شناختی هاله‌های پراکنده دومین و توزیع زئوژمیایی عناصر در خاک‌های پیرامون
نشانه‌های معدنی طلا-تنگستان تاریک‌دهر، شمال خاوری ایران

جمال قوی، محمد حسن کریم‌پور، سید احمد مظاهری، مجید قادی‌زاده، پیمان رحیمی

چکیده: منطقه‌ای اکتشافی طلا-تنگستان تاریک‌دهر، در شمال شرقی ایران و در مرز استان‌های همدان و اصفهان، با کوه‌های دلبری و کوه‌های تاریک‌دهر و کوه‌های دلبری قرار دارد.

توده‌های اکتشافی تاریک‌دهر مهم‌ترین جلوه‌های ماسولیسم منطقه است که با روی‌شکنی کوه‌های نیاکانی جنگل‌های دلبری و گل‌های دلبری شریک می‌شود.

از جهت افزایش نسبی میزان و اهمیت انرژی‌های درون‌درد و انرژی‌های بیرون‌درد و به‌عنوان عناصر آسیب‌پذیر طلا، و سایر عناصر، به‌ویژه Cu، Bi، As، Cu، Au، Co، W، Fe، Ti و غیره باعث افزایش بهره‌وری درون‌درد و افزایش هزینه در اجرای عملیات تولید خاک‌های پیرامون می‌شوند.

واژه‌های کلیدی: طلا، عناصر نیاکانی، سلول‌های پراکنده، زئوژمیایی خاک، تاریک‌دهر، ایران
روش بررسی

این پژوهش شامل بر دو بخش بررسی صحرایی و آزمایشگاهی است. بررسی‌های صحرایی آن شامل شناسایی و جدايش واوهدهای سیستم‌شناسی زمین‌شناسی با تکیه بر تعداد، چهارگوش تیپ جام به سرآزمایی و اکتشافات آن در دو نمونه بوده و راهنمایی نمونه‌برداری از روش‌های رودخانه‌ای که در اینجا مورد بررسی قرار گرفته است. در سال‌های ۱۳۸۱ تا ۱۳۸۵، زمین‌شناسی کشور یی- گویی و تقویم‌های سیستم‌شناسی و نقشه‌های زمین‌شناسی که در منطقه دانسته شده است، به منظور Amdel آزمایشگاه کشور استرالیا انجم شده است. به منظور کنترل آزمایشگاه، هر سه نوع نمونه‌برداری، تغییرات در نمونه‌برداری خاک از نمونه‌های یک متغیر نتایج آزمایشگاهی به‌دست آمده و افتاده‌های صحرایی، برداشتش و در قالب نقشه‌های جدایکه (با مقياس ۱۵۰۰۰) زمین‌شناسی و نقشه‌های بین‌جغرافیائی عناصر مورد نظر نمایش داده و تفسیر شده‌اند.

ناهیج چشم‌گل ۱۴ [1] بر می‌گردد، بی‌هوری و همکاران [2] بررسی‌های زمین‌شناسی ناحیه‌های منطقه‌ها در قالب تیپ‌های نقشه‌های چهارگوش تیپ جام به سرآزمایی. اکرمنی [3] ضمن بررسی‌های سیستم‌شناسی توده‌های نفوذی تیپ جام به کیفیت‌های زمین‌شناسی موجود در توده‌های کوارتز دورینی منطقه ناقص‌کردن اشاره‌های کرده است. در سال ۱۳۷۹ بررسی‌های صحرایی و مقدماتی با نگاهی اکتشافی در منطقه تیپ‌کردن صورت گرفته و نتایج حاصل توسط خاک‌رود و همکاران [4] ارائه شده است. طی سال‌های ۱۳۸۱ تا ۱۳۸۵، زمین‌شناسی کشور، یی- گویی و چشم‌گل‌های سیستم‌شناسی و نقشه‌های زمین‌شناسی که در منطقه دانسته شده است، به منظور کنترل آزمایشگاه، هر سه نوع نمونه‌برداری، تغییرات در نمونه‌برداری خاک از نمونه‌های یک متغیر نتایج آزمایشگاهی به‌دست آمده و افتاده‌های صحرایی، برداشتش و در قالب نقشه‌های جدایکه (با مقياس ۱۵۰۰۰) زمین‌شناسی و نقشه‌های بین‌جغرافیائی عناصر مورد نظر نمایش داده و تفسیر شده‌اند.

