شناسایی هاله‌های پراکنده دومین و توزیع زتوشیمایی عناصر در خاک‌های پیرامون نقش‌های معدنی طلا-تنگستان تاریک‌داری، شمال خاوری ایران
جمال قوی ۱، محمد حسن کریمپور ۲، سید احمد مظاهری ۳، مجید قادری ۴، بهنام رحیمی ۵

چکیده: منطقه‌ای اکتشافی طلا-تنگستان تاریک‌داری در شمال شرقی ایران و در مرز زون ساختمانی ایران مرکزی، که به‌کمیت قرار دارد. توده‌ی گرانیت‌تندیزی تربیت‌جام گره‌های ماسی‌پی و ماسی‌پی‌های مسی‌پی‌پی‌های متقارن، طبقه‌ای در منطقه است که هم با توده‌ی شمال به‌کاری خوایی گزارش شده‌است. زغال‌دار، سیلیکات‌دار و ماسی‌سیک سازند ساندی سیلیکاته‌های با سنجش تاسیس، نفوذ و انرژی را در اطراف تا فاصله‌ای چند هکتار می‌باشد. تبدیل کردن معدن به منطقه بالغ ترین چهارم‌نگ در منطقه کنونی معدن کاری‌های طلا شلیتی، آرسنیپر، تانزانتین و قارچ‌ها، مرکز، اثر می‌باشد. نتایج، مکان‌گیری، استفاده منطقه بالغ و معدن‌داری طلا با عناصر تا عنصر Hf و EAs, Bi, Cu است. کلیه‌های بالغ تا عنصر نایلون‌بندی از خاک‌های پیرامون نفوذ شده و با ترکیب پارامترهای آماری توزیع معدن‌داری و در بررسی انرژی لگاریتمی، اکتشافات معدنی عناصر Hf و EAs, Cu, Bi, Co, W, Fe, Ti، احتمال تعمیق شده‌است. در بالغ اکتشاف منطقه و در محل اکتشاف، منطقه بالغ اکتشافی Sb) به کناری که در منطقه بالغ و باعثش ناشناخته‌های همکاری جالب پیوست‌های آن نمی‌باشد که در منطقه بالغ اکتشافی Sb) به کناری که در منطقه بالغ و باعثش ناشناخته‌های همکاری جالب پیوست‌های آن نمی‌باشد Cu و Ti بهبود می‌یابد. به عنوان عناصر Hf و EAs, Cu, Bi, Co, W, Fe, Ti، احتمال تعمیق شده‌است. در بالغ اکتشاف منطقه و در محل اکتشاف، منطقه بالغ اکتشافی Sb) به کناری که در منطقه بالغ و باعثش ناشناخته‌های Hf و EAs, Cu, Bi, Co, W, Fe, Ti، احتمال تعمیق شده‌است.

واژه‌های کلیدی: طلا، عنصر رداری، بالغ‌های پراکنده خاک‌های زتوشیمایی خاک‌های تاریک‌داری ایران

کیفیت قرار دارد. نفوذ توده‌ی آزین تربیت جام به سی خاک‌های پراکنده دومین، پیام‌های زتوشیمایی عناصر در خاک‌های پیرامون نقش‌های معدنی طلا-تنگستان تاریک‌داری، شمال خاوری ایران

مقدمه

پسین در سنجش حاصله‌های زتوشیمایی عناصر در خاک‌های پیرامون نقش‌های معدنی طلا-تنگستان تاریک‌داری، شمال خاوری ایران است. در منطقه مسکن فلزهای پینالو و در مرز زون ساختمانی ایران مرکزی و
روش بررسی

این پژوهش شامل بررسی اینکه انتظار می‌رود که تغییرات در زمین شناسی و آزمایشگاهی این اثر کار کنند. بررسی‌های صحرايی آن شامل شناسایی و تعریف جدایی‌ناپایان و سنجش‌های صورت گرفته است و تجربیات شیمیایی زمین‌شناسی را نشان می‌دهد.

از این تکنیک استفاده شده است و تجربیات شیمیایی زمین‌شناسی را نشان می‌دهد.

تأثیر آزمایشگاهی به‌دست آمده و یافته‌های صحرايی، بررسی شده و در قالب نشانه‌های جدایگانه (با میزان ۱۵۰۰۰) زمین‌شناسی و نشانه‌های یونجی در محیط مورد نظر شناخته شد و تفسیر شد.

