بررسی نقش جدایی تجزیه بلورین و آلالیش بوسته‌ای در شکل‌گیری ماکماگی سنگهای آنتفنشی بالتوزن داماش گیلان

شهروز حق نظر ۱۸، سارا ملوکتیان

چکیده: سنگهای آنتفنشی بالتوزن داماش به سن بالتوزن در زون ساختاری البرز واقع در استان گیلان برون‌زد قابل توجهی دارد. این سنگ‌ها ترکیبی بین اولوپونیت و اندزیت-برالینی، پروکس-اندزیت و آندزیت-نانوی می‌باشند. بررسی‌های سنگ‌شناسی و زئوپتیمیزاسیون کنترل آن در ترتای کلی نمونه‌برداری و اولوپونیت وجود آن‌ها مقلванه‌ای سنگ‌شناسی بالتوزن است. دستگاهی که از آلیاژ‌های آل‌کلسیوم/‌کلسیوم/‌کلسیوم/‌کلسیوم در بالتوزن و Zr، CaO/MgO در بالتوزن و Hf، Zr، Ti، Ta، Nb در بالتوزن و هم‌سایگی دارایی ماهورهایی از نانو-ونیک سنگ‌های آنتفنشی بالتوزن و مستحکم‌ترین و آراستگی‌های آنها می‌باشد، باعث شناختی با سنگ‌های پوسته‌ای بالتوزن گرایش بوده و با این‌آبی‌الاپی‌آبی‌پا بین‌تندیده نشان می‌دهد که این سنگ‌های دارای تعامل عنصری شاخه‌ای با سنگ‌های پوسته‌ای بالتوزن قرار دارند.

واژه‌های کلیدی: سنگهای آنتفنشی؛ جدایی تجزیه، بلورین، آلالیش، بوسته‌ای، داماش؛ گیلان.

مدت مطالعه: بالتوزن از روستاهای بیلاقی، به‌معنای تمایل اولوپونیت، باعث شدن الکتریک و الکتریکی شدن بالتوزن می‌شود. این اولوپونیت در بالتوزن و Zr، Ti، Ta، Nb در بالتوزن و هم‌سایگی دارایی ماهورهایی از نانو-ونیک سنگ‌های آنتفنشی بالتوزن و مستحکم‌ترین و آراستگی‌های آنها می‌باشد، باعث شناختی با سنگ‌های پوسته‌ای بالتوزن گرایش بوده و با این‌آبی‌الاپی‌آبی‌پا بین‌تندیده نشان می‌دهد که این سنگ‌های دارای تعامل عنصری شاخه‌ای با سنگ‌های پوسته‌ای بالتوزن قرار دارند.

شکستگر: منطقه داماش از روستاهای پیش‌بینی شده در توابع شهرستان رودبار در استان گیلان است. گستردگی مورد بررسی بین طول‌های شرقی ۴۲، ۵۶ و عرض‌های شمالی ۴۴، ۵۵ و در بخش مرکزی ورودی (۱۱۰۰۰۰۰۰۰۱) می‌باشد. این منطقه بر اساس تقسیم‌بندی اشتوکالی (۱) جزء زون ساختاری پیش‌بینی‌شده می‌باشد. بررسی نظر ویژه کوه‌های البرز از شمال به جنوب به ۶ زون ساختاری تقسیم شده است که بر این اساس منطقه داماش در زون مرکزی - جنوب قرار دارد. در این زون، رسوب‌ها کم عمق قابل بکارگیری در سنگ‌های آنتفنشی سپری ضخیم سنگ‌وزنی‌ها به ویژه انووان پوشیده شده است.

چینه‌شناسی واحدهای برق‌درده در گستره‌های مورد بررسی:

* نویسنده مسئول: تلفن-نامه: ۶۴۲۰۳۶۸۹۲۳ (۱۴۲۰)، پست الکترونیکی:
Sh_haghznazari@yahoo.com
تیره و لایه‌بندی مشخص دیده می‌شود که روی واحد اولویت (OT) واحد گداراهای آندزیتی قرار دارد که از قاعدتاً به رأس تناوبی از آندزیت‌های پازالتی، پپروکس آندزیت و آندزیت را تشکیل می‌دهد و به‌شترین برون‌زد را در منطقه دارند.

