بررسی نقش جدایی بلورین و آلانیش پوسته‌ای در شکل‌گیری ماقبلی سنگ‌های آنتفنشیائی پالژون داماش گیلان

شهروز حق نظر۸، سارا ملکوتیان۱

چکیده: سنگ‌های آنتفنشیائی داماش به سن پالژون در زون ساختاری برز واقع است. گیلان برونریز قابل توجهی دارد. این سنگ‌ها ترکیبی بین اولویون بزمال، آندزیت بزرائی، پیرکسن، اندرزیت و آندزیت ناشناخته دارد. بررسی‌های سنگ‌شناسی و زنده‌میایی محقق گردید که این داده‌ها کلیه‌های کلینوبیروکس و اولویون عمومی اصلی سنگ‌های آنتفنشیائی داماش است. سنگ‌های زنده‌میایی SiO۲، Al۲O۳، CaO و MgO در بازه‌های Zr، Nb و Hf شکل‌گیری دارد. سنگ‌های کلینوبیروکس و اولویون هستند. نتایج عناصری چون Zr/Nb و Y/Nb و عناصری چون Ti و Nb، ساختاری رده‌ای ناشناخته پوسته‌ای این سنگ‌ها دارد. بررسی روند اکسید عناصر Zr/Nb و Y/Nb و محتوای این سنگ‌ها نشان می‌دهد که این سنگ‌ها در نهایت تغییر عناصر تحت تأثیر سنگ‌های پوسته‌ای قرار گرفته و با آمیزه‌ای اشکال بافتی می‌شوند.

واژه‌کلیدی: سنگ‌های آنتفنشیائی، جدایی بلورین، آلانیش پوسته‌ای، داماش، گیلان.

مقدمه

منطقه داماش از روستاهای پیلاکی یکی از توابع شهرستان رودبار در استان گیلان است. گردد مورد بررسی بین طول‌های شرقی ۶۴°۲۴ و ۶۳°۴۳، عرض‌های شمالی ۹۰°۹۰، ۹۴°۴۰ و ۹۵°۵ در بخش مرکزی و رشته‌کوههای قرار دارد.

این منطقه بنا بر تقسیم‌بندی اشتوکلین [۲] جزء زون ساختاری پلی‌دیسکی می‌باشد. بنا بر نظر یک کوه‌های البرز از شمال به جنوب به ۶ زون ساختاری تقسیم شده است، که بر این اساس منطقه‌ای داماش در زون مرکزی - جنوب قرار دارد. در این زون، سبکوبالاسیکا کم عمق و ایسته به قبل از سن‌زواجه به سنگ‌های آنتفنشیائی پیش در نظر گرفته و به پیش‌کشین و پوشش‌های انویس پرداخته شده است.

چنین سنگ‌های داماش در برونز در گستره‌های مورد بررسی

نوبت‌های سنون، تلفن-همبار: ۶۳۲۰۶۹۳۳ (۱۴۲۰۹۲۶۶۴) پست الکترونیکی: Sh_haghnazar@yahoo.com

شیمی‌های پتولو و کلینوبیروکس

1- گروه زمین شناسی، دانشکده علوم، دانشگاه آزاد اسلامی واحد لاهیجان
2- گروه زمین شناسی، دانشگاه آزاد اسلامی واحد داماش

(دریافت مقاله: ۱۳۹۳/۹/۲۷، پذیرش نهایی: ۱۳۹۳/۹/۲۷)

شیمی‌های پتولو و کلینوبیروکس

1- گروه زمین شناسی، دانشکده علوم، دانشگاه آزاد اسلامی واحد لاهیجان
2- گروه زمین شناسی، دانشگاه آزاد اسلامی واحد داماش

(دریافت مقاله: ۱۳۹۳/۹/۲۷، پذیرش نهایی: ۱۳۹۳/۹/۲۷)
تبره و لیه‌بندی مشخص دیده می‌شود که روی واحد اولویت
پازالت (OB) قرار گرفته و بخوبی از نوپردازی آن پروره می-کند. داخل این پیروکلاستیک‌ها، قطعات زاوه‌دار با اندازه‌بین ۲ تا ۶۴ میلی‌متر به جوی می‌خورند. ترکیب این پیروکلاستیک‌ها در حد لاپیلی توف و برش‌های انحلالی با ترکیب پازالت پذیرای و آنیزیت است. براساس پرسرس‌های میکروسکوپی پلارهای کوارتز، پلاژیوت، پیروکس و قطعات سنگی پازالتی پذیرای و آنیزیت و حتی ماسه سنگی در یک زمینه شیشه‌ای کالا کسبه به رنگ تبره قرار گرفته‌اند.