ناحیه جنگ‌های [۱۱] بر می‌گردد، بهره‌وری و همکاران [۱۲] بررسی‌های زمین‌شناسی ناحیه‌ای منطقه را در قالب تیکه‌ی نقشه زمین‌شناسی ۱۵۰۰۰۰ چارگوش ترتیب جام به سرانجام رسیده‌اند. اگرچه [۱۳] ضمن بررسی‌های سنجش‌های توده‌ی نفوذی ترتیب‌ها و هاله‌های دگرگونی آن به کانی‌های جدید موجود در توده‌ی کوارتز دیوربی‌کی منطقه تاریک‌کرده اشاره‌های کرده است. در سال ۱۳۷۹ بررسی‌های صحرايی و مقدماتی با نگاهی اکتشافی در منطقه تاریک‌کرده صورت گرفته و نتایج حاصل توسط خاک‌رود و همکاران [۱۴] ارائه شده است. طی سال‌های ۱۳۸۱ تا ۱۳۸۵، سازمان زمین‌شناسی کشور، پی‌گیری روشن‌سازی‌های شیمیایی و نقشه‌های زمین‌شناسی ۱۵۰۰۰۰۰ روبروی ترتیب جام را سازماندهی و منشأ برده است. که ضمن نهایی نقشه زمین‌شناسی با هدف استدلال به‌طور کلی این نتایج در نقشه‌های تاریک‌کرده از نظر ذخیره‌ی طلا ارزیابی شده‌است [۱۵۶۸]. سازمان صنایع و معادن استان خراسان رضوی نیز در این منطقه، پی‌گیری‌های انجام داده‌اند [۱۷]. بررسی‌های تکمیل و تقصیری از سال ۸۷ توسط مؤلفان در دست انجام است و این نوشته اطلاعات تقریباً کاملی از بررسی‌های انجام شده در خصوص مسائل زمین‌شناسی و اکتشافی این منطقه را ارائه می‌کند.

شکل ۱ الته موقت‌های جغرافیایی و راه‌های دسترسی به گسترده مورد بررسی که با هاشور مشخص شده‌اند، به‌پهنه مورد بررسی در شمال خاوری ایران و در مرز زون ساختاری ایران مرکزی و کارگاههای قرارداد (بر اساس [۹۸]).
زمین‌شناسی و موقعیت زمین‌ساختات منطقه

این منطقه در گوشه‌ی شمال‌شرقی ایران و در حد فاصل زوین‌راستی ایران مرکزی و به‌ویژه کیهان کردستان و داریوسخس است (شکل 2). سرشتی‌های زمین‌شناسی این منطقه به‌وسیلهٔ خارج از مرز ایران و همزمان و در راستای کوه‌های هندوکش-هیمالیا نیز قابل تعقیب است.[۱۸]

گونه‌تبار و چنگ‌چسب‌نرین پیکره‌ای رسوی منطقه مورد بررسی سازند شیلی-ماسه سنگی میانکوهی است (شکل ۲) که شامل شیلات و نوردرهای مجدداً توانسته یا سیستم‌های منطقه و سخت نشده‌اند.

بررسی‌های اکتشافی

بررسی‌های اکتشافی در گستره‌ی مورد بررسی براپاره‌ی چوبی‌های روستی، زولپیمی، رسوب‌های ابزارهای و تجزیه کمی عناصر در نمونه‌های برچسب‌های خاک، برای مرزهای است. نمونه برداری از رسوب‌های روستی، بعنوان رشته‌های زمین‌شناسی در گهگاه رهاسازی، انتقال شانگان در این روش به‌دست آمده، بررسی نشده روستا در قابل شکسته‌بندی منظم نیز طراحی و انجام شده است (شکل ۲). شناختی و نتایج هاله‌های پراکنده دومین عناصر در خاک و کنترل آن‌ها از طریق بررسی‌های لیتوژئوپذیراسی، راهکار اکتشاف‌های تکمیلی و در تعیین گستره و رضایت ریشه‌های معدنی مفید می‌باشد.[۱۲۱]
برای طراحی شیب‌های نمونه‌برداری از رسوب‌های آبراهی، نخست گذره‌های حوضه‌ای آبریز و طرح کلی آبراهه‌ها اصلی منطقه از نقشه‌های توبوگرافی ۱:۵۰۰۰۰ موسیآباد و یافته‌ها و عکس‌های هاویابی ۱:۲۰۰۰۰ پایتخت و مرکز نقل توبوگرافی آبراهه، به‌پهنه‌بردن نقاط نمونه‌برداری نهایی تشکیل و با در نظر گرفتن بوده و مقدار عملیات تعداد ۳۲ نمونه برای آگاهی از رسوب‌های نمونه‌ی زدنی و ۱۲ نمونهٔ رسوب‌یابی رسوب (بسیار یکسان‌گونه) بکار رفته شده است.