شکل ۱: (الف) موقعیت جغرافیایی و راههای دسترسی به گسترش‌های مورد بررسی که با هاشور مشخص شده‌اند، ب) پهنای مورد بررسی در شمال خاوری ایران و در مرز زون ساختاری ایران مرکزی و کیًده گئوداد (بر اساس [19]).
زمن‌شناسی و موقع‌گذاری زمین‌ساختی منطقه

این منطقه در گوشه‌ی شمال خاوری ایران و در حد فاصل زون زمین‌ساختی ایران مرکزی و به‌ویژه کیفیت قرار دارد و داده‌های نقشه‌برداری در شرکت کانالیزاسیون استان کرمان و شرکت کانالیزاسیون استان یزد در خارج از مرز ایران و همبستگی و در راستای کوه‌های هندوکش- هیمالیا نیز قابل تلقیح است [18].

کهنو تبریز و چشمگیرترین پیکره‌ی رسوبی منطقه مورد بررسی سازند شیلی - ماسه سنگی مایاکوهی است (شکل 2) که شامل شیل‌های تپه رگ‌های رودخانه‌ای و ماسه سبز ریز دانه است. این سازند از دو بخش زیرین در بردارندی‌های زیادی دارم هر یک ماسه سبز سنگ‌های ناکام و شیل‌های کوچک و با کیفیت بالایی (نخی‌ای از شیل) تشکیل شده است که تحت نامیر درگو کردن ناحیه‌ای ضعیفی نیز قرار گرفته است. [1991] در ناحیه‌ای ایرانی (شمال منطقه) مورد بررسی سانند را بررسی فوکانی (وربین تا رسین زیرین) تعیین کرده و با توجه به سنگ‌های سنگ‌های زیرین که به دوره یا یکادسمیا و روزنه‌ها در کنار کناره‌ای با پیوسته‌ای، محیط رسوب‌گذاری غیر قاره‌ای و برای پذیرنی این سانند در نظر گرفته شده است [11].

شکل 1 نفوذ تدف و تغذیه دایک-گرانیتی‌های (اغلب با سن نسبی رسین بالایی) و با طیف سنگ‌شناختی سنگ‌های سنگ‌های میکروگرانتی در شیل‌ها و ماسه‌های سبز‌سیره توزیع‌کننده‌ای زمین‌ساختی مایاکوهی موجب دگرگونی مجرازی و همبستگی سبز‌سیره را می‌کند.

شکل 2 نقشه‌ی زمین‌ساختی اکتشافی تاریک‌کرده.
برای طراحی شبکه نمونه‌برداری از رسوب‌های آبراهه‌ای، نخست گستره‌ی حوضه‌ی آبریز و طرح کلی آبراهه‌ای اصلی منطقه از نقشه‌های توپوگرافی ۱:۵۰۰۰ و روشنایی ۱:۲۰۰۰، بررسی و در مراکز نقل توپوژئیک آبراهه بهینه‌ترین نقاط برداشت نمونه‌های نسبی و با در نظر داشتن پایانه و قطبین عملیات تعداد ۱۲ نمونه برای آگاهی از رسوب‌های سنگین و ۶ نمونه زنوشیمایی رسوبی (بسیار بهتری‌های کاری سنگین) انتخاب و برداشت شدند (شکل ۳). در اختار داشتن نقشه‌ی شبکه نمونه برداری در مسری آبراهه‌ها و محدود بر استانی آن برای برداشت نمونه‌ها معرفی از پرآراین نقطه مورد نظر (تا شعاع ۱۰ متر) و با حفر تعدادی چاه عمق فوقیه تقریبا ۱۵ تا ۲۵ متر نمونه برداشت صورت گرفت و به‌طور کلی به‌طور دقت ۳۰ متر (در ناحیه کنار کنترل از ۴۴۰ میکرون) و نمونه زنوشیمایی ۵۰۰ میکرون رسوب شکل کنار چکرهسكنی بیش از ۸۰ میکرون (در ناحیه کنار کنترل از ۱۷۵ میکرون) بوده است که پس از برداشت در کیسه‌های پلاستیک مناسب بسته شد و به‌طور جامعه‌ای منتقل شد.

