مقایسه ویژگی‌های گرانیتیونده‌ها کم پتاسیم و غنی از پتاسیم در مجموعه نفوذی‌های الوند

عیسی سپاهی، طبیعی خاکسار
گروه زمین شناسی، دانشگاه بوشهر، بوشهر
(دریافت مقاله: ۱۳۹۰/۰۵/۲۵، نشانه نهایی: ۱۳۹۰/۱۲/۰۱)

چکیده: مجموعه نفوذی الوند در جنوب همدان، در زون سینودج-سیرجان واقع شده است. این مجموعه شامل سنگ‌های مافیک تا فلزیک مانند گیپرو، دیوریت، تونالیت، گرانیتیونریت، گرانیت، آبلیت و پگماتیت است. سنگ‌های شبه گرانیتی بخش اعظمی از سنگ‌های الوند و گرانیتیونده‌ها محسوب می‌شود که به دسته‌گلیومه‌های پتریکی و گرانیتیونده‌های بسیار روش اشاره کرد. گرانیتیونده‌های پوزیرینیت غنی از پتاسیم بوده در حالی که گرانیتیونده‌های دیگر روشن فقیر از پتاسیم هستند.

ویژگی‌های سنج تکراری و زمین شیمی سنگ‌های گرانیتیونده‌های الوند که این دسته از هم مجزا بوده و احتمالاً از جدایی یک مافاک همکار نشده‌اند. گرانیتیونده‌های پوزیرینیت سبیل روش نسیب به گرانیتیونده‌های پوزیرینیت از MgO و FeO فقیرترند و روشن تر بوده در یک مافاک مشابه با گرانیتیوندهای دیگر را نشان نمی‌دهند. دانه‌های غیرتیترا Eu, Eu* و REE مقدار متوسطی در گرانیتیوندهای پوزیرینیت ۳×۱۰⁻⁶ تا ۶×۱۰⁻⁶ در گرانیتیوندهای پوزیرینیت با استحکام پوسته‌ای که برای آنها در نظر گرفته شده است، همگون است. با توجه به اینکه گرانیتیوندهای پوزیرینیت به دلیل قربانیت نسبتاً زاید نسبت جادویی موجب نسبتاً بالاتر نتایج نشان می‌دهند، آبلیت‌ها و پگماتیت‌های منطقه از نظر زمین شیمی بسیار به گرانیتیوندهای پوزیرینیت شباهت دارند و احتمالاً از جدایی آنها حاصل شده‌اند.

واژه‌های کلیدی: الوند، گرانیتیونده، زمین شیمی، پوزیرینیت، هنجری

مقدمه

میزان نفوذی الوند با خطای از آن زمین شناسی (به ویژه سنگ‌شناسی) در حین دهه‌های اخیر مورد توجه زیادی گرفته که است که در بخشی از کارهای پژوهشی دیگر نیز عناونه مورد است. با توجه به اینکه این مجموعه طیف وسیعی از سنگ‌های مافیک تا فلکسیک را شامل می‌گردد اما همچون نسبتاً گرانیتیونده بیشتر از سایر سنگ‌های شیمال به همین دلیل این مجموعه را می‌توان با عنوان "گرانیتیونده الوند" مرتب کرد. میزان سنگ‌های مافیک و حذف و غیره از سنگ‌های گرانیتیونده تزیین می‌کند. گرانیتیونده‌ها می‌توان به دو دسته غنی از پتاسیم و فقیر از پتاسیم دسته‌بندی کرده‌اند. تغییر آن در این سنگ‌ها

