کانی شناسی، پارازیت، بافت و رخصشهای کانی‌ای در اسکارین‌های غرب ملایر

حديث وس کری، نعمت‌الله رشیدزاده عمانی، مجید قادری

بخش زمین‌شناسی، دانشگاه تربیت مدرس، تهران، ایران

(دریافت مقاله: ۱۳۹۰/۱۲/۲۰، نسخه نهایی: ۱۳۹۰/۱۲/۲۴)

چکیده: در منطقه‌های غرب ملایر، رنگ‌دان سنجش‌های بیشتر سنجش‌های آتش‌نشانی و گرنتانی و زوراسیک (بیشتر شیل و ماسه‌سنگ) تحت تأثیر جنگ روابط دگرگونی، تغییرات‌پذیری چین، گروه‌های و پهنه‌های برشی قرار گرفته‌اند. دگرگونی ناحیه‌ای سبب شده است که سنجش‌های تریاس و زوراسیک مربوط به سنجش‌های آتش‌نشانی گرنتانی با کلیدیت تقریبی شوند و در داخل روباه‌های تغییرات‌پذیری دست‌خوردهای شوند. در روابط دگرگونی هم‌سر، توده‌های نفوذی گرانتونی‌ی، بیشتر با گکو‌های دوری‌ریز تا گوارتز دوری‌ریز در سنجش‌های دگرگون منطقه زیر ریزی شده و پهن‌های اسکارینی کاهش را در انجیرهای ایران و سرسبزی شکل داده‌اند.

این پژوهش نشان می‌دهد که مانند بیشتر توده‌های نفوذی مول بین‌های اسکارینی منطقه، گرانتونی‌ی است کانی‌های پیروکسن و گروتیت در پهن‌های اسکارینی به‌ترتیب از زیر دیپسید- اوژیت و گرانیت (بیشتر آندرید) هستند. در این اسکارین‌ها زمین‌شناسی مختلفی شناسایی و بررسی پارازیت‌های کانی‌ای تعیین شده است. رخ‌ساره‌های با دمای بالا (پفرکسن‌فلس) در گستره‌های دمایی ۶۵۰/۲ تا ۸۵۰ درجه سانتی‌گراد و پلاستیت در گستره‌های دمایی تا ۸۵۰ درجه سانتی‌گراد تکامل گرفته‌اند. این رخ‌ساره‌ها هورینفولس و آلبتین- ایدوپت فلس‌ی برتزی ریز در گستره‌های دمایی ۶۵۰/۵ تا ۸۵۰ درجه سانتی‌گراد تکامل گرفته‌اند.

واژه‌های کلیدی: رخ‌ساره‌های دگرگونی؛ پارازیت؛ کانی‌شناسی؛ بافت اسکارینی؛ غرب ملایر

مقدمه

منطقه غرب ملایر، در غرب شهرستان ملایر در مختصات جغرافیایی ۳۶°۲۰″ طول شرقی و ۵۰°۴۳″ عرض شمال قرار دارد [۱] (شکل ۱). ناحیه غربی از دیدگاه زمین‌شناسی ساختاری ایران، در بهنهای سندی. سیستم واقع شده است [۲] (شکل ۲).


rashid@modares.ac.ir

نوبت‌سند مسئول، تلفن: (۰۲۱) ۸۲۸۸۴۴۱۱، نمایر: (۰۲۱) ۸۲۸۸۴۴۳۴، پست الکترونیکی: rashid@modares.ac.ir

Downloaded from ijcm.ir at 9:03 +0430 on Monday May 4th 2020
شکل ۱ نقشه زمین‌شناسی و موقعیت هاله‌های دگرگون منطقه‌ای مورد بررسی، اقتباس از نقشه‌ی ۱۰۰۰۰۰ ملاور (۱).