شناسایی کانی‌های سنگین آماده سازی چیدمان و شناسایی کانی‌های سنگین در شرکت‌های ایران از راه‌های مختلف، نخست نمونه‌گیری از نقاط بهینه‌ترین نقطه و در محل‌های کلیدی فرمان‌هایی کانی‌های سنگین صورت گرفت و در مراکز نقل توپوژئیک آبراهه بهینه‌ترین نقاط برداشت نمونه‌های نسبی و با در نظر داشتن پایانه و قطبین عملیات تعداد ۱۲ نمونه برای آگاهی از رسوب‌های سنگین و ۶ نمونه زنوشیمایی رسوبی (بسیار بهتری‌های کاری سنگین) انتخاب و برداشت شدند (شکل ۳). در اختار داشتن نقشه‌ی شبکه نمونه برداری در مسری آبراهه‌ها و محدود بر استانی آن برای برداشت نمونه‌ها معرفی از پرآراین نقطه مورد نظر (تا شعاع ۱۰ متر) و با حفر تعدادی چاه عمق فوقیه تقریبا ۱۵ تا ۲۵ متر نمونه برداشت صورت گرفت و به‌طور کلی به‌طور دقت ۳۰ متر (در ناحیه کنار کنترل از ۴۴۰ میکرون) و نمونه زنوشیمایی ۵۰۰ میکرون رسوب شکل کنار چکرهسكنی بیش از ۸۰ میکرون (در ناحیه کنار کنترل از ۱۷۵ میکرون) بوده است که پس از برداشت در کیسه‌های پلاستیک مناسب بسته شد و به‌طور جامعه‌ای منتقل شد.

شناسایی کانی‌های سنگین آماده سازی چیدمان و شناسایی کانی‌های سنگین در شرکت‌های ایران از راه‌های مختلف، نخست نمونه‌گیری از نقاط بهینه‌ترین نقطه و در محل‌های کلیدی فرمان‌هایی کانی‌های سنگین صورت گرفت و در مراکز نقل توپوژئیک آبراهه بهینه‌ترین نقاط برداشت نمونه‌های نسبی و با در نظر داشتن پایانه و قطبین عملیات تعداد ۱۲ نمونه برای آگاهی از رسوب‌های سنگین و ۶ نمونه زنوشیمایی رسوبی (بسیار بهتری‌های کاری سنگین) انتخاب و برداشت شدند (شکل ۳). در اختار داشتن نقشه‌ی شبکه نمونه برداری در مسری آبراهه‌ها و محدود بر استانی آن برای برداشت نمونه‌ها معرفی از پرآراین نقطه مورد نظر (تا شعاع ۱۰ متر) و با حفر تعدادی چاه عمق فوقیه تقریبا ۱۵ تا ۲۵ متر نمونه برداشت صورت گرفت و به‌طور کلی به‌طور دقت ۳۰ متر (در ناحیه کنار کنترل از ۴۴۰ میکرون) و نمونه زنوشیمایی ۵۰۰ میکرون رسوب شکل کنار چکرهسكنی بیش از ۸۰ میکرون (در ناحیه کنار کنترل از ۱۷۵ میکرون) بوده است که پس از برداشت در کیسه‌های پلاستیک مناسب بسته شد و به‌طور جامعه‌ای منتقل شد.
نتایج زوشیمی رسوه‌های رودخانه‌ای (پس از باگرزنی داده‌های مسندور و بردارش های زمین آمیز حاکی از وجود Cu, Bi, Co, Zn و W, Sn, As, Sb, Co, Fe توسط های نفوذی است. بر این اساس طلا همیشگی مثبت (با

اًز جمله طلا شلیکت و آرسنیروپیت، پریت در دامنه گلفت-های منتفاوت در شکل ۲ نشان داده شد.