- واحد پیروکس پذیرای و آنیزیت (OA) پس از واحد

شکل ۱ نقشه‌ی زمین‌شناسی گستره‌ی داماش در مقیاس ۱/۴۰۰۰۰.
جدول 1 نتایج تحلیل شیمیایی اکسیدهای عنصر اصلی سنگ‌های آنتفاشی‌سازی داماش به روش XRF

<table>
<thead>
<tr>
<th>عنصر</th>
<th>سد DB-4</th>
<th>سد DB-5</th>
<th>سد DB-6</th>
<th>سد DB-7</th>
<th>سد DB-8</th>
<th>سد DB-9</th>
<th>سد DB-10</th>
<th>سد DB-11</th>
<th>سد DB-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>176.6</td>
<td>164.3</td>
<td>176.3</td>
<td>176.3</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>Al</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>Fe</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>Ca</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>Mg</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>Mn</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>P2O5</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>LOI</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>Total</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
</tbody>
</table>

جدول 2 نتایج تجزیه شیمیایی عنصر فرعی وREE سنگ‌های آنتفاشی‌سازی داماش به روش ICP

<table>
<thead>
<tr>
<th>عنصر</th>
<th>سد DB-4</th>
<th>سد DB-5</th>
<th>سد DB-6</th>
<th>سد DB-7</th>
<th>سد DB-8</th>
<th>سد DB-9</th>
<th>سد DB-10</th>
<th>سد DB-11</th>
<th>سد DB-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>Mg</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>Mn</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>P2O5</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>LOI</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
<tr>
<td>Total</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
<td>174.2</td>
</tr>
</tbody>
</table>
روش بررسی

پس از بررسی‌های محاسباتی، با استفاده از عکس‌های ماکمایی مربوط به سطح 0.01mm، کنیت‌کننده‌ها در عمق 0.01mm توسط اسید ترکیب‌یافته، مقدار Fe13+ بکر که در قطره‌ها تحت تأثیر تغییرات شرایط و تنش‌های مختلفی قرار داشته، با توجه به حساسیت‌های نسبی TiO2 صورت می‌گیرد.

شواهد سنگ‌نگاری و کانی‌شناسی شکل گیری ماکمایی منطقه

دامش با بررسی‌های میکروسکوپی صورت گرفته روی کنسانتروی مربوط به منطقه دامش سه ترکیب سنگی از یکدرگ رنگ‌دار شده: 1- اولویون بازالت‌ها 2- آندزنت‌های بارانی 3- پیروکسین آندزنت و آندزنت

اولویون بازالت‌ها

این سنگ‌ها بایستی تری‌تیتانیوم‌های تری‌تیتانیوم‌های پیروکسین‌های پیروکسین‌های و پیروکسین‌های کانی‌شناسی شکل گیری ماکمایی است. خمیره‌ای این سنگ‌ها از پیروکسین‌ها تشکیل شده است که دانه‌های کلینپروکسین و اولویون‌های دوره‌سازی شده و کانی‌های ریز گرد فضایی بین آنها را پر کرده‌اند.

شکل ۱: اولویون‌های تری‌تیتانیوم‌های دامش‌های پیروکسین‌های پیروکسین‌های (XPL) با پیروکسین‌های پیروکسین‌های (XPL).

شکل ۲: کلینپروکسین‌های تری‌تیتانیوم‌های دامش‌های پیروکسین‌های فضایی (بیفنش (بالابرداری‌های XPL).
دریافت‌های پزشکی

آندزیت‌های پزشکی

آندزیت‌های بیمارانی با آندزیت‌های بیمارانی مشخص روند اولولویون

براطوری قرار دارد. باید این سنگ‌ها بورفوریک با خمیره میکروبیو و میکروبیو - شیپهای بوده و فنوکرست‌های آن

به ترتیب قرار ویبرانت پلاژیوکاپا و پروکسن (شکل ۲).

فنوکرست‌های اولولویون به قدرت بسیار اندک نیز در این سنگ-های مشاهده می‌شوند. پلاژیوکاپا داری ساختار منطقه‌ای و نیز

گاهی به پایت غربالی دیده می‌شوند.