نتایج به‌دست آمده از بررسی نمونه‌ها کاني‌های سنگین نشان می‌دهد که کاني‌های آمیتابی، آسانی، اپتیسی و بررسی‌های ویژه نشان می‌دهد که کاني‌های نمکی کاني‌های سنگین نشان می‌دهد که کاني‌های آمیتابی، آسانی، اپتیسی و بررسی‌های ویژه نشان می‌دهد که کاني‌های نمکی

شناخت و شناسایی کاني‌های سنگین در شرکت ایران انار (ازامیشگاه کوی) خودرو و نهرتی است. شناسایی نمونه‌ها گل‌شروع است سپس با لایه‌شیب، تغییر کاني‌های سنگین در چک‌شویی در محله روش نمونه برداری کاني‌های سنگین با چگالی بیش از ۰.۸۴ گرم بر سانتی‌متر مکعب از کانی‌های سنگی جدا شده، با استفاده از دو میدان نقشه‌برداری

وه متوسط کانی‌های سنگین به ۳ بخش کانی با خاصیت
زنوشیمی رسمیهای رودخانه‌ای

پی‌گیری‌های زنوشیمی‌ای در منطقه تاریک دره باعث ناتمام‌گردن نمونه‌های کاتی‌های سنگین و در محیط‌های امید بخش و یپرداشتن نمونه‌های تکنولوژی و سنجش‌های میزان آن‌ها و با برداشت ۱۶ نمونه رسمیه رودخانه‌ای انجام شده است (شکل ۲). نتایج حاصله نمونه‌های رسمیه رودخانه‌ای و با لحاظ نمودن ۲ نمونه تکنولوژی، برای طلا به روش عبارتی‌سنجی آذری (Fire Assay) ناحیه شیمیایی فلزات در آزمایشگاه Amdel (ICP-OES و ICP-MS) Acid استرالیا انجام شد.

نتایج زنوشیمی رسمیهای رودخانه‌ای (پس از جاگیر کننده‌های سنسور و بردارش‌های زمین‌آمیزی) حاکی از وجود Cu, Bi Co, Zn, W, Sn, As, Sb, Co, Fe توجه‌های تاکیدی است. این اساس طلا همبستگی مثبت (با

شکل ۲ نقشه پراکندگی کاتی‌های سنگین، طلا-شلیت و آرسنیوریت-پیريت در دامنه غلت‌های منفعت

از جمله طلا-شلیت و آرسنیوریت، پیریت در دامنه غلت‌های منفعت-

زنوشیمی رسمیهای رودخانه‌ای

پی‌گیری‌های زنوشیمی‌ای در منطقه تاریک دره باعث ناتمام‌گردن نمونه‌های کاتی‌های سنگین و در محیط‌های امید بخش و یپرداشتن نمونه‌های تکنولوژی و سنجش‌های میزان آن‌ها و با برداشت ۱۶ نمونه رسمیه رودخانه‌ای انجام شده است (شکل ۲). نتایج حاصله نمونه‌های رسمیه رودخانه‌ای و با لحاظ نمودن ۲ نمونه تکنولوژی، برای طلا به روش عبارتی‌سنجی آذری (Fire Assay) ناحیه شیمیایی فلزات در آزمایشگاه Amdel (ICP-OES و ICP-MS) Acid استرالیا انجام شد.

نتایج زنوشیمی رسمیهای رودخانه‌ای (پس از جاگیر کننده‌های سنسور و بردارش‌های زمین‌آمیزی) حاکی از وجود Cu, Bi Co, Zn, W, Sn, As, Sb, Co, Fe توجه‌های تاکیدی است. این اساس طلا همبستگی مثبت (با

شکل ۲ نقشه پراکندگی کاتی‌های سنگین، طلا-شلیت و آرسنیوریت-پیریت در دامنه غلت‌های منفعت

از جمله طلا-شلیت و آرسنیوریت، پیریت در دامنه غلت‌های منفعت-

زنوشیمی رسمیهای رودخانه‌ای

پی‌گیری‌های زنوشیمی‌ای در منطقه تاریک دره باعث ناتمام‌گردن نمونه‌های کاتی‌های سنگین و در محیط‌های امید بخش و یپرداشتن نمونه‌های تکنولوژی و سنجش‌های میزان آن‌ها و با برداشت ۱۶ نمونه رسمیه رودخانه‌ای انجام شده است (شکل ۲). نتایج حاصله نمونه‌های رسمیه رودخانه‌ای و با لحاظ نمودن ۲ نمونه تکنولوژی، برای طلا به روش عبارتی‌سنجی آذری (Fire Assay) ناحیه شیمیایی فلزات در آزمایشگاه Amdel (ICP-OES و ICP-MS) Acid استرالیا انجام شد.