در این پژوهش سه شده تا از توجه به اطلاعات صحرا، بررسی‌های کانی‌شناسی و سنگ‌نگاره و با توجه به نتایج تجزیه‌های شیمیایی عناصر اصلی و فرعی، شکل‌گیری ماکمایی صورت گرفته روی گداراهای پالنوزن منطقه داماش مورد بررسی قرار گیرد.

4- واحد پپروکس آندزیت و آندزیت (OA) پس از واحد

شکل ۱ نقشه زمین‌شناسی گسترده داماش در مقیاس ۱:۴۰۰۰۰۰.
جدول 1 نتایج تحلیل شیمیایی اکسیدهای عناصر اصلی سنگهای آتشین‌شانی لمبار به روش XRF

<table>
<thead>
<tr>
<th>عنصر</th>
<th>DB-4</th>
<th>DB-5</th>
<th>DB-10</th>
<th>DB-13</th>
<th>DB-14</th>
<th>DB-19</th>
<th>DB-20</th>
<th>DB-21</th>
<th>DB-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>CaO</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>K2O</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>MgO</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>LOI</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

جدول 2 نتایج تجزیه شیمیایی عناصر فرعی و REE سنگهای آتشین‌شانی لمبار به روش ICP

<table>
<thead>
<tr>
<th>عنصر</th>
<th>DB-4</th>
<th>DB-5</th>
<th>DB-10</th>
<th>DB-13</th>
<th>DB-14</th>
<th>DB-19</th>
<th>DB-20</th>
<th>DB-21</th>
<th>DB-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Bi</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Co</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Cu</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Ga</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Hf</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Mg</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>P</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Pb</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Rb</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Sc</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Sn</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Sr</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Ta</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Ti</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>V</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Zr</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Cr</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Eu</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Gd</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Ho</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Nd</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Dy</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Er</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Tm</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Yb</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Lu</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>
روش بررسی
پس از بررسی‌های میکروسکوپی‌یکی، با استفاده از عکس‌های ماهواره‌ای، مقدار آن‌ها به‌طور دقیق تعیین شد. پس از جدایی واحدهای سنگی محله، در حدود ۴۰ نمونه مقطع نازک تهیه شدند از نظر سنگ‌گناهایی با میکروسکوپ قطعیشی مورد بررسی قرار گرفتند. تعداد ۹ نمونه از سنگ‌گن‌های XRF آنتفشاپی محله‌ی بالاتر تعداد ۱ و تعداد ۹ نمونه نیز به میکروسکوپ تزریق عناصر اصلی به‌طور روشن (جدول ۱) به شورو GeoLabs RREE (جدول ۲) در آزمایشگاه (ساسدی) تجزیه عناصر شدند.

شواهد سنگ‌گن‌های و کانی‌شناسی شکل کاری ماگما‌یی محله
داماش
با بررسی‌های میکروسکوپی‌یکی، مورد بررسی قرار گرفتند. روی گرافه‌های سنجش‌های داماش سنجش سانگ‌ها به‌کمک نرم‌افزار تکنیک‌یک روند بازالتی ۲- اولویت‌های پرکسی ۳- پرکسی اندزیت و آندزیت

اولویت‌های پرکسی
این سنگ‌ها از سنگ‌سنگ‌های اولویت‌های پرکسی است. وجود سنگ‌سنگ‌های اولویت‌های پرکسی در شکل‌یکی شکل‌کاری ماگما‌یی محله‌ی بالاتر است. خصوصیات سنگ‌سنگ‌های اولویت‌های پرکسی اولویت‌های پرکسی و پرکسی‌های پتاسیمی شده سایر سنگ‌های پتاسیمی و پتاسیمی شده و کانی‌های ریز کدر فضا بین آنها را پر می‌کنند.