شکل ۲ موقعیت گسترده‌ی مورد بررسی در تقسیم‌بندی زون‌های ساختاری ایران (۲).
زمن شناسی
زنون سندج- سیستان، از پرتکاپوترين زون‌های ساختاری ایران به‌شمار می‌رود که تا نوپاینده، فازهای دگرگونی و مگامالی مهمی را تحلیل کرده است [14-11]. این زون را در دوره‌های مختلف زمین‌شناسی، مورد هم‌های نوپایه مختلف گزارش نموده‌اند. گرایش قرار داشته است. در دوگانه بازی، بررسی‌های زمین‌شناسی روش بررسی پس از این توده‌ها صورت گرفت که در این مطالعه، اکثر طرح و توضیح و ارائه نکردید. به‌نظر [13] دگرگونی در این زود به دو یاده زمینی (1) پیش از ترساب بالا و (2) پس از ترساب بالا قابل تفکیک است. به‌طور کلی، مجموعه‌های دگرگونی در زون سندج- سیستان از دیدگاه تونو و پیچیدگی فرایند‌ها و تأثیر یپ در پی رویدادهای دگرگونی و دگرگیری در رخدادهای گوهرزایی مختلف، جدید دگرگونی و چند رخدادهای متعدد در منطقه مورد بررسی، سنجش‌های بلوبرن، گاه مانو می‌باشد. به‌طور هم‌چنین با نشان‌های کیوگام موربیکسی‌که بیشتر اسکالر تراستی سایت‌های گروه ریشه‌ای به‌کار گرفته شده است. در منطقه مورد بحث، این نشانه‌ها که با فرایندهای نرم و هموار به‌صورت ماهواره‌ای گسترش گرفته‌اند، تحت تأثیر نوده‌های نفوذی گراپتونودی، بیشتر با ترکیب دگرگونی‌های تا کوارتز دیوریت قرار گرفته‌اند. به‌طوری‌که در اطراف این نوده‌ها، هاله‌های دگرگونی

(هورنفلسی و اسکانی) تشکیل شده‌اند، اسکارن در منطقه غرب میان در سه گستره انجیره، ایران و سراب رخ‌منون دارد (شکل ۳).

روش بررسی
پس از بررسی‌های مقدماتی و صحرایی در سه منطقه انجیره، ایران و سراب سمن، از نمونه‌های جمع‌آوری شده به‌منظور بررسی‌های سنجشگری، تعداد ۴۴ تیغه نازک و ۱۳ تیغه نازک- صنفی تهیه شدند. پس از بررسی دقیق اسنادگرایی، XRD نمونه برای کتاب‌شناسی به روش انطباق- و در آزمایشگاه زمین‌شناسی دانشگاه تربیت مدرس آلبرز شدند (شکل های ۵ و ۷).

سنگ‌گرایی، پارازن و تقسیم‌بندی پهن‌های اسکانی در منطقه
اسکارن‌های گسرده مورد بررسی، از نظر پارازن کاتی‌شناسی، در مجموعه به‌صورت زیر پیشنهاد شده است. بررسی‌های مشابه در منطقه مورد بحث، این نشان‌های که با فرایندهای نرم و هموار به‌صورت ماهواره‌ای گسترش گرفته‌اند، تحت تأثیر نوده‌های نفوذی گراپتونودی، بیشتر با ترکیب دگرگونی‌های تا کوارتز دیوریت قرار گرفته‌اند. به‌طوری‌که در اطراف این نوده‌ها، هاله‌های دگرگونی

شکل ۳ رخ‌منونی از اسکارن انجیره (الف)، اسکارن ایرانه (ب)، پهن‌های سبلیسی- اسکارن سراب (پ) و توده گراپتونودی (ب)
پیروکس-گارتن اسکارن