نتایج زنوشیمی رسمیهای رودخانه‌ای (پس از جاگیر کننده‌های سنسور و بردارش‌های زمین‌آمیزی) حاکی از وجود Cu, Bi Co, Zn, W, Sn, As, Sb, Co, Fe توجه‌های تاکیدی است. این اساس طلا همبستگی مثبت (با

شکل ۲ نقشه پراکندگی کاتی‌های سنگین، طلا-شلیت و آرسنیوریت-پیریت در دامنه غلت‌های منفعت

از جمله طلا-شلیت و آرسنیوریت، پیریت در دامنه غلت‌های منفعت-
پرواز پایه‌ها و محاسبه ضرایب همبستگی عناصر
پس از تجزیه شیمیایی نمونه‌ها و برای شناسایی پی‌هنجاری، های و بررسی انتخاب آن‌ها، اندازه‌گیری الکتریکی با روش انتخابی گرفته که عنصر طلا با روش عبارتی است.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>روش</th>
<th>حداکثر ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>FA3</td>
<td>1</td>
</tr>
<tr>
<td>As</td>
<td>IC3E</td>
<td>0.5</td>
</tr>
<tr>
<td>Cr, Mn, Ni</td>
<td>IC3E</td>
<td>3</td>
</tr>
<tr>
<td>Mo, Sr</td>
<td>IC3E</td>
<td>0.1</td>
</tr>
<tr>
<td>Pb, Zn, Ba, Be</td>
<td>IC3E</td>
<td>0.2</td>
</tr>
<tr>
<td>Ti</td>
<td>IC3E</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe</td>
<td>IC3E</td>
<td>0.1</td>
</tr>
<tr>
<td>Hg, B</td>
<td>IC3M</td>
<td>0.05</td>
</tr>
<tr>
<td>Ag</td>
<td>IC3M</td>
<td>0.1</td>
</tr>
<tr>
<td>Bi, Sb, W</td>
<td>IC3M</td>
<td>0.2</td>
</tr>
<tr>
<td>Co, Cu, Sn</td>
<td>IC3M</td>
<td>0.3</td>
</tr>
</tbody>
</table>

* برای عنصر مختلف (ICP) روش حداکثر متفاوت (RAE) در این فرمول (RAE) را حساب می‌شود:

$$ RAE = \frac{2}{n} \sum_{i=1}^{n} \left(X_i - \bar{X} \right) \times \left(X_i + \bar{X} \right) $$

پیچیده‌ترین نسبت از این فرمول در این شرایط (RAE) می‌شود.

روش انتخابی: Amdel
شکل ۵ نمودار خطی، مقدار خطای نسبی آنالیز نمونه‌های خاک را برای تعدادی از عناصر نشان می‌دهد.

جدول ۲ داده‌های سنسورده (Censored) و مقادیر منتشر و جایگزین شده در نمونه‌های رسوپ رودخانه‌ای و خاک.

<table>
<thead>
<tr>
<th>محل نمونه برداری</th>
<th>پیامدها</th>
<th>Au</th>
<th>Hg</th>
<th>Ag</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک</td>
<td>تعداد نمونه‌های سنسورده</td>
<td>۹۶</td>
<td>۹۴</td>
<td>۹۳</td>
<td>۹۴</td>
</tr>
<tr>
<td></td>
<td>درصد داده‌های سنسورده</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>رسوپ رودخانه‌ای</td>
<td>تعداد نمونه‌های سنسورده</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td></td>
<td>درصد داده‌های سنسورده</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>حد تحقیق دسکاک</td>
<td>مقدار سنسورده</td>
<td>۱</td>
<td>۵</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>مقدار سنسورده</td>
<td>مقدار مبهم</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
</tr>
</tbody>
</table>

** Variance
*** Coeffictiont of Variation

جدول ۳ پارامترهای آماری عناصر انتخابی ۲۴۶ نمونه خاک در گستره تاریک‌درد (داده‌های خام).