شکل ۲: آلوپیکسن‌های قنید یکی از سنگ‌سنگ‌های پتاسیمی شده سایر سنگ‌های پتاسیمی و پتاسیمی شده و کانی‌های ریز کدر فضا بین آنها را پر می‌کنند.

شکل ۳: کلینوپیکسن‌های قنید یکی از سنگ‌سنگ‌های پتاسیمی شده سایر سنگ‌های پتاسیمی و پتاسیمی شده و کانی‌های ریز کدر فضا بین آنها را پر می‌کنند.

در اینجا، نمونه‌ی سنجش‌های داماش سنجش سانگ‌ها به‌کمک نرم‌افزار تکنیک‌یک روند بازالتی ۲- اولویت‌های پرکسی ۳- پرکسی اندزیت و آندزیت

اولویت‌های پرکسی
این سنگ‌ها از سنگ‌سنگ‌های اولویت‌های پرکسی است. وجود سنگ‌سنگ‌های اولویت‌های پرکسی در شکل‌یکی شکل‌کاری ماگما‌یی محله‌ی بالاتر است. خصوصیات سنگ‌سنگ‌های اولویت‌های پرکسی اولویت‌های پرکسی و پرکسی‌های پتاسیمی شده سایر سنگ‌های پتاسیمی و پتاسیمی شده و کانی‌های ریز کدر فضا بین آنها را پر می‌کنند.

شکل ۲: آلوپیکسن‌های قنید یکی از سنگ‌سنگ‌های پتاسیمی شده سایر سنگ‌های پتاسیمی و پتاسیمی شده و کانی‌های ریز کدر فضا بین آنها را پر می‌کنند.

شکل ۳: کلینوپیکسن‌های قنید یکی از سنگ‌سنگ‌های پتاسیمی شده سایر سنگ‌های پتاسیمی و پتاسیمی شده و کانی‌های ریز کدر فضا بین آنها را پر می‌کنند.
آنژیت‌های پاژالی
گزارش‌های آنژیت‌پاژالی با ایجاد مشخصات روی اولیویون بزارانه قرار دارد. بافت بنگای بیماری پویا ریتیکگلاکس با خصوصی میکروفوتوسکوپی و میکروفوتوسکوپی و نفوذکر شده‌های بیماری و فتوکریست‌های آن به ترتیب قرار درباره از پلاژیوکارل و پروکسن (شکل 2). فتوکریست‌های اولیویون به مقدار بسیار اندک نیز در این بنگا نمایه می‌شوند. پلاژیوکارلا دارای ساختار منطقه‌ای و نیز

پروکسن آنژیت‌ها و آنژیت‌های ترم شکل گیری بعدی درسنجش‌های آنژیت‌پاژالی منطقه‌ای داماش پیروکست پیروکست‌هایی دارا که در لیثیک قابل توجیه در منطقه دارد. اختلاف مهم کانی‌شناسی این سنج‌ها با ترم‌های قبیله پیشین آمیفیبول به عنوان یک عامل اصلی فتوکریست‌ها و نیز کاهش چشمه‌گر تعداد فتوکریست‌های پیروکسن و محل تربیج آنها در آنژیت‌پاژالی (شکل‌های 5 و 6). فاکتور غلبه موجود در این بنگا پلاژیوکارلا است که دارای بافت‌سایر غیرتمادی چون ساختارهای منطقه‌ای مشخص و بافت غربالی هستند (شکل 3). به عقیده ترنول و همکاران [1] تکنیک بافت غربالی ترکیبی از تأثیر ورود یک دسته ماکماکی جدید به حجره ماکماکی و نیز شکست سقف حجره ماکماکی و برداشته شدن

شکل 2 آنژیت‌پاژالی منطقه‌ای داماش (با انالایزور XPL).
شکل 5 پلازموکلاز با پتی غربالی و امفیپول کن شده در پیروکسن انرژیت (بدون انالیزور). PPL

شکل 6 پلازموکلاز با فیبر غربالی و امفیپول کن شده در پروکسیم انرژیت (بدون انالیزور). PPL

شاخه‌های پژوهشی‌های جدایی بلوری در سنگ‌های آتش‌نشانی داماش از روی نسبت‌های عناصر کم‌سازگار و ناسازگار می‌توان برای تعیین ارتباط زئیتیک نمونه‌ها و شکل‌گیری‌های مایع‌مایعی استفاده کرد.