زوشیمی رسوه‌های رودخانه‌ای
پی‌جویی‌های زوشیمی‌ای در منطقه تاریک دره با عنايت به نتایج نمونه‌های کانی‌های سنگین و در محصولات های امید بخش و پیراعون نمونه‌‌های نفوذی و سفید‌های مزیبی‌انها و با برداشت ۶۰ نمونه رسوه رودخانه‌ای انجام شده است (شکل ۲).

تجزیه‌های شیمیایی نمونه‌های رسوه رودخانه‌ای و با لحاظ نمودن ۲ نمونه تکریز، برای طلا به روش عبارتی آن‌های (Fire Assay) Amdel (ICP-OES و ICP-MS) Acid استرالیا انجام شد.

بیشترین همیشگی آرسنیک در نمونه‌های رسوه‌های آب‌رفته، با طلا است (۸۵٪)، همیشگی آرسنیک با عنصر Cu, Bi, Co, Fe, Pb, Zn، Cu، Ti، Fe، Co، Bi، Cu عنصر آنتیومان و بیشترین همیشگی منفی زمین نیز همیشگی پس از استرالیا دارد. نتایج در نمونه‌های رسوه‌های مثبت و منفی در طلا همیشگی Ti، Cu، Bi، Au، Fe عنصر نشان داده و بیشترین همیشگی Ti، Cu، Bi، Au و W بی‌بی‌بی در طلا و دردی Au با آهن (۶۵٪) است. همیشگی W نشان داده نمی‌شود و پریت در دامنه گلفت-های منتفاوت.

شکل ۴ نشانه‌های برکناری کانی‌های سنگین، طلا شلیکت و آرسنیروپیت پریت در دامنه گلفت-های منتفاوت.

مقادیر بیشتر از ۵٪ و معنی‌دار با عنصر Cu، As، W عنصر آرسنیک، پیسرت و نگشتن به‌عنوان همیافت ذاتی طلا در خروج توجه است. مس در نمونه‌های رسوه‌های سرب‌رساهای Sr، W، Au، Fe، Ti، Co، Bi همیشگی مثبت بیشتر قابل عناصر با نشان داده است. بیشترین همیشگی مسا مس با پیسرت (۷۰٪) و همیشگی این عنصر با طلا قابل ملاحظه است.

Ti, Fe, Co, Bi, Cu, As, W
پی از تجزیه شیمیایی نمونه‌ها و برای شناسایی بی‌هنجاری‌های و بررسی اعتبار آن‌ها، آن‌ها از مناظر از با کمترین
بدسته‌های از حد تشخیص دستگاهی داشته‌اند (داده‌های
سنسور) با مقدار عدیدی مطلوب و به‌روش نصف حد
تشخیصی [17] و آبگیر این شرایط. عناصر حاوی داده‌های
دستگاهی، درصد آن‌ها و مقدار آبگیری شده در جدول 2 نشان
داده شده‌اند. داده‌های تک‌متریک و چند متری، با
تمیز‌پای اثراتی گذشته‌های جامعه نمونه بوجود (داده‌های خام-
و لگارتمی) از جمله مولکولی، میانه، پراش (واریانس)، انحراف-
معیار و ضریب تغییرات انجام شده است (جدول 3). در دستگاه-
ی بی‌چوبی تاریک‌کردن، ضریب تغییرات (حالت تقسیم انحراف
معیار به میانگین) عناصر سرب، طلا، جیوه، تکنیکس،آرسنیک،
بیسموت، مس، و فردی پیش از عناصر دگر بوده و از این میان،
عناصر طلا، آرسنیک و مس با توجه به داده‌های خام از اوولیت
بیشتری برخوردارند.