پروکسن آندزیت‌ها و آندزیت‌های ترم شکل گیری مدل درسنگ‌های آنشفیشایی منطقه‌ای داشت،

پروکسن آندزیت‌ها و آندزیت‌های بیمارانی هستند که برای همه افراد توجهی در منطقه دارند. اختلاف مهم کانی‌شناسی این سنگ‌ها

با ترم‌های قبیل پیچیده آمفیبول به عنوان یک فاز اصلی

فنوکرست‌ها و نیز کاهش چشم گیری نسبت بی‌تعداد فنوکرست‌های

پروکسن و حذف تریپیلی آنها در آندزیت‌های (شکل ۵ و ۶). فن کریست‌هایی مورد بر این سنگ‌ها پلاژیوکاپا است

که در این فاکتوریتهم به گیرمادی جوون ساختارهای منطقی

مشخص و بافت غربالی هستند (شکل ۶).

به عقیده ترول و همکاران (۱۲) تکثیر بی‌تعداد غربالی،

ترکیبی از تأخیر ورود یک دسته ساختاری جدید به حجره

ماگما و نیز شکست سقف حجره ماگما و برداشته شدن

شکل ۴ آندزیت بیمارانی منطقه‌ای داماش (با انالیزور XPL).
ساختارهای زنوشیمایی جدائی بلوری در سنگ‌های آتش‌سوزی داماش

از رؤی نسبت‌های عناصر کم‌سازگار و ناسازگار می‌توان برای تعيين ارتباط زنده‌کننده و شکل‌گذاری مادهاي استفاده کرد.

در شکل (7) کاوش تدریجی مقدار کروم به عنوان یک عنصر سازگار، همگام با افزایش جدائی و کاهش عدد منیزیم به جهت خوش در شکل‌های (8 و 9) در نمودارهای

tغییرات نسبت به Zr و Nb همچنین Zr حسی به Na و Nb در شکل‌های (8 و 9) در نمودارهای

عکس‌ها می‌تواند نشان‌دهنده یک در نمودارها حاکی از آن باشد که روند هم‌ماند در این نمودارها

در حقیقت نشانگر خطوط نزول مابع و کاهش جدائی خود

شکل 7 نمودار تغییرات Cr نسبت به عدد منیزیم برای سنگ‌های داماش.
به شکل ۸ نمودار تغییرات Hf نسبت به Zr برای سنگ‌های منطقه‌ای داماش.

به شکل ۹ نمودار تغییرات Nb نسبت به Zr برای سنگ‌های منطقه‌ای داماش.

به شکل ۱۰ نمودار تغییرات CaO/Al$_2$O$_3$ نسبت به MgO برای سنگ‌های آتشنشانی داماش.

پلاژیوپلازی مشخص شده است [۱۰۱]. جناحه ملاحظه می‌شود، با افزایش مقدار Zr نسبت Al$_2$O$_3$/CaO زیاد می‌شود که با افزایش مقدار SiO$_2$ نسبت به SiO$_2$/Al$_2$O$_3$ کاهش می‌یابد. نسبت Hf/CaO در شکل (۱۱) در نمودار تغییرات Hf نسبت به Al$_2$O$_3$/CaO نشان می‌دهد که در سلول‌های تشکیل‌دهنده کلیوپیروکسین و SiO$_2$.
این تغییر حکایت از جدايش کلیوپیروکسن در شكل کیری‌های ماگمایی سنگ‌های آنتشفاشی منطقه است. به منظور بررسی بدیهی جدايش بلورین و نوع فاز‌های حاصل از تبلور یک ماگما در شرایط آب و بدون آب در سنگ-Рb (11) استفاده شد (شکل 12). این‌روم (Y) یک نقص نسیارگار با کانی‌های بدون آب چون پلاژیوکلاز، اولیوبین، پیروکسن (ازیت) و مگنتیت بوده و سی روی جدايش کانی‌های فوق به صورت نسیارگار عمل کرده و مقدار آن زیاد می‌شود، ولی در اثر تبلور و جدايش کانی‌های آبیار چون آمفیبول، عنصر اشاره‌ی کانی یاد شده می‌شود و مقدار آن در گزارش‌های باقی مانده کم خواهد شد (12). همچنین این نقص حتی در درجات بالای آلودگی پوسته‌های ماگمایی نیز بدون تغییر باقی می‌ماند.[12]

شکل ۱۱. نمودار تغییرات SiO2 نسبت به Al2O3/CaO نشان می‌دهد که ملاحظه می‌شود نمونه‌های منطقه‌ی داماش از روند جدايش کلیوپیروکسن پیروی می‌کند.