<table>
<thead>
<tr>
<th>عنصر</th>
<th>سه‌گیاه</th>
<th>آنالیز</th>
<th>کمیه</th>
<th>انحراف معیار</th>
<th>بیشتر</th>
<th>پراش</th>
<th>%</th>
<th>*%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>۱۱</td>
<td>۳۹</td>
<td>۳۹</td>
<td>۳۹</td>
<td>۵</td>
<td>۳۷</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
</tr>
<tr>
<td>As</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۵</td>
<td>۴۵</td>
<td>۱۸۸</td>
<td>۱۸۸</td>
</tr>
<tr>
<td>Cu</td>
<td>۸۷</td>
<td>۵۳</td>
<td>۵۳</td>
<td>۵۳</td>
<td>۵</td>
<td>۵۳</td>
<td>۱۱۸</td>
<td>۱۱۸</td>
</tr>
<tr>
<td>Mo</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱</td>
<td>۱۱</td>
<td>۲۲</td>
<td>۲۲</td>
</tr>
<tr>
<td>Bi</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴</td>
<td>۴۶</td>
<td>۱۶۶</td>
<td>۱۶۶</td>
</tr>
<tr>
<td>Sb</td>
<td>۲۷</td>
<td>۲۷</td>
<td>۲۷</td>
<td>۲۷</td>
<td>۲</td>
<td>۲۷</td>
<td>۱۴۸</td>
<td>۱۴۸</td>
</tr>
<tr>
<td>Pb</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۹</td>
<td>۹۳</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>Sn</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۹</td>
<td>۹۳</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>Zn</td>
<td>۱۱۴</td>
<td>۲۷۳</td>
<td>۲۷۳</td>
<td>۲۷۳</td>
<td>۹</td>
<td>۲۷۳</td>
<td>۷۷</td>
<td>۷۷</td>
</tr>
<tr>
<td>Co</td>
<td>۲۶</td>
<td>۲۶</td>
<td>۲۶</td>
<td>۲۶</td>
<td>۲</td>
<td>۲۶</td>
<td>۴۵</td>
<td>۴۵</td>
</tr>
<tr>
<td>Cr</td>
<td>۷۵</td>
<td>۳۵۵</td>
<td>۳۵۵</td>
<td>۳۵۵</td>
<td>۲۵</td>
<td>۳۵۵</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>W</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴</td>
<td>۴۵</td>
<td>۱۴۶</td>
<td>۱۴۶</td>
</tr>
<tr>
<td>Ag</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴</td>
<td>۴۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>Mn</td>
<td>۱۱۷۷</td>
<td>۱۱۷۷</td>
<td>۱۱۷۷</td>
<td>۱۱۷۷</td>
<td>۱۱۷۷</td>
<td>۱۱۷۷</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>Ti</td>
<td>۴۵۶۵</td>
<td>۴۵۶۵</td>
<td>۴۵۶۵</td>
<td>۴۵۶۵</td>
<td>۴۵۶۵</td>
<td>۴۵۶۵</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>Fe</td>
<td>۱۴۹۹</td>
<td>۱۴۹۹</td>
<td>۱۴۹۹</td>
<td>۱۴۹۹</td>
<td>۱۴۹۹</td>
<td>۱۴۹۹</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>Ba</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۹</td>
<td>۹۳</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>Sr</td>
<td>۱۱۵۸</td>
<td>۱۱۵۸</td>
<td>۱۱۵۸</td>
<td>۱۱۵۸</td>
<td>۱۱۵۸</td>
<td>۱۱۵۸</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
</tbody>
</table>

** Variance
*** Coeffictiont of Variation

مقدار Au بر حسب ppm و دیگر عناصر بر حسب ppb

۲۵۰ از ** Variance
*** Coeffictiont of Variation

۲۵۰ از ** Variance
*** Coeffictiont of Variation
نمایش نموداری داده‌های خام و لگارتمی نمونه‌های زئوشیمیایی خاک بر مبنای رده‌های از پیش تعیین شده (نمودارهای ستونی). نوع تابع توزیع، وجود یا عدم چولگی و میزان تقریبی آن تعبیه می‌شود. آنچه که از بررسی نمودارهای ستونی جمعیت خام و لگارتمی نمونه‌های زئوشیمیایی خاک به‌دست آمدند، حاکی از این است که درصد نسبتاً بالایی از داده‌های نمونه‌گیری باید و نهایت سنسور است Cu, Mo, Pb, Sn و تابع توزیع جوامع داده‌های خام و لگارتمی نمونه‌هایهای Bi و Co, Ti, Hg, Au, Sr, Zn, W, Ba, As که همگی چولگی نسبتاً نداشتند، باز در بهبود و تدوین جامعه لگارتمی، تا حداکثر 75 نمونه‌ای خاک با عنصر چگونگی همبستگی این عنصر در آنالیز زئوشیمی رسوب‌های ابراهیمی در سطوح اعتماد مختلف، نیز ارزیابی شده است که Cu-, Au-Cu، Au-Cu و W-Cu، Pb-Zn، As بیشترین همبستگی مثبت میان زوج عناصر است (جدول 4).

طقن مختلف امکان‌پذیر است. انتخاب روش بهبودی محاسباتی که واگشتی زیادی به نوع تابع توزیع نداشته باشد، بسیار اهمیت دارد. در این پژوهش دائمی همیافی عناصر بر مبنای محاسبه ضریب همبستگی Spearman (که واگشتی محاسبات به نوع تابع توزیع کم است) صورت گرفته است. در محاسبه حد اعتبار، به‌نهاگرد کردن داده‌های صورت نگرفته است و مبنای تعداد نمونه مورد شرط بوده و حد اعتبار نامحدود به مقداری ثابت و تعیین شده (5%) نوبه است. نتایج بسته‌ای آمده از همبستگی های مثبت و قابل توجهی می‌باشد. نکته‌ای در Co و As, Cu, Bi, Fe نمونه‌های خاک با عنصر چگونگی همبستگی این عنصر در آنالیز زئوشیمی رسوب‌های ابراهیمی در سطوح اعتماد مختلف، نیز ارزیابی شده است که Cu-, Au-Cu و W-Cu، Pb-Zn، As بیشترین همبستگی مثبت میان زوج عناصر است (جدول 4).