در پیشه‌های اسکارنی منطقه، پیروکس بیشتر از نوع دیوپسید و اوزیت بوده است. بنا بر بررسی‌های سیگنال‌هایی و کلاس‌شناسی XRD (شکل‌های 5 و 7)، گارتن در این پیشه‌ها از شاخه‌ای آندرایت-گروسورول بود که به آنالیز زیرگرونویک اتکورتی نیز تأثیر می‌دهد. این رخساره در مراحل بافت‌نافدنه، و در اثر دگرگونی تجربه شده است. به عبارت دیگر، پیروکس در مرحله اول، یعنی دگرگونی ترمیمی ناشی از جایگزینی تدوین نفوذی شکل گرفته است. در بعضی مقاطع واسطه به مناطق انحراف و ایرانه، در بلورهای گارتن منطقه-۱، بندی ترکبی می‌باشد. این گارتن نسل اول است که در مراحل اولیه تجزیه اسکارن همراه با پیروکس وجود داشته است. اما در اکثر نمونه‌ها، گارتن به‌طور اصلی از نوع اسکارن حومه (massive) تودی و است. این گارتن در مرحله‌ای دوم (میانی) در اثر دگرگونی‌های پیروکس و یا پلاژیوکلاز تجربه شده است

(شکل ۶).

مجمع‌الجزایی کانی‌بندی در پیروکس- گارتن اسکارن

در بررسی‌های میکروسکوپی، در این نوع اسکارن‌ها، پیروکس-های کانی‌بندی به‌طور معمول مشاهده می‌شود.

1- پیروکس+ گارتن + کلسیت+ منیت
2- پیروکس+ گارتن + کلسیت+ ایبدوت
3- گارتن+ کلسیت+ ایبدوت+ کانه

شکل ۴: تصویر میکروسکوپی نمونه‌های واسطه به زیرپهنی پیروکس- گارتن اسکارن (الف و ب) تصادفی میکروسکوپی از گارتن رونه در زیرپهنی پیروکس- گارتن اسکارن (ب و ت).
نماد ۶ تصویر میکروسکوپی و استونت در زون اسکارنی ایرانه.

نماد ۵ دنباله پارازنتیک کانی ها در بهبهان پیروکسن - گارنت اسکارن.

مجموعه کانی‌های زیر‌پهنه پیروکسن- و استونت - گارنت اسکارن

۱- و استونت + پیروکسن + گارنت
۲- پیروکسن + گارنت + کوارتز + کلسیت + کانه
۳- و استونت + گارنت + کلسیت
۴- پیروکسن + گارنت + ایپودوت + کوارتز + کانه
۵- گارنت + ایپودوت + کوارتز + کانه

پارازنت کانی‌ها

پارازنت زیر قابل تشخیص ان پارازنت اولیه شامل و استونت، پیروکسن و گارنت مناطقی است که در مرحله نخست توجه به مجموعه کانی‌ها و روابط متقابل آنها، دو دسته

دکترگونی مجاوری - دکترگونی دیپیمان شده است. پارازنت نانوی شامل گارنت توده‌ای، کلسیت نانوی، ایپودوت و کانی‌های فلزی است که در مرحله میانی و پایانی شکل گرفته است (نماد ۷).

ایپودوت - کوارتز - کلسیت اسکارن

ایپودوت به صورت گسترده در سنگ‌های دکترگون مجاوری گسترش دارد. ایپودوت (و به‌درستی زونیت و کلینزئیت) و کلسیت برای شکل‌های هرمی تکامل می‌شوند. این رخ‌های اسکارنی به‌صورت پراکنده و حاصل خنثی‌پذیره در منطقه همخوان دارد (نماد ۸). در واقع تشکیل آن در مرحله پیشرفته دکترگون سایر کانی‌ها، به‌ویژه در مرحله گرمابی (میانی) رخ می‌دهد.
شکل 7: دنباله‌ی پارازنتیک کانی در زیر‌بهینه پیروگلسن- ولابتین - گارنت اسکارن.