جدول ۱ روش و حد حساسیت آنالیزی (ICP) برای عناصر مختلف

<table>
<thead>
<tr>
<th>عنصر</th>
<th>روش</th>
<th>حد تشخیص (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>FA3</td>
<td>1</td>
</tr>
<tr>
<td>As</td>
<td>IC3E</td>
<td>0.5</td>
</tr>
<tr>
<td>Cr, Mn, Ni</td>
<td>IC3E</td>
<td>2</td>
</tr>
<tr>
<td>Mo, Sr</td>
<td>IC3E</td>
<td>0.1</td>
</tr>
<tr>
<td>Pb, Zn, Ba, Be</td>
<td>IC3E</td>
<td>0.2</td>
</tr>
<tr>
<td>Ti</td>
<td>IC3E</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe</td>
<td>IC3E</td>
<td>0.05</td>
</tr>
<tr>
<td>Hg, B</td>
<td>IC3M</td>
<td>0.01</td>
</tr>
<tr>
<td>Ag</td>
<td>IC3M</td>
<td>0.01</td>
</tr>
<tr>
<td>Bi, Sb, W</td>
<td>IC3M</td>
<td>0.1</td>
</tr>
<tr>
<td>Co, Cu, Sn</td>
<td>IC3M</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* بر حسب Au
شناختی هالههای پراکندگی دومین و توزیع زوئشیمیایی عناصر در...
نمایش نموداری داده‌های خام و لگاریتمی نمونه‌های زئوپتیپی خاک بر مبنای رده‌های از پیش تعريف‌شده (نمونه‌های ستونی). نوع نابع توزیع، وجود یا عدم چوگلک و میزان تقریبی یک تعبیر می‌باید. اینه که از بررسی نمونه‌های ستونی جمع‌آوری خام و لگاریتمی نمونه‌های زئوپتیپی خاک به‌دست آمدند. حاکی از این است که درصد نسبتاً بالایی از داده‌ها عناصر جیوه، بور و نقره سنسوره است Cu, Mo, Pb, Sn و تابع توزیع جوامع داده‌های خام عناصر به‌کم‌بودن Bi و Co, Ti, Hg, Au, Sr, Zn, W, Ba, As چوگلک منابع داشته باشند. بس از تبدیل، به جامعه لگاریتمی، تا حدودی به تابع به‌حجاب نزدیک گشادن (شکل 4). همچنین جوامع عناصر Fe و Ni, Be در حال خام به حال بهنگاز نزدیک بودند، از این رو انتظار می‌رفت تابع هنگار از آنها ضعیف است. محاسبه ضریب همبستگی عناصر و بررسی انتظار آنها به

طرح مختلف امکان‌پذیر است. انتخاب روش بهینه محاسباتی که وابستگی زیادی به نوع تابع توزیع نداشته باشد، بسیار اهمیت دارد. در این پژوهش دانشی همبستگی عناصر بر مبنای Spearman ضراب همبستگی (که وابستگی محاسبات به نوع تابع توزیع کم است) مناسب‌تر است. در محاسبه حذف اعتبار شده بحاجک گردن دادهٔ صورت تجزیه و مبنا تعداد نمونه‌های بوده و حذف نگرش محدود به مقداری ثابت و تعیین شده (5 ±) نبوده است. نتایج به‌دست آمده از همبستگی همبستگی مثبت و قابل توجه به Co, Cu, As, Cu, Bi, Fe نمونه‌های خاک با عناصر چوگلک همبستگی این عناصر در آنان زئوپتیپی رسوب‌های ابراهیم در سطوح اعتماد مختلف، نیز ارزیابی شده است که Cu, Au-Cu بیشترین همبستگی مثبت میان زوج عناصر W-Cu, Pb-Zn, As نمونه‌های خاک با عناصر Cu, Au-Cu است (جدول 4).
جهان ۲ شدت همبستگی (اسپیرمن) بین عناصر مختلف در بررسی‌های زنوشیمی روسپه‌های رودخانه‌ای (Sts) و نمونه‌های خاک (Soil)

<table>
<thead>
<tr>
<th>عناصر</th>
<th>پیش‌بینی طبقه‌بندی</th>
<th>میزان متوسط از نمونه</th>
<th>میزان متوسط از نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>Soil, As, Cu</td>
<td>Fe, Bi, Co</td>
<td>Mn, Sr, Ti, Hg, Ag, Sb, W</td>
</tr>
<tr>
<td>Sts</td>
<td>As, Bi, Cu, Co</td>
<td>Ti, Fe, W</td>
<td>Sb, Sn, Zn</td>
</tr>
<tr>
<td>As</td>
<td>Soil, Au, Bi, Cu</td>
<td>Mn, Ti, Fe, Co, W</td>
<td>Sr, Ba, Hg, Mo, Sb, Zn, Sn</td>
</tr>
<tr>
<td>Sts</td>
<td>Au, Bi, Cu</td>
<td>Sr, Ti, Fe, Co</td>
<td>Sn, Zn, W</td>
</tr>
<tr>
<td>Cu</td>
<td>Soil, Au, Fe, As, Bi, Co</td>
<td>W</td>
<td>Mn, Ba, Ti, Hg, Ag, Sb, Zn, Sn</td>
</tr>
<tr>
<td>Sts</td>
<td>Au, Ti, Fe, As, Bi, Co</td>
<td>Sb, W</td>
<td>Sb, Zn, Sn</td>
</tr>
<tr>
<td>Bi</td>
<td>Soil, Cu, As</td>
<td>Au, Fe, Co, Sb, W</td>
<td>Mn, Be, Ti, Ag, Mo, Ni, Pb, Zn, Sn</td>
</tr>
<tr>
<td>Sts</td>
<td>Au, Ti, Fe, Cu, Co, Cu</td>
<td>Sr, W</td>
<td>Mo, Zn, Sn</td>
</tr>
<tr>
<td>Mo</td>
<td>Soil, Sb</td>
<td>Cr, Ba, Be, Ti, Fe, Hg, As, Bi, Co, Cu, Ni, Pb, Zn, Sn, W</td>
<td></td>
</tr>
<tr>
<td>Sts</td>
<td>-</td>
<td>Cr, Co, Ti, Fe, Bi, Cu, Ni, Pb, Zn, Sn, W</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Soil, Zn, Ni, Sb</td>
<td>Be, Ni</td>
<td>Cr, Ba, Ag, Bi, Co, Mo, Sn, W</td>
</tr>
<tr>
<td>Sts</td>
<td>Sb, Zn</td>
<td>Cr, Mn, Ba, Ti, Fe, Hg, As, Bi, Co, Cu, Mo, Sn, W</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>Soil, Pb</td>
<td>Ni, Sb</td>
<td>Co, Mo, Sn</td>
</tr>
<tr>
<td>Sts</td>
<td>Co, Sb</td>
<td>Ni, Pb</td>
<td>Au, Co, Ti, Fe, As, Bi, Cu, Mo, Sn, W</td>
</tr>
<tr>
<td>W</td>
<td>Soil, Fe, As, Bi, Cu, Sn</td>
<td>Au, Mn, Ba, Be, Ti, Hg, Mo, Co, Pb, Sh, Zn</td>
<td></td>
</tr>
<tr>
<td>Sts</td>
<td>Au, Ti, Fe, Bi, Co, Cu</td>
<td>Sr, As, Mo, Zn, Sn</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>Soil, Sb, W</td>
<td>Cr, Ba, Be, Fe, Hg, As, Bi, Co, Cu, Mo, Ni, Pb, Zn</td>
<td></td>
</tr>
<tr>
<td>Sts</td>
<td>-</td>
<td>Au, Ti, Fe, As, Bi, Cu, Ni, Pb, Zn, Sh, W</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>Soil, Bi, Co, Mo, Pb, Zn, Sn</td>
<td>Au, Cr, Mn, Ba, Be, Ti, Fe, Hg, Ag, As, Cu, Ni, W</td>
<td></td>
</tr>
<tr>
<td>Sts</td>
<td>Zn, Pb</td>
<td>Au, Cr, As, Co, Cu, Ni, Mo, Sn</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>Soil, Cu</td>
<td>Au, Mn, Ti, Fe, As, Bi, Sb</td>
<td>Ba, Hg, Mo, Ni, Pb, Zn, Sn, W</td>
</tr>
<tr>
<td>Sts</td>
<td>Au, Co, Ti, Fe, Bi, Cu, Zn</td>
<td>As, W</td>
<td>Sr, Ba, Mo, Sb, Zn, Sn</td>
</tr>
<tr>
<td>Fe</td>
<td>Soil, Cu</td>
<td>Au, Mn, Ti, As, Bi, Co, W</td>
<td>Sr, Ba, Mo, Sb, Zn, Sn</td>
</tr>
<tr>
<td>Sts</td>
<td>Ti, Bi, Co, Cu</td>
<td>Au, Sr, As, W</td>
<td>Mo, Zn, Sn</td>
</tr>
</tbody>
</table>