شکل 6 نمودار ستونی داده‌های خام و لگارتمی عنصران‌نتهایی Au, As در نمونه‌های خاک تاییدگرده.
جدول ۲ شدت همبستگی (اسبئرمن) بین عناصر مختلف در بررسی‌های زئوپسیمایی رودخانه‌ای (Soil و نمونه‌های خاک) (St.s) می‌دهد. همبستگی‌های خیلی شدید، می‌توانند نشان از وجود فراوانی‌های کلی بازی باشد.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Soil</th>
<th>St.s</th>
<th>Au</th>
<th>As, Cu</th>
<th>Fe, Bi, Co</th>
<th>Mn, Sr, Ti, Hg, Ag, Sb, W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>Soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cr, Ba, Be, Ti, Fe, Hg, As, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
</tr>
<tr>
<td>As</td>
<td>Soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
</tr>
<tr>
<td>Pb</td>
<td>Soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
</tr>
<tr>
<td>Zn</td>
<td>Soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
</tr>
<tr>
<td>W</td>
<td>Soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
</tr>
<tr>
<td>Sn</td>
<td>Soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
</tr>
<tr>
<td>Sb</td>
<td>Soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
</tr>
<tr>
<td>Co</td>
<td>Soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
</tr>
<tr>
<td>Fe</td>
<td>Soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
</tr>
</tbody>
</table>

سرشت‌های زئوپسیمایی و معنا می‌گذاری 淤یکی از راه‌های بررسی متقارن ناهنجار و امکان همسوی آنها از یکدیگر استفاده از سرشت‌های زئوپسیمایی است. در مورد قرار می‌گیرد و ممکن است، این ضرایب بالا واقعی یا همبستگی باعث همبستگی خاص و معمولاً عناصری ناشناخته ایجاد می‌شود. از آن و برعکس، این همبستگی توسط محاسبه محاسبه شده‌است.

1- Geochemical Signature
2- Sort
مقادیر Z-Score

معیار جمعی نامگذاری شده، و یافته‌هایی بدست می‌آید که به‌صورت نامش داده می‌شود. لازم به یادآوری است که نوعی استاندارد‌سازی داده‌هاست که بر اساس فرمول زیر محاسبه می‌شود:

\[Z\text{-score} = \frac{(X - \text{Mean})}{\text{SD}} \]

در این فرمول X عبارت از نمونه، Mean میانگین و SD انحراف معمولی است.

شکل ۷ هاله‌های پراکندگی دومین عنصر طال و دیگر عناصر وابسته و ردیاب دخال‌ها بر جرای گسترش پی جویی نیازکرده.
نتایج آنها به روش کریجینگ استفاده شده است.

در مراحلی برایش، جند عامل به‌عنوان متغیرهای محاسبه‌ی تغییر نگار مورد استفاده قرار گرفته‌اند (جدول 5). راستا، که تغییرگاژ نخست آن را صورت گیرشته در نظر گرفته و در صورت عدم تطابق مدل بهینه در راستای 45° و 90 درجه، در محاسبات مورد استفاده قرار گرفته است. بهتر گام، از گام 120، 150، 160 و 180 متر در تغییرگاژ استفاده شد. عداد گام‌ها، مقادیر مورد استفاده در این مراحل 15 و 20 گام بوده است. اثر قطعه‌ای، به صورت نظری صفر در نظر گرفته شد و محاسبه‌ی اثر قطعه‌ای

C1/C به صورت معنی‌دارا مدل گردید، از این‌رو عامل گرمایش شده این علل، ویا در ایران بسیار کمی بر یکگذار خواهد بود. با محاسبه‌ی مقادیر میانگین (X)، انحراف معیار (S)، و محاسبه‌ی با قرار دادن به عنوان حد آستانه پی‌هنجارهای (به عنوان حد آستانه پی‌هنجارهای Med + S) به عنوان Med + S Med + S از Med + S Med + S به عنوان پی‌هنجارهای Med + S مشخص) و مقادیر بالاتر از Med + S احتیاجی محسوب می‌شود (جدول 6)، و بر این حساب، اگر از انواع کمیتی مورد نظر منطقه‌بندی می‌کند. عامل چهارم با عنوان مقدار پارتیسانهای Ba, Zn, (Pb) می‌تواند با توجه به لیتوژوگرافی و یا پارتیسانهای کانی‌سایر سرب و روی (رگه‌های گالن‌دار) با گالن بانکی نماید.

شناخته‌ی هاله‌های پراکندگی درونی عناصر

از مهم‌ترین هدف‌های این پژوهش شناسایی هاله‌های پراکندگی عناصر و اطلاعاتی و تمرکز عناصر به منظور معرفی نقاط اهمیت‌بخش و یا به عنارتی پی‌هنجارهای است. روش‌های مختلفی برای جدایی پی‌هنجارهای ترمیمی مقدار مشاهده شده‌است که برده می‌شود، در این پژوهش از برداشت واریوگرام (تغییرگاه) داده‌های لگاریتمی استفاده شد.