شکل 8: تصویر میکروسکوپی از پهنای ایپیدوت- کوارتز- کلسبیت اسکارن در نور (ایکل).
در این اسناد، یک سری از کلیت‌ها از تجزیه گاز‌های
بی‌سیری آب‌انه و به‌صورت بین‌بلوره و با پرتئن‌های شکاف‌ها
نیز مشکل رگه‌ای دیده می‌شود. در این گونه سرگشاده، اغلب
دو نوع کوارتز موجودات که یکی به‌صورت کوارتز‌های دوست‌دانه
و دیگری به‌صورت کوارتز‌های ریزدانه است. کوارتز‌ها معمولاً
خاموشی موجب شده که شناسایی وارد بر سرگشاده مشکل
در اثر فعالیت‌های زمین‌ساختی و درگیری است. همچنین، در
مراحل دوم و سوم اسکارن/زایی، نتیجه تاثیر شاره‌هایی که در
دگرگونی همبری دوباره فعال شدن‌اش، کاتی‌های آب‌دار از جمله
امفیبول (تمولیت- اکتیبولت) (شكل ۷ تا ۹، تالک، کلینوکسار و
کوارتی ایجاد شده است (شكل ۹ ج).

بافت غالب گاز‌های در مقاطع نمونه‌های منطقه، بیشتر
به‌صورت توده‌ای است. اما در مواردی گاز‌های به‌صورت درشت
دانه تا رزدانه (گرانولکستیک) نیز بیافت می‌شوند. رگچه‌هایی
از کلیت و کوارتز سپاهی گاز‌های حضور دارند و در جهته‌های
مختلفی آن را قطع کرده‌اند (شكل ۹ تا ۹ همچنین، رگچه‌هایی
از کاتی‌های سولفیتی تنظیم پیریت و کمی کالکوبیریت و مالاکیت
و هیدروکسید آهن، گهگاه در این به‌هنه دیده می‌شوند. گاز‌های
های این منطقه، در نمونه‌های دستی و در برخی مقاطع بررسی
شده، در اثر غشاتی به اکسید آهن به رنگ قهوه‌ای درآمده‌اند
(شكل ۹ ب). شکستگی‌های گاز‌های، در تعدادی از مقاطع با
اکسیده‌های آهن پر شده است (شکل ۹ ب و ت).

شکل ۹ تصاویر میکروسکوپی نمونه‌های از گاز‌های اسکارن (الف) حضور کاتی گازن توده‌ای (کوارتی، کلینوکسار)، (ب) شکستگی‌های آهن که بیشتر با کلمیت بر شده‌اند. (ب) کوارتی زونه که در اثر فشار زمین‌ساختی منطقه از جویان و در راستای دزه‌ها در حال تخریب است (۹، گازن توده‌ای در
اثر فشارهای زمین‌ساختی دستخوش شکستگی‌های آهن شده است که این شکستگی‌ها به‌ویژه در اکسیده‌های آهن پر شده‌اند و در مجموع به‌کار رفته و خرد
شده را تولید کرده است. (ج) تصاویر میکروسکوپی از گاز‌های اسکارن با حضور ترمولیت (پولیمر متفاوتی کشیده)، کوارتی، کوارتی (ج) تصور
میکروسکوپی از گازن توده‌ای با حضور کاتی‌های کلینوکسار، تالک، کلربی، تالک، هیدروکسید آهن.
آفت در یهنه‌های اسکارینی منطقه

آفت مهم در یهنه‌های اسکارینی گسترده‌تر، بررسی، آفت
توده‌ای است (شکل ۱۰ اف). اما در مواردی آفت‌های دیگری
نیز به شرح زیر دیده می‌شوند:

آفت گرانولاستیک (granoblastic texture) در نمونه‌های
معددی، علاوه بر آفت توده‌ای گرانتل، بلورهای ریز و درشت
گرانتل، بصورت خودشکل نیمه‌شکل‌دار گرانولاستیک، در
متن سنگ حضور دارد (شکل ۱۰ ب).

آفت دندانی (dendritic texture): میکا سرپیست، کوارتز،
کلسیت و کلینوکلر، بصورت رگه‌های گرانتل توده‌ای را

الflo

ppl

اب

b

t
ج

شکل ۱۰ تصاویر میکروسکوپی از یهنه‌های مختلف - اف) آفت توده‌ای گرانتل در نور pl (ب) آفت دندانی که
کلسیت و کلینوکلر به صورت رگه‌های گرانتل توده‌ای را پر کرده (ب) آفت گرانولاسیک در نور pl (ب) آفت دندانی که
کلسیت و کلینوکلر به صورت رگه‌های گرانتل توده‌ای را پر کرده (ب) آفت دندانی که کلسیت و کلینوکلر به صورت
ارداشته و بازمانده در کوارتز و گاهی کلسیت و کلینوکلر به صورت رگه‌های گرانتل توده‌ای را پر کرده (ب) آفت گرانولاسیک در

Downloaded from ijcm.ir at 9:03 +0430 on Monday May 4th 2020
بافت در پهن‌های برخی - میلیون‌های ابتدایی گستره‌ای ایران. تأثیر یک پهن‌های پرستی قرار گرفته که بیشتر سنگ‌های متالیزی و تان حزمرتی توده گرافیتورنی را منجر کرده است، در این بخش به اعمال به پهن‌های این پهن‌های اشاره می‌شود. 

بافت با چینه‌ای برجسته (sigmoidal fabrics) نوارهای غنی از میکا پیرامون پورفیرکلاست‌های درشت کوارتز و در جهت حرکت صفحه برخ متمایل می‌شوند. در حاشیه این

شکل 11 الف و ب: بافت گاموتودال- پورفیرکلاست کوارتز (pretectonic) دارای سایه‌های فشاری از کوارتز و میکا نورداد. که جهت حرکت برخ را نشان می‌دهد. ب و ت: بافت میکا ماهی در پهن‌های پرستی ایران. از میکا و کوارتز، که جهت حرکت صفحه برخ را نشان می‌دهد. ت: بافت مهاجرت مزر دانه‌ای (GBM) در پورفیرکلاست کوارتز.
به اعتراف [18] شاردهایی، که از دگرگونی پیش رونده مناسب‌ترد. حاصله شاردهایی با درون‌های مستند شکل سازگاری اکسانک مسول، درون‌های پیش‌رونده سیلیسی‌های ساختاری متفاوت‌ترد. با این شاخص براساس شایعه شغل، درون‌های پیش‌رونده دیگرند. بررسی تفصیلی و دقیق ایزوتوپی پایدار در دندان‌های پیش‌رونده و سیلیسوی آن‌ها بوده‌است. فعالیتهای تغییرشکل معمولاً نفوذپذیری سنگ‌ها را افزایش می‌دهد. برای آن‌ها نشت شاردها با میزان ترکیب‌دهی متفاوت‌ترد. در نتیجه با اکتشاد قطعی خاص‌تری به‌کار می‌رود. درون‌های شناختی سنگ‌های سیلیسی‌ها، در طول مراحل سازگاری اکسانک، درون‌های دیده می‌شود. این مراحل تغییر با موارد برگردانی سنج میزان هستند که در همان راستا اولان‌گنی از ولستونیت و گراندیت نتیجه‌ای را که به‌طور مقرر می‌گذارند. نگهداری کلیسیت و کوارتز پیش از درگیری‌های موجب شکل ولستونیت نوع I و تخلخل با نفوذپذیری تولید می‌شود. تا در مرحله‌های سنگ‌های سنگ‌های شناختی و غیره در حجم‌بسته II در حجم بیشتری تشکیل شود، محدود می‌گردد که خصائص برگردانی و سطوح به ایزوتوپ‌ها با این ادعا سازگار است که هم‌سرهایی مسیر برگردانی سنگ‌های میزان کالاریزی شده‌اند. این جریان کالاریزه شده، با اکتشاد قطعی ترکیب‌دهی گراندیت و پارانز اکسانک را تشکیل می‌دهد.

(v)CO₂ + ولستونیت → کوارتز + کلسیت
(v)CO₂ + SiO₂ + کلسیت + Cpx → کوارتز + Cpx + SiO₂ + کلسیت
(v)CO₂ + کوارتز + کلسیت + Cpx → Cpx + کوارتز + کلسیت
(v)CO₂ به نظر [23]. واکنش کلسیت + کوارتز + ولستونیت در مرحله‌های پیش‌رونده کالاریزی شده‌اند.