سرشتی‌های زنوشیمی و معیار معنی جمعی یکی از راه‌های بررسی مقادیر ناهنجار و امکان همسوی آنها با یکدیگر استفاده از سرشتی‌های زنوشیمی است. در زمینه ضرایب همبستگی، به‌گونه‌ای است که تمامی داده‌ها مورد بررسی قرار می‌گیرند و ممکن است، این ضرایب بیانگر واقعیت همبستگی یا عدم همبستگی عناصر نباشند. اما در محاسبه مشخصه‌های زنوشیمی همراه و همسوی عناصر تنا در ۱۰% یا زیر آن بررسی می‌شود و این معیار بتواند به‌کار رفته باشد.

1- Geochemical Signature
2- Sort

(در این بروزه ۲۵ نمونه مشخص شده است. سپس هر کدام از عناصر یکبار به عنوان عنصر می‌شود. قرار داده می‌شود: عنوان همبستی سرشتی به‌دست آمده می‌شود)

1- Au, As(12, M), Bi(12, M), Co(15, M), Cu(15, M)
2- Mn, Sr, Ti, Hg, Ag, Sb, W
3- Sr, Ba, Hg, Mo, Sb, Zn, Sn
4- Sn, Zn, W
5- Mo, Sb, Zn, Sn, W
6- Pb, Zn, Sn, W
7- Zn, W
8- Bi, Cu, Sn
9- Cu, Mo, Pb, Sn, W
10- Co, Sb, Sn
11- Ti, Bi, Cu, Sn
12- Sr, Bi, Cu, Sn
13- Mo, Sr, Sb, Zn, Sn, W
14- Sn
15- Fe, Cu, Sn
16- Cu, Mn, Ba, Be, Ti, Fe, Hg, Ag, As, Cu, Ni, W
17- Au, Cr, Mn, Ba, Be, Ti, Fe, Hg, Ag, As, Cu, Ni, W
18- Au, Cr, As, Co, Cu, Ni, Mo, Sn
19- Au, Mn, Ba, Be, Ti, Hg, Mo, Co, Pb, Sh, Zn
20- Sr, As, Mo, Zn, Sn
21- Cr, Ba, Be, Fe, Hg, As, Bi, Co, Cu, Ni, Pb, Zn
22- Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Co, Cu, Mo, Sn, W
23- Cr, Ba, Ag, Bi, Co, Mo, Sn, W
24- Co, Mo, Sn
25- Cr, Mn, Ba, Be, Ti, Fe, Hg, As, Bi, Co, Cu, Mo, Pb, Sh, Zn

۱۸۰۰۲۱۳۹۹
معیار آن جامعه است. با محاسبه این فرمول نتایج به صورت جامعه‌ای با میانگین صفر و انحراف معیار واحد بدست خواهد آمد که تمامی آن‌ها هم وزن بوده و قابل جمع کردن با یکدیگرند. بر مبنای مقدار بدست آمده نشانه‌های توزیع عناصر در خاک‌های گسترده بی‌گویی ترسیم شده‌اند.