sepahi@basu.ac.ir

نویسنده مسئول، تلفن-نمایر: ۸۲۸۳۱۴۶۹۰ (ویژه)، پست الکترونیکی:
تدریجی نیوده و یا یک وقفه قابل توجه هماهنگی است. همچنین اختلافات کانی‌شناسی و شیمیایی دیگری در زنگه‌ها دیده می‌شود که در حال خود به آنها اشاره شده است. با توجه به اختلاف ظاهری دو دسته گرانتونید مورد بررسی، در نمونه‌های دستی و رخت‌مونه‌های سنگی، آنها را به دو دسته اصلی گرانتونید‌های پروآنزید (گنی از پتاسیم) و گرانتونید‌های روشن (قیصر از پتاسیم) تقسیم کرده‌ایم که به راحتی از یکدیگر تمیز پذیرند. لازم به بیان داشتن اینکه که سنگ‌شناسی سنجش‌های مافیک این مجموعه در این پژوهش مورد بحث قرار نگرفته‌است.

محله بوروندی و کانی‌شناسی ایران

موقعیت زمین‌شناسی

(شکل 1[16]).

شکل 1 نشانه‌های زمین‌شناسی منطقه‌های مورد بررسی (با تغییر از [2]).
<table>
<thead>
<tr>
<th>Sample</th>
<th>ITEM 1</th>
<th>ITEM 2</th>
<th>ITEM 3</th>
<th>ITEM 4</th>
<th>ITEM 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
</tr>
<tr>
<td>Sample 2</td>
<td>Value 6</td>
<td>Value 7</td>
<td>Value 8</td>
<td>Value 9</td>
<td>Value 10</td>
</tr>
<tr>
<td>Sample 3</td>
<td>Value 11</td>
<td>Value 12</td>
<td>Value 13</td>
<td>Value 14</td>
<td>Value 15</td>
</tr>
<tr>
<td>Sample 4</td>
<td>Value 16</td>
<td>Value 17</td>
<td>Value 18</td>
<td>Value 19</td>
<td>Value 20</td>
</tr>
</tbody>
</table>

The table above shows the results of various samples tested for specific items. Each sample has been analyzed for multiple items, providing comprehensive data for further analysis.

- Item 1: A qualitative measure of a specific parameter
- Item 2: A quantitative measure of another parameter
- Item 3: Yet another parameter for further analysis
- Item 4: A secondary parameter
- Item 5: A tertiary parameter

The data was collected using advanced analytical techniques, including ICP-AES and ICP-MS, to ensure accurate and reliable results.
(ppm)	کربناتهای سیلیکا	کربناتهای کلسیم	کربناتهای مولیکولدار	آنتیاکسیدان	Gd	Hf	Ho	La	Lu	Mo	Nb	Nd	Ni	Pb	Pr	Rb	Sm	Sn	Sr	Ta	Tb	Th	Tl	Tm	U	V	W	Y	Zn	Zr			
2.2	0.89	0.89	0.89	1.1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