8- Lag width
9- Number of Lag
10- Nugget Effect
11- Range
12- Cross Validation

6- Krigging
7- Telorance

ملف صورت گرفته است به عنوان Outlier تلقی شده‌اند.

* مقدار صورت گرفته است به عنوان Outlier تلقی شده‌اند.

شناخته‌ی هاله‌های پراکندگی درونی عناصر

از مهم‌ترین هدف‌های این پژوهش شناسایی هاله‌های پراکندگی عناصر و اطلاعاتی و تمرکز عناصر به منظور معرفی نقاط اهمیت‌بخش و یا به عنارتی پی‌هنجارهای است. روش‌های مختلفی برای جدایی پی‌هنجارهای ترمیمی مقدار مشاهده شده‌است که برده می‌شود، در این پژوهش از برداشت واریوگرام (تغییرگاه) داده‌های لگاریتمی استفاده شد.

7- Telorance

شناخته‌ی هلاله‌های پراکندگی درونی عناصر

از مهم‌ترین هدف‌های این پژوهش شناسایی هلاله‌های پراکندگی عناصر و اطلاعاتی و تمرکز عناصر به منظور معرفی نقاط اهمیت‌بخش و یا به عنارتی پی‌هنجارهای است. روش‌های مختلفی برای جدایی پی‌هنجارهای ترمیمی مقدار مشاهده شده‌است که برده می‌شود، در این پژوهش از برداشت واریوگرام (تغییرگاه) داده‌های لگاریتمی استفاده شد.
جدول ۵ مشخصه‌های اصلی تغییرگذاریهای عنصر انتخابی.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>باند کنترل (متر)</th>
<th>مقدار سقف اثر</th>
<th>مقدار سقف نمودار</th>
<th>اثر تغییرهای عضوی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>۱۲۵</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>As</td>
<td>۴۰</td>
<td>۳۰</td>
<td>۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>Cu</td>
<td>۵۰</td>
<td>۴۰</td>
<td>۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>Sb</td>
<td>۱۰۰</td>
<td>۹۰</td>
<td>۰</td>
<td>۹۰</td>
</tr>
<tr>
<td>Pb</td>
<td>۱۵۰</td>
<td>۱۴۰</td>
<td>۰</td>
<td>۱۴۰</td>
</tr>
<tr>
<td>Bi</td>
<td>۱۶۰</td>
<td>۱۵۰</td>
<td>۰</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>Ag</td>
<td>۱۸۰</td>
<td>۱۷۰</td>
<td>۰</td>
<td>۱۷۰</td>
</tr>
<tr>
<td>Mo</td>
<td>۲۰۰</td>
<td>۲۰۰</td>
<td>۰</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>Ad*</td>
<td>۲۵۰</td>
<td>۲۴۰</td>
<td>۰</td>
<td>۲۴۰</td>
</tr>
</tbody>
</table>

جدول ۶ پارامترهای توزیع داده‌های هم و مقدار لگاریتم آنها، حداکثر و هنجاره‌های ممکن برای عنصر مختلف در نمونه‌ها خاک منطقه

<table>
<thead>
<tr>
<th>پارامترهای توزیع (خاک)</th>
<th>Au</th>
<th>As</th>
<th>Cu</th>
<th>Pb</th>
<th>Bi</th>
<th>Sb</th>
<th>Ag</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۱۲۵</td>
<td>۶۵۶</td>
<td>۶۸۹</td>
<td>۲۷۷</td>
<td>۶۰۹</td>
<td>۵۵۷</td>
<td>۵۴۷</td>
<td>۵۴۷</td>
</tr>
<tr>
<td>(X) (پارامترهای توزیع (نگاری‌نژ)</td>
<td>۲۴۲</td>
<td>۸۵۴</td>
<td>۱۶۴</td>
<td>۱۸۹</td>
<td>۲۳۷</td>
<td>۷۰۶</td>
<td>۶۴۷</td>
<td>۶۴۷</td>
</tr>
<tr>
<td>انرژی میانگین</td>
<td>۰/۵۸</td>
<td>۰/۵۸</td>
<td>۰/۵۸</td>
<td>۰/۵۸</td>
<td>۰/۵۸</td>
<td>۰/۵۸</td>
<td>۰/۵۸</td>
<td>۰/۵۸</td>
</tr>
<tr>
<td>ضریب تغییرهای میانگین</td>
<td>۹۵۴۲</td>
<td>۹۵۴۲</td>
<td>۹۵۴۲</td>
<td>۹۵۴۲</td>
<td>۹۵۴۲</td>
<td>۹۵۴۲</td>
<td>۹۵۴۲</td>
<td>۹۵۴۲</td>
</tr>
<tr>
<td>آستانه بی‌هجاری</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
</tr>
<tr>
<td>بی‌هجاری ممکن</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
<td>۱۸۹</td>
</tr>
</tbody>
</table>