در شکل (7) کاهش تدریجی مقدار کروم به عنوان یک عنصر سازگار، همگام با افزایش جدایی و کاهش عدد منیزیم به چشم می‌خورد. در شکل‌های (8) و (9) نمودارهای Zr و Nb نسبت به نسبت Hf تغییرات خاصی نشان می‌دهد. مسیرهای این پیوستگی و همبستگی خطی در نمودارها حاکی از آن است که روند به منظور شکل‌گیری سایه‌ها در حقیقت نشانگر خطوط نژل مایع و فرایند جدایی‌بخش است.

شکل 7 نمودار تغییرات Cr نسبت به عدد منیزیم برای سنگ‌های داماش.
شکل 8 - نمودار تغییرات Hf نسبت به Zr برای سنگ‌های منطقه‌ی داماش.

شکل 9 - نمودار تغییرات Nb نسبت به Zr برای سنگ‌های منطقه‌ی داماش.

شکل 10 - نمودار تغییرات MgO نسبت به $\text{CaO/Al}_2\text{O}_3$ برای سنگ‌های آتش‌نشانی داماش.

پلاژیکلاز مشخص شده است [10]. جناحه ملاحظه می‌شود، با افزایش مقدار SiO_2 نسبت به $\text{Al}_2\text{O}_3/\text{CaO}$ و SiO_2, در شکل(11) در نمودار تغییرات $\text{Al}_2\text{O}_3/\text{CaO}$ نسبت به MgO, روند‌های جداپیشی کاتیون‌های کلینتوپروکسین و
این تغییر حکایت از جدایی کلینوپیروروسکن در شکل‌های ماده‌ای سنگ‌های تجزیه‌ای منطقه است. به‌منظور بررسی پدیده‌ای جدایی بلوری و نوع فاز‌های حاصل از تیلبور یک ماده در شرایط آب و بتن آب در سنگ- Al سبزه‌ای ذراتی از ناسازگار با کانی‌های بدون آب ارامی‌کرده، اولین بروکس (وزيت) و مکنیت بوده و طی روند جدایی کانی‌های فوق به صورت ناسازگار عمل کرده و مقدار آن زیاد می‌شود، ولی در اثر تیلبور و جدایی کانی‌های آبادی حین افتاببول، عنصر اشعه‌ی جذب کانی یاد شده می‌شود و مقدار آن در کانی‌های باقی مانده کم خواهد شد [16]. همچنین این عنصر حتی در درجات بالای آلودگی پوسته‌ای ماده‌ای نیز بدون تغییر باقی می‌ماند [17].

شکل 11 نمودار تغییرات SiO2 و CaO نسبت به 1.10SiO2/CaO نسبت به ماده‌ای سنگ‌های تجزیه‌ای منطقه‌ای داماش از روند جدایی کلینوپیروروسکن پیروی می‌کند.

شاخه‌های ناحیه‌ای آلبیس بوسته‌ای در سده‌های آتش‌سوزی‌های
به تعیین پیامدن [13] از روی نسبت‌های عناصر کم‌میزان ناسازگار
درسیستام‌هایی می‌توان برای تشخیص منابع بوسته‌ای و
گوشته‌ای استفاده کرد.

شکل 13 نمودار تغییرات Ta/Yb نسبت به Th/Yb
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

13 نمودار تغییرات La/Nb نسبت به Ba/Nb
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 14 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 15 نمودار تغییرات Rb/Th نسبت به Ba/Nb
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 16 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 17 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 18 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 19 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 20 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 21 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 22 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 23 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 24 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 25 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 26 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 27 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 28 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 29 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.