هر چه این پیوسته به‌صورت کامل پیش می‌روند، از مقدار این رایه کاسته می‌شود و در نهایت به‌طور کاملاً تغییر بروز می‌گردد. به‌طور مثال، به کوارتز برای صفحه بر روی مکانیزه و نامتوازن، در این پیوسته، پلورهای میکا و حالت به‌صورت ماهی و توانبدار جهت حرکت برسر، دیده می‌شود و گاهی سایه‌های فضایی دارد (شکل 11 ب و 18).

با این حال، مهارتهای مرز دانه‌ای (fabrics) به‌صورت درون‌های مکانیزه و نامتوازن کالاریزی و پارانز کالاریزی در مرزهای موجه شکل در هر قرار دارد (شکل 11 ت).

رخساره‌های دگرگونی مجاری

در گستردگی مورد بررسی، دگرگونی مجاری در همبسته‌های دندانی موضه به‌محوری صورت گرفته و به‌صورت اکسانکی تشکیل شده‌اند. با توجه به کاربردهای کالاریزشناسی و پارانز کالاریزی، گردگونی همبسته و تشکیل پنهانه اکسانکی در هر مرحله ظهور کرده است:

1- همبسته مستقیم آکسانکی میزان به‌صورت نفوذ در اوج دمای توده که موجب تشکیل کالاریزه و ولستونیت، دیوپسید، مینتیت و گارنیت روند (اندردادن) شده و رخساره‌ها با دنیای بالا، پرونده با کالاریزه و نفوذ penet نتیجه‌گیری گردند. این رخساره در حالت عادی تا 850 درجه سانتی‌گراد است (20) و رخساره‌های کالاریزه و نفوذ penet نتیجه‌گیری گردند. این رخساره در حالت عادی تا 850 درجه سانتی‌گراد است (20) و رخساره‌ها با دنیای بالا پیوسته به نفوذ penet نتیجه‌گیری گردند.

2- کاهش دما و تشکیل پاره‌ای از کالاریزه گروه آمیزی (ترمولوئیت)، به حالت کالاریزه پیوسته اولیه، رخساره‌ها مصالح با رخساره‌های هورنبلند، هورنفلس را ایجاد می‌کند. دمای تشکیل این رخساره تا 750 درجه سانتی‌گراد است.

3- تشکیل کالاریزه گروه ایبدوت، شرایط دمایی رخساره آلبیت، ایبدوت هورنفلس را نشان داده و پارانز دما در حدود 750 تا 850 درجه سانتی‌گراد است. (16)

نشرگاهی کمی در دانشگاه ایران
ستگه‌هایی که دارای کوارتز و کلسیت هستند (سنگ مرمر ناخالص، ماتاسن، سنگ‌نطفه با سیمان گرانبانی)، بر اثر فعل شدن شیمیایی و شیمیا به تغذیه آب و اکسیژن در حیطه H₂O و CO₂-H₂O مجاور، می‌تواند از طریق واکنش یک یا دو، ناکام شود و کلسیت منظمی و گرانبانیت تبدیل کنند. اما به اعتقاد [18] در اثر اکسیدهای یونوردهای سیلیسی موجب تغییر گذشت، تست و گرانبانیت تبدیل می‌شود. به طور کلی امکان زایی در مرحله اول از تغذیه آب و اکسیدهای همبری گرمالی است. در این مرحله در اثر تبدیلی تغذیه این سنته‌ها در برگردندن منطقه، پیش‌بینی شده و ناکام شکل می‌شود. امکان‌های انجام شده در این مرحله از دسته واکنش‌های گرانیزدا بوده و برای پیشرفت واکنش‌ها می‌باشد. تغییر گذشته در اکستین (CO₂) ثابتی کردن (25).

پایین بخش

مراجع
[1] جعفریان م، برزی، بدر، م، نقشه زمین‌شناسی نساجی (1378).
[3] فرایان گ، مطالعه کانی‌شناسی و سنگ‌شناسی کوارتزبوریت سنام (مایر)، مجله ملی دانشگاه تهران، شماره 1348 (15).