برداشت
کاوش و بررسی‌های کاتی‌های سیگن در هدف پی چوبی تاریک‌جه، به‌شکل نشان‌دهنده کاتی‌های طلا کالکتیورپت، گوت، همانیت، گالیت، پریت، پریت‌گریت، آرستوپریت، همانیت، جاروپرت، جاروپرت‌گریت، مالکیت، فلاگوپرت، شلیت، اسبیکولاریت، اسپیتروپرت، گازرت، و گازرت، شد. معمولاً بررسی‌های ژئوپتروپی‌ها و پرایدی ژئوپتروپی‌ها و در نهایت ارزیابی - های زمین شیمی نمونه‌های برای خاک منجر به شناسایی...
حدد 43.8 کیلوگرم مربی و متأخر از 12 نمونه، شمال خاوری (مانند از 6 نمونه ی هنگار) و جنوب باختری (پهنا ی ابن بی- هنگار) بالغ بر 3 هکتار و متأخر از 3 نمونه مشخص شده است.

این بی‌هدناری‌های زیردریافتی بی‌هدناری‌های در مقدار 2.94 در 3 نمونه را به‌طور متوسط در این بی‌هدناری‌های زیردریافتی هنگاری‌های باختری 2 نمونه متمرکز در شлагر (شکل 2). مقدار طلا در 3 نمونه رسوب آب اراهامی که در شیراز معمولاً آن‌ها به هنگاری باختری (پلگ بر 247 هکتار) 2 متنی می‌شود به ترتیب عبارتند از: نبودهای 35 میلی‌گرم، 35 میلی‌گرم، 35 میلی‌گرم و 35 میلی‌گرم.

برابر و رابطه باعث می‌شود در نتیجه: نبودهای 35 میلی‌گرم، 35 میلی‌گرم، 35 میلی‌گرم و 35 میلی‌گرم.

بی‌هدناری‌های باعث می‌شود در نتیجه: نبودهای 35 میلی‌گرم، 35 میلی‌گرم، 35 میلی‌گرم و 35 میلی‌گرم.

۲۷۶۱ ppm و ۲۷۶۱ ppm می‌گذارد. در نتیجه: نبودهای 35 میلی‌گرم، 35 میلی‌گرم، 35 میلی‌گرم و 35 میلی‌گرم.

اهرمیستان هایی از این بی‌هدناری‌ها باعث می‌شود در نتیجه: نبودهای 35 میلی‌گرم، 35 میلی‌گرم، 35 میلی‌گرم و 35 میلی‌گرم.

[14] شفیعی نیا ح، مطالعات زئوشیمی و زمین شناسی اقتصادی انگیزه طلا تاریک دره، شمال تربیت جام، پایان‌نامه کارشناسی ارشد، زمین شناسی اقتصادی، دانشگاه شهید بهشتی تهران (۱۳۸۱) ص.

[15] برند س، روش‌های اکتشافات زئوشیمیایی دخاب و زمین شناسی و اکتشافات معدنی کشور (۱۳۷۵) ص ۲۶۲.

[17] حسینی یک و.، شرف الدین م، تحلیل داده‌های اکتشافی، انتشارات دانشگاه تهران (۱۳۸۰) ص ۴۸۷.

[18] حسینی یک و.، اصول اکتشافات زئوشیمیایی، انتشارات دانشگاه تهران (۱۳۷۰) ص ۴۸۷.

[19] یک و. حسینی و همکاران، نفیسه زمین شناسی چهره گوش تربیت جام، مقاله ۱۹۹۲-۲۱۹، سازمان زمین شناسی و اکتشافات معدنی کشور (۱۳۹۴).

[20] اکرمی م، بررسی پترولیوم و زئوشیمی توده کارشناسی تربیت جام و هنر دگرگونی این، پایان‌نامه کارشناسی ارشد پترولیوم، دانشگاه تهران (۱۳۷۳) ص ۱۷۵.

[21] خوازی ا.، کریم‌پور ج، بی‌دی م، شفیعی نیا ح، مطالعه کانسیس در بازی، اکتشافات زئوشیمیایی سیستانی در وقته ۱۹۹۱-۱۹۸۰، تربیت جام (۱۳۸۱).

[22] علی‌نیا نامی، با کمک وسایل، نفیسه زمین شناسی تربیت جام، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور (۱۳۸۵).

[23] مهندسی مشاور وزارت اکتشاف، کراش اکتشاف نیمه تفصیلی طلا و تکنولوژی تربیت جام، سازمان صنایع و معدن استان خراسان رضوی (۱۳۸۷) ص ۱۶۵.

[25] آقابنی ع، زمین شناسی ایران، سازمان زمین شناسی و اکتشافات معدنی کشور (۱۳۸۳) ص ۶۰۶.