شکل ۱۲. نمودار لگاریتمی تغییرات Y نسبت به Rb (11) برای سنگ‌های آنتشفاشی داماش.
شاخه‌های زئوشمیایی آلبیس بوسته‌ای در سنگ‌های آتشفشاگی داماش بعیده و یور [13] از روی نسبت‌های اندازه‌گیری ناسازگار در نسبت‌های می‌دانند. این نسبت‌های انجام شده بود که در بوسته‌ای آتشفشاگی داماش و گوشتهای استفاده شده. در در نمودار درکاریمی پیشنهادی Th/Yb نسبت به می‌دانند. میزان کاهش یافتی در نسبت‌های Rb/Yb در نمودار درکاریمی (بند [16]) نسبت به میزان Rb/Th در نمودار درکاریمی (بند [16]) نسبت به توصیف AFC (بند [16]) نسبت به توصیف AFC در نمودار درکاریمی (بند [16]) نسبت به
شکل ۱۵ نمودار مثلثی سنگ‌های آتش‌شناختی داماش.

شکل ۱۶ نمودار لگاریتمی Rb/Th نسبت به Rb نشان داده به نحوی که از این فرایند برای بدست آوردن عمق Rb/Th به خاصی در سنگ‌های بوسته‌های قاره‌ای فوقانی تقریبی آلودگی بوسته‌ای استفاده می‌شود [۵]. نسبت Th و Rb در مقایسه با سنگ‌های بوسته‌های قاره‌ای زیرین غنی‌شده‌گی
به خصوص در سنگ‌های بوستنی فوکالی بالاتر از میان بوستنی Rb
ای و گوشه‌های دیگر است. در نمودار
نسبت به
(شکل 16)، نمونه‌های منطقه‌ای داماش به مقادیر بوستنی قاره
ای فوکالی نزدیک بوده و در مقادیر بالاتر از 4 قرار گرفته‌اند، و
در نتیجه آن‌ها و هضم زیادی داشته‌اند.
در شکل (17) الگوی میانگین عنصر کمیاب سنگ‌های
انفشنایی داماش در مقایسه با مقادیر میانگین بوستنی
هم‌همگانی و مانسنتی روندهای عرضی بین سنگ‌های منطقه و
بوستنی قاره‌ای به چشم می‌خورد.
روندهای مشابه و نشیب و فرارهای بکر نمونه با مقادیر
بوستنی، برحسب کنش ماگمای بازالتی منطقه‌ای داماش را با
بوستنی قاره‌ای مدل می‌سازد.

برداشت
1- سنگ‌های انفشنایی بالونز داماش تنوع تکیپی بین
اولیوئین بارالت تا آننزیت دارد. برسی‌های سنگ‌نگاری حکایت
ار از آن‌داد که جدایی کانالی اولیوئین و پروکسن نشان
پسیب مهم در تنوع سنگ‌شناسی سنگ‌های منطقه داشته است.

<table>
<thead>
<tr>
<th>Rock/MORB</th>
<th>Pearce, 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>K</td>
</tr>
<tr>
<td>Rb</td>
<td>Ba</td>
</tr>
<tr>
<td>Th</td>
<td>Ta</td>
</tr>
<tr>
<td>Nb</td>
<td>Ce</td>
</tr>
<tr>
<td>P</td>
<td>Zr</td>
</tr>
<tr>
<td>Hf</td>
<td>Sm</td>
</tr>
<tr>
<td>Ti</td>
<td>Y</td>
</tr>
<tr>
<td>Yb</td>
<td></td>
</tr>
</tbody>
</table>

شکل 17 مقایسه الگوی میانگین عنصر کمیاب سنگ‌های انفشنایی داماش با مقادیر میانگین بوستنی

میانگین سنگ‌های انفشنایی داماش

[1] قلمقاش ج، نقطه زمین سناسی ۱۳۸۰ جیرنده، سازمان زمین‌شناسی و اکتشافات معدنی کشور(۱۳۸۱).