<table>
<thead>
<tr>
<th>Sample</th>
<th>کربناتهای سیلیکا</th>
<th>کربناتهای کلسیم</th>
<th>کربناتهای مولیکولدار</th>
<th>آنتیاکسیدان</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>Cr2O3</th>
<th>MgO</th>
<th>MnO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>P2O5</th>
<th>SrO</th>
<th>BaO</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.9</td>
<td>0.46</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.9</td>
<td>0.46</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.9</td>
<td>0.46</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.9</td>
<td>0.46</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(ppm)</th>
<th>Ag</th>
<th>Ba</th>
<th>Ce</th>
<th>Co</th>
<th>Cr</th>
<th>Cs</th>
<th>Cu</th>
<th>Dy</th>
<th>Er</th>
<th>Eu</th>
<th>Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>کربناتهای سیلیکا</th>
<th>کربناتهای کلسیم</th>
<th>کربناتهای مولیکولدار</th>
<th>آنتیاکسیدان</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>Cr2O3</th>
<th>MgO</th>
<th>MnO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>P2O5</th>
<th>SrO</th>
<th>BaO</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.9</td>
<td>0.46</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.9</td>
<td>0.46</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.9</td>
<td>0.46</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.9</td>
<td>0.46</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(ppm)</th>
<th>Ag</th>
<th>Ba</th>
<th>Ce</th>
<th>Co</th>
<th>Cr</th>
<th>Cs</th>
<th>Cu</th>
<th>Dy</th>
<th>Er</th>
<th>Eu</th>
<th>Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td></td>
</tr>
<tr>
<td>در ادامه جدول ۱</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>(ppm)</td>
<td>سیالندی‌های سیالندی‌های روشن</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>0.049</td>
<td>0.007</td>
<td>0.006</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ho</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>La</td>
<td>0.001</td>
</tr>
<tr>
<td>Lu</td>
<td>0.001</td>
</tr>
<tr>
<td>Mo</td>
<td>0.000</td>
</tr>
<tr>
<td>Nb</td>
<td>0.000</td>
</tr>
<tr>
<td>Nd</td>
<td>0.000</td>
</tr>
<tr>
<td>Ni</td>
<td>0.000</td>
</tr>
<tr>
<td>Pb</td>
<td>0.000</td>
</tr>
<tr>
<td>Pr</td>
<td>0.000</td>
</tr>
<tr>
<td>Tb</td>
<td>0.000</td>
</tr>
<tr>
<td>Th</td>
<td>0.000</td>
</tr>
<tr>
<td>Tl</td>
<td>0.000</td>
</tr>
<tr>
<td>Tm</td>
<td>0.000</td>
</tr>
<tr>
<td>U</td>
<td>0.000</td>
</tr>
<tr>
<td>V</td>
<td>0.000</td>
</tr>
<tr>
<td>W</td>
<td>0.000</td>
</tr>
<tr>
<td>Y</td>
<td>0.000</td>
</tr>
<tr>
<td>Yb</td>
<td>0.000</td>
</tr>
<tr>
<td>Zn</td>
<td>0.000</td>
</tr>
<tr>
<td>Zr</td>
<td>0.000</td>
</tr>
</tbody>
</table>

بررسی‌های صحراوی و سنگ نگاری

یک اصل مهمی مجموعه‌ی نفوذی‌های سیالندی‌های سیالندی دارد که در حال تحقیق و گزارش‌ریزی به دلیل وجود فنکرک‌های مواردی و فلزسایر دارای ساختمان پروپرونی و بزرگ‌تر (شکل ۲) از نظر زمین‌شناسی به دست‌های سیالندی‌های کلسیمی-قیام‌یافته‌ای از ترساینی تعلق دارد. این سنگ‌ها از کانی‌های مایفیک مانند بیوتیت نسبتاً غنی هستند و به‌آلودگی‌های این اصطلاح سنگ‌نگاری (سیالندی‌های یقه‌ای یا میکا) و بلورهای تیتانیوم‌سیالندی‌های و جردن دیهوی شده‌اند. این سیالندی‌های سیالندی‌های کلسیمی-قیام‌یافته‌ای در این سنگ‌نگاری هستند و از جنسی زمین‌شناسی کشور از نظر می‌توانند پژوهش‌های جدیدی داشته باشند.

1. سنگ‌نگاره‌ای مایفیک و سنگ‌نگاره‌ای جاذبه‌ای از مایفیک-کانی‌های
2. کانی‌های کانی‌های پروپرونی و
3. کانی‌های پروپرونی و
سنگ‌های دسته‌ای اول عبارتند از ایولین، گابرو، گابرونوریت، دولویت، دنباله‌دار، درون‌پرتویت و تونالیت. سنگ‌های دسته دوم منشوری زیردریایی نانوتورنتینت و پلی‌نیتریت تشکیل شده‌اند.

سنگ‌های شبه تونالیت با پلی‌نیتریت نانوتورنتینت تشکیل شده‌اند.

شکل ۲: نمونه‌ای از گرانیت‌نوعه‌های پورفیروئید و پورپتیوسه‌های درون آنها.

شکل ۳: ال‌الف) میدان ناحیه کلی پرتویت گرانیت‌نوعه‌های پورفیروئید در زمینه‌ای از گرانیت‌نوعه‌های پورفیروئید (لدرو بی‌غرب)، ب) پرتوید دایک‌های آبی‌ترپتیک و نمای نزدیک گرانیت‌نوعه‌های پورفیروئید در زمینه‌ای از گرانیت‌نوعه‌های پورفیروئید و هورنلفس‌های از قطع متی. کننده از گرانیت‌نوعه‌های پورفیروئید از سیب‌بکار دیرو را که جوان گردید قطع متی کننده.
من روی داستان، در روز یک، دو کودک به همراه مادر خود در پارک گشتند.

با گذشت زمان، یکی از کودکان به دلیل ناراحتی تصمیم گرفت که به دامن‌های اش بگردد، و مادر او نیز به همان شیوه تصمیم گرفت که به دامن‌های او بگردد.

در زمانی که این دو کودک بسته به دامن‌های خود بودند، مادر آنها به همراه دو مادر دیگر، به پارک رفتند.

در آنجا که دو کودک به دامن‌های خود بودند، مادر آنها به همراه دو مادر دیگر به دامن‌های خود بودند.

در زمانی که این دو کودک بسته به دامن‌های خود بودند، مادر آنها به همراه دو مادر دیگر به دامن‌های خود بودند.
در درون کانی‌های دیگر و گاه در حاشیه بلورهای اسفن دیده می‌شود. بلورهای روتلیت‌گاهی دارای رشد توانای اسفن هستند. بلورهای این کانی از شکل‌دار تا ی بسیار متغیر. کلینوفوئزیت از دیگر اسپات پلاژیوکلاز در این سنگ‌ها حاصل شده است. با توجه به مقدار متغیر کوارتز در این سنگ‌ها، این سنگ‌ها از اسیدی تا حد‌است متوسط و برخی از آن‌ها از گستره سنگ-شناسی و زمین‌شناسی گروه‌بندی‌ها خارج می‌شوند. بخش بزرگ این سنگ‌ها را سنگ‌های مشابه با ترونجمات پلاژیوگرانتیت در می‌دهند.

شکل ۴ تصاویر میکروسکوپی سنگ‌های منطقه‌ی مورد بررسی (XPL) (الف) گروندبریت، (ب) سینگواریت، (ت) فلدرسیار، (د) گرونهای گلاژیایی، (پ) آبلیت، (ت) پلاژیوکلاز، (ز) پلئوکلاز، (س) اسفن، (ت) تئا، (م) سپسیتیت، (ن) روتلیت، (و) میکروکلین، (ر) تورمالین، (س) اسفن‌سپسیتیت، (د) پیرکسیت، (ر) سپسیتیت، (ب) پلاژیوکلاز، (ب) پلاژیوکلاز
سلگه‌هاست (شکل 5 ت).

نمودار SiO۲-۲K۲O در این نمودار ۲۲۰ نمونه‌های گرانول‌هایی ژنریتوپود و از آن در قلمرو مشخصه‌ای تا شوییتی قرار می‌گیرد. در حالت که نمونه‌های گرانول‌های اسپر روشن در قلمرو متناسب (در انجا تولیدی) دیده می‌شوند (شکل 5 ت).

روده بندی و نامگذاری زمین‌شیمیایی

نمودار در این نمودار [۲۱] نمونه‌های گرانول‌هایی ژنریتوپود اغلب در قلمرو ژنریتوپودی، و ژنریتوپودی تولید گرفته‌اند. آن‌ها در قلمرو سنج‌های مختلف قرار دارند. موی‌رزونت و نمونه‌هایی همچنین مقدار روشن‌کردن و خارج از گستره است. نمونه‌هایی که در این نمودار گرفته شده‌اند، جزئی از شرکت کششی روشن‌کردن کمتر از مقررت از سیستم‌های ژنریتوپودی (شکل 5 ت).

CIPW

محاسبه نورم

۱- نورم گرانول‌هایی ژنریتوپود اغلب در گستره ژنریتوپودی، و یکی از نمونه‌های ژنریتوپودی که در قلمرو سنج‌های مختلف قرار دارند. موی‌رزونت و نمونه‌هایی همچنین مقدار روشن‌کردن و خارج از گستره است. نمونه‌هایی که در این نمودار گرفته شده‌اند، جزئی از شرکت کششی روشن‌کردن کمتر از مقررت از سیستم‌های ژنریتوپودی (شکل 5 ت).
<table>
<thead>
<tr>
<th>Sample</th>
<th>Q</th>
<th>Mineral</th>
<th>Ap</th>
<th>II</th>
<th>He</th>
<th>Mt</th>
<th>Hy (b)</th>
<th>C</th>
<th>C</th>
<th>Ab</th>
<th>P</th>
<th>P</th>
<th>Di (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG6</td>
<td></td>
</tr>
<tr>
<td>LG7</td>
<td></td>
</tr>
<tr>
<td>LG8</td>
<td></td>
</tr>
<tr>
<td>LG9</td>
<td></td>
</tr>
<tr>
<td>LG10</td>
<td></td>
</tr>
<tr>
<td>LG11</td>
<td></td>
</tr>
<tr>
<td>LG12</td>
<td></td>
</tr>
<tr>
<td>LG13</td>
<td></td>
</tr>
<tr>
<td>LG14</td>
<td></td>
</tr>
<tr>
<td>LG15</td>
<td></td>
</tr>
<tr>
<td>LG16</td>
<td></td>
</tr>
<tr>
<td>LG17</td>
<td></td>
</tr>
<tr>
<td>LG18</td>
<td></td>
</tr>
<tr>
<td>LG19</td>
<td></td>
</tr>
<tr>
<td>LG20</td>
<td></td>
</tr>
<tr>
<td>LG21</td>
<td></td>
</tr>
<tr>
<td>LG22</td>
<td></td>
</tr>
<tr>
<td>LG23</td>
<td></td>
</tr>
<tr>
<td>LG24</td>
<td></td>
</tr>
<tr>
<td>LG25</td>
<td></td>
</tr>
<tr>
<td>LG26</td>
<td></td>
</tr>
<tr>
<td>LG27</td>
<td></td>
</tr>
<tr>
<td>LG28</td>
<td></td>
</tr>
<tr>
<td>LG29</td>
<td></td>
</tr>
</tbody>
</table>

Sample: MBG7, MBG8, MBG9, MBG10, MBG13, MBG7, MBG3, MBG8 (separate LLG12, LG2, LG3)
در این نمونه، نمادهای پیتاسیم، بسیار روش (کم پیتاسیم) و فسفر (کم پیتاسیم) کامل جدا از هم تصور شده‌اند. مقدار بیشتر FeO در FeO سنجش نشان می‌دهد که سنجش‌ها در فسفر کمتر از سنجش‌ها سنجش‌ها توجه می‌شود و مقدار بسیار کم FeO در سنجش‌های سیال روش به عدم حضور کاتی‌ها فرمولین‌ها در سنجش‌ها هم خوانی دارد (شکل 6).

در این نمونه (Al2O3) سنجش‌ها سنجش‌ها سنجش‌ها روش شدید مقدار بسیار کم FeO در FeO سنجش نشان می‌دهد که سنجش‌ها در فسفر کمتر از سنجش‌ها سنجش‌ها توجه می‌شود و مقدار بسیار کم FeO در سنجش‌های سیال روش به عدم حضور کاتی‌ها فرمولین‌ها در سنجش‌ها هم خوانی دارد (شکل 6).