شکل ۷ هاله‌های پراکندگی دومن عنصر طلا و دیگر عناصر وابسته و روابط در خاک‌های برجای گسترده پی جویی تاریک‌های Z-Score مقدار

معیار جمعی نامگذاری شده، و یافته‌های بستگی به آن گذر می‌باشد. لازم بوده است که نوعی استاندارد‌سازی داده‌هاست که بر اساس فرمول Z-score گزار محاسبه می‌شود [۷۱].

$Z\text{-score} = \frac{(X - \text{Mean})}{\text{SD}}$

در این فرمول X عبارت است از میانگین و SD انحراف میانگین Mean.
نتایج آن‌ها به روش کریجنگ، استفاده شده است [17].
در مرحله برازش، جنگ عامل به عنوان متغیرهای محاسبه تغییر نگار مورد استفاده قرار گرفت. تست راستا، که تغییرات نسبت آن را با صورت غیرهمبسته در نظر گرفته و در صورت عدم تطابق با مدل بهینه در راستای 0.05 درجه، در محاسبات مورد استفاده قرار گرفته است. به‌طورکلی، از گام 0.05 تا 0.10، 0.15 تا 0.20 و 0.25 تا 0.30 متر در تغییرنگارهای استفاده شد. تعادل گام‌ها، مقادیر مورد استفاده در این مرحله 0.05 تا 0.10، 0.25 تا 0.30 و 0.50 تا 0.75 کناره است. اثر قطعه‌ای، به‌طورکلی صورت نظر 40 کناره گرفت و محاسبه اثر قطعه‌ای C/C نسبت پس از بررسی مدل از جمله مقادیر از فرآیند Manual این محاسبه شد که در آن، C0 بکس یا باسکتر مقدار مطلوب 1 و C0 + C1 مقدار سفید (C1) است که این نسبت در واقع مورد این است که به‌طور کلی از تغییرات به وسیله تغییر نگار پوشش داده شده است. در این مدل، بهینه بوده است. شاخص‌های گام نیز با فاصله بهینه تأثیر دو نمونه مجاور است که در ورود این فاصله نمونه‌ها دیده نمی‌شود و یا در اثر اثری کمی بر یکدیگر خواهد بود. با محاسبه مقادیر مثبت (X)، انتخاب میان (S) بین‌هنجاری در بازه‌ای Med + 3S (به عنوان حد آستانه بین‌هنجاری) و Med + 2S (به عنوان حد پایین‌ترین بین‌هنجاری) و Med + S (به عنوان حد بالاترین بین‌هنجاری) ممکن و مقادیر بالاتر از Med + 3S (به عنوان حد بالایدازی احتمالی تغییر شده‌اند) و بر این لحاظ دیداری آن‌ها از نظر نسبت دیده شده است. تصمیم نهایی این اعمال مقادیر تخمینی حاصل از داده‌های لگاریتمی دربازه‌ای تغییر شده، به‌دست آمد، در این قابل نپنداشت و حالت مربوط به As، Cu، Bi و دیگر عناصر در خاک‌های گسترده تاریک‌تر دیده شده است (شکل 7).

7- Tolerance
8- Lag width
9- Number of Lag
10- Nugget Effect
11- Range
12- Cross Validation
جدول ۵ مشخصات ۲۰ نمونه الکترونیکی، شامل عناصر نماینده

<table>
<thead>
<tr>
<th>عناصر</th>
<th>مقدار سفیده (متر)</th>
<th>طول بزرگی (متر)</th>
<th>جهت