونی وجود دارند.

در این مطالعه، با استفاده از تکنیک‌های مختلفی عمدتاً مبتنی بر اشعه‌های الکترونی (SEM) و تجزیه و تحلیل EDS، نتایجی درباره مکانیزم ترمیم و تغییرات در ورودی و حاصل معدن‌گری کانی‌های سنگین در محیط‌های مختلف به‌دست آمده است.
آنانژها، و همچنین معاوین پژوهشی داشته که بدلیل برداشت هزینه‌ای استفاده از میکروسکوپ الکترونی و آنالیز EDS داریم، و از همین‌هایی هاشمان نیز به‌خاطر همکاری موتور در نهایت تصاویر EDS قدراطی می‌شود.

منابع

"慷慨地为岩石学家和矿物学家提供分层方程式：提供由研究沿海沉积物南方印度的分析所获得的约束条件的示例，显示了重结晶的特性，以及对其在不同沉积物类型中可能的共存和变化的示例。"

[37] علیمردانی م، پدیده‌های درونی زمین و پیوند آنها با زمین‌شناسی ساختاری صفحه‌ای، جلد اول (1378) ص 247-289.

[38] سهندی مربی، پدیده‌ای م، نشانه‌های زمین‌شناسی برخور و نفتان، مقياس 1:10000، سازمان زمین‌شناسی کشور (1385).