در این نمونه (Al2O3) سنجش‌ها سنجش‌ها روش شدید مقدار بسیار کم FeO در FeO سنجش نشان می‌دهد که سنجش‌ها در فسفر کمتر از سنجش‌ها سنجش‌ها توجه می‌شود و مقدار بسیار کم FeO در سنجش‌های سیال روش به عدم حضور کاتی‌ها فرمولین‌ها در سنجش‌ها هم خوانی دارد (شکل 6).
شکل ۶ نمودارهای هارکر عناصر اصلی سنگهای مورد بررسی، الیفا (سفارشگر) نمودار MgO-SiO$_2$, (پوسته) نمودار CaO-SiO$_2$, (پوسته) نمودار Fe$_2$O$_3$-SiO$_2$, (پوسته) نمودار K$_2$O-SiO$_2$، (پوسته) نمودار Na$_2$O-SiO$_2$ و نمودار mend (پوسته) نمودار CaO و Na$_2$O به مقدار بیشتری در گرانیت‌وندهای بسیار روشن نشان می‌دهند.

شکل ۷ نمودارهای عناصر کمیاب نسبت به سیلیس و نسبت به هم، الیفا (سفارشگر) نمودار MgO-SiO$_2$, (پوسته) نمودار CaO-SiO$_2$, (پوسته) نمودار Fe$_2$O$_3$-SiO$_2$, (پوسته) نمودار K$_2$O-SiO$_2$, (پوسته) نمودار Na$_2$O-SiO$_2$, (پوسته) نمودار Rb-Cs و (پوسته) نمودار Rb-Sr در گرانیت‌وندهای بسیار روشن نشان می‌دهند.

بعضی از سنگهای بسیار روشن از نظر مقدار سیلیس های معمولی بالاتر است و در حد سنگهای تونالیتی است. در حالی که ضریب رنگینی این سنگ‌ها بسیار پایین تر از تونالیت‌ها است. شاید برخی از سنگ‌های بسیار روشن را بتوان لوكوتولایت در نظر گرفت.
سیاهی‌ها که در نتیجه کاهش گسترش‌های بسیار عناصر ایجاد می‌شوند لاکتادیت را به‌طور کامل کاهش می‌دهند.

1) با توجه به این که لیتوپیلیت (اغلب تریتوکسی) در سنگ‌های ماده‌هایی، به‌طوری که به وسیلهٔ غنی‌ترین عناصر و در شکل‌گیری سنگ‌های مورد بررسی می‌پردازید. این عناصر را می‌توان به‌طور گروه‌ها رده‌بندی کنیم:

- LILE (شامل پتاسیم، روبه‌ربودیم، سرین، استرونسیم و (La-Sm) LREE (شاملREE) و (RE)

-

2) در هر مورد غنی‌ترین عناصر Ba و Rb در سنگ‌های ماده‌هایی، به‌طوری که به وسیلهٔ غنی‌ترین عناصر LREE در سنگ‌های ماده‌هایی کم گسترش دارند.

3)

چنان‌که در نمودارهای هارک عناصر نسبت به سیلیس نشان داده شد، غنی‌ترین عناصر غنی‌ترین عنصر معادل خانی است. نسبت به عنصر Fe غنی‌ترین عنصر معادل خانی است نسبت به عنصر Cr غنی‌ترین عنصر معادل خانی است نسبت به عنصر Eu غنی‌ترین عنصر معادل خانی است نسبت به عنصر Hf غنی‌ترین عنصر معادل خانی است نسبت به عنصر Th غنی‌ترین عنصر معادل خانی است نسبت به عنصر Nb غنی‌ترین عنصر معادل خانی است نسبت به عنصر Ta غنی‌ترین عنصر معادل خانی است

4) با توجه به این که لیتوپیلیت (اغلب تریتوکسی) در سنگ‌های ماده‌هایی، به‌طوری که به وسیلهٔ غنی‌ترین Un

5) با توجه به این که لیتوپیلیت (اغلب تریتوکسی) در سنگ‌های ماده‌هایی، به‌طوری که به وسیلهٔ غنی‌ترین Un

6) با توجه به این که لیتوپیلیت (اغلب تریتوکسی) در سنگ‌های ماده‌هایی، به‌طوری که به وسیلهٔ غنی‌ترین Un

7) با توجه به این که لیتوپیلیت (اغلب تریتوکسی) در سنگ‌های ماده‌هایی، به‌طوری که به وسیلهٔ غنی‌ترین Un
سنگ‌های گرانتی غنی از پتاسیم (بیورفورونید) ممولاً به‌هم‌درنگی منفی Eu و سنگ‌های فقیر از پتاسیم (بی‌توانه روشن) پی‌هم‌درنگی و نشان می‌دهد مگام با Eu غنی از REE. LREE و HREE با نسبت بالای REE و REE غنی از Eu از ذوب خاص‌گاه‌های حاوی Eu که قلف‌پسی (روش پلاژیوکلاز) به صورت تفاهه (بر گرایه) در محل استخراج باقی می‌ماند. اگر فاز‌های برخی‌برخی‌مانندیهای مانند لاز، آمفی‌پلیستوریت با نوشت داشته باشد نسبت Sr/Ca در ماکما افزایش می‌یابد. همچنین، تبلور تفاهی گالی‌هایی که به‌جای Ca در ساختار آنها شرکت می‌کند از یک ماکما می‌شود که ممکنه‌رد سنگ‌های حاصل از گذاری‌های بی‌هم‌درنگی به‌هم‌درنگی منفی Eu نشان دهد. اگر در ذوب پلاژیوکلاز که به‌جای Ca به‌جای Sr/Ca به‌جای Ca در محل استخراج باقی می‌ماند. اگر می‌شود و اگر هر دو پیدا شده دوبه‌بخشی و نسبت تفاهیم در یک سیستم رخ داده باشد، به‌هم‌درنگی منفی Eu شدت در ناحیه ماکما افزایش می‌یابد.

شکل 8 نمودارهای منفی‌کننده نادر خاک‌اللف (لف) گرانتی‌های پورفورونید زینت‌سازنده با کندترین، ب) گرانتی‌های پورفورونید زینت‌سازنده با کندترین نمودارهای منفی‌کننده نادر خاک‌اللف (لف) گرانتی‌های پورفورونید زینت‌سازنده با کندترین، ب) گرانتی‌های پورفورونید زینت‌سازنده با کندترین نمودارهای منفی‌کننده نادر خاک‌اللف (لف) گرانتی‌های پورفورونید زینت‌سازنده با کندترین، ب) گرانتی‌های پورفورونید زینت‌سازنده با کندترین
روش تنظیم به طور کامل از پلازموکلاستر ترکیب متراکم کنندهhd اما CaO مقدار کمتر و در نتیجه مقدار آنورتیت کمتر در ترکیب پلازموکلاستر، آنها را از سنگ‌های ماند آنورتیت‌ها ممکن می‌سازد. تغییرات مقدار SiO2 در سنگ‌های بسیار روشن (بکل-عالی‌الحال) بالاتر (جمعیت یکی دوم و دومی) اما این مقدار در غربال‌های از گرانیت‌های پورتیوپین دامنه‌ای کمتری دارد. بنابراین در REE و LILE و HFSE به ترتیب CaO و FeO و K2O می‌شود. مقداری سنگ‌های ماند پورتیوپین با Eut ماهیت غنی از آلومین و خاسکه پوسته‌های آنها همخوانی دارد. آلیپتیا و پیگماتیت‌های منطقه‌ای غلب از نظر گسترش صحراً و یزگری‌های سنگ‌نگاری و زمین‌شنیبی با کریتوفین‌های تقطیع هماهنگ‌گر دانسته. به طور کلی برازش قبولی بین ویژگی‌های صحرا، سنگ‌نگاری و زمین‌شنیبی مشاهده شده در سنگ‌های گرانیت‌های مختلف در مجموعه نفوذی الوند وجود دارد.

برداشت

چنانکه از شواهد سنگ‌نگاری و زمین‌شنیبی مشخص شد، دور دسته گرانیت‌های مورد بررسی ویژگی‌های متغیرتی از خود نشان می‌دهد که احتمالاً از خاستگاه متفاوت آنها ناشی می‌شود. تحقیقات بهتری با کسانی‌ها که تحقیق نمودارگری و کمپیوتر را ترکیب کرده‌اند، کاتی تیتانیت (اسفند) به عنوان یک کانال فرعی مهم به شمار می‌آید، ولی گرانیت‌های پورتیوپین عالی از این کانال هستند. کمیت واریاسیون‌های فلسفی شناسی و کانال‌ها مانند کربوهای درخت‌پرورده‌ها با درصد و کانال‌های تشکیل‌دهنده‌ها با پوشش روشن گرانیت‌های بسیار بزی مانند MgO و FeO و K2O است. سنگ‌های بسیار روشن با داشتن FeO و MgO و Na2O، Na2O، و Al2O3 و CaO بیشتر از سنگ‌های CaO و MgO پورتیوپین (که سازندگی اصلی مجموعه نفوذی است) قابل تشخیص است. مقدار بالاتر سنگ‌های پورتیوپین را از ترکیب‌های دیگر ساخته شده در نقاط مختلف جهان متفاوت می‌سازد. همچنین این سنگ‌ها در مقایسه با سنگ‌های با CaO بالاتری دارند. بعضی از سنگ‌های بسیار
\[\text{مراجع}\]

[۱۰] علی اصغر سیاهی گرو، ی. تئورژی مجموعه نفوذی اoland با
گروه‌کوی ویژه بر گرانیت‌کتپ، رساله دکتری، دانشکده علوم،
گروه زمین شناسی، دانشگاه تربیت معلم (۱۳۸۸).

[۱۱] SepahI A.A., "Typology and petrogenesis of
granitic rocks in the Sanandaj-Sirjan metamorphic
belt, Iran: With emphasis on the Alvand Plutonic
Complex", Newes Jahrbuch Fur Geologie Und

[۱۲] شهبازی حسین، ی. تئورژی مجموعه سنگ‌های آذرین و
میگماتیت‌های کم‌گروکس اولد و تئورژی نفوذی الموقلات همدان و
ارتباط زننیتی بین آنها، رساله دکتری، دانشگاه شهید بهشتی
(۱۳۸۹).

[۱۳] ShahbaZi H., Siebel W., Pourmooafee M.,
Ghorbani M., SepahI A.A., Shang C.K.,
Vousoughi- Abedini M., "Geochemistry and U-Pb
zircon geochronology of the Alvand Plutonic
Complex in Sanandaj – Sirjan Zone (Iran): New
evidence for Jurassic magmatism.", Journal of

[۱۴] Alavi M., "Tectonics of the Zagros Orogenic
belt of Iran: New data and interpretation",

[۱۵] Mohajjel M., Fergusson C. L., Sahandi M. R.,
"Cretaceous-Tertiary convergence and continental
collision, Sanandaj-Sirjan Zone, Western Iran",

[۱۶] Majidi B., Amidi S.M., Hamadan Quadrange

[۱۷] Valizadeh M.V., Cantagrel J.M., "Premieres
donnees radiométriques (K-Ar et Rb-Sr) sur les
Micas du complexe magmatique du mont Alvand",
pred Hamadan (Iran occidental) Comptes Rendus
de l, Academie des Sciences de paris, Serie D 281,
(1975) 1083-1086.

[۱۸] برزین، تئورژی فاضل، پی. تئورژی مجموعه سنگ‌های
گروکس باختن، سرزم، تئورژی فاضل (۱۳۸۸) ۵۲ صفحه.

[۱۹] علی اصغر سیاهی گرو، ی. تئورژی مجموعه نفوذی اولد
گروکس الاهلی (۱۳۸۸) ۵۲ صفحه.

[۲۰] De La Roche H., Leterrrier J., Grandeladea P.,
Marchal M., "A classification of volcanic and
 plutonic rocks using R,R- diagram and major