شکل 30 نمودار تغییرات Th/Yb نسبت به Rb/Th
پیشنهادی بپرسی [14] بردار S مولکوله فوران‌ها و بردار
فران‌های فضای جدایی بلوری را نشان می‌دهد.
شکل 15 نمودار مثلثی سنجش‌های انشش‌ناهیان داماش.

شکل 16 نمودار گاریمی‌ی Rb/Y نسبت به Rb/Th نشان می‌دهد که در سنجش‌های پوست‌های قاره‌ای فوقانی به خصوص در سنجش‌های پوست‌های قاره‌ای زیرین غنی‌شدنی، Rb/Th نسبت به خصوص در سنجش‌های پوست‌های قاره‌ای فوقانی به خصوص در سنجش‌های پوست‌های قاره‌ای فوقانی، Rb/Th نسبت به خصوص در سنجش‌های پوست‌های قاره‌ای فوقانی به خصوص در سنجش‌های پوست‌های قاره‌ای فوقانی، Rb/Th نسبت به خصوص در سنجش‌های پوست‌های قاره‌ای فوقانی به خصوص در سنجش‌های پوست‌های قاره‌ای فوقانی.
2- بررسی عناصر اصلی و فرعی و نسبت‌های عناصر ناسازگار حکایت از آن دارد که در سنگ‌های منطقه پیدا شده ای از ربع سنگ‌های پوسته‌ای همرابا بیشتر جدایی تحت عنوان صورت‌پذیرفته است در این حالت گزارش‌های اندزنتی که تکامل یافته‌های سنگ‌های منطقه محروم می‌باشد. شوند بیشترین آن‌گونه پوسته‌ای را نشان می‌دهند.

3- در اثر برهم کنش ماگماولیا الیه ریشه گرفته از جویونه با موارد پوسته‌ای قارائی، ترکیب زنوشیمپیایی الیه ماگماولی سنگ‌های منطقه تغییر یافته است، به نحوی که کاملاً روندهای منطقه‌ای پوسته را به خود گرفته است. به نظر یوئه‌رودگان، در اثر این تغییرات نسبت‌های زنوشیمپیایی جدیدی به صورت کاذب ایجاد شده که ناشی از آلایش پوسته‌ای بوده است بنا بر اینکه رابطه‌ای میان زنگ‌ساخته‌ای نسبت به آلایش پوسته‌ای نشان داده نشده کاملاً یافته شده و زیبا آثار ناشی از آن‌گونه پوسته‌ای کاربرد آنها گاهی ناممکن می‌سازد.

به خصوص در سنگ‌های پوسته‌ای فوقالی بالاتر از منابع پوسته-ای و گوشتی دیگر است. در نمونه‌رسی نسبت به Rb/Th نسبت به (شکل 16)، نمونه‌های منطقه‌ای دامش به مقادیر پوسته‌ای قاره-ای فوقالی نزدیک بوده و در مقادیر بالاتر از 3 قرار گرفته‌اند و در نتیجه آن‌گونه و هضم ریزایی داشته‌اند.

در شکل 17 (الگوی میانگین عناصر کم‌پای سنگ‌های انتقالی دامش در مقایسه با مقادیر میانگین پوسته) [2012] هماهنگی و مانندگی روندهای عنصري بین سنگ‌های منطقه و پوسته‌ای قارائی به چشم می‌خورد. روندهای مشابه و نسبت و فرآیندهای بکسان نمونه‌ها به مقادیر پوسته‌ای، برهم کنش ماگماولیایی منطقه‌های دامش را با پوسته‌های قارائی مدل می‌سازد.

برداشت

1- سنگ‌های انتقالی بالا به تونوز دامش تنوع ترکیبی بین اولین بارال این آن‌گونه دارند. بررسی‌های سبک‌گذری حکایت از آن دارد که جمجمه‌ای کناره‌ای اولیویون و پروفسنی نقش بسیار مهم در تنوع سنگ‌شناسی سنگ‌های منطقه داشته است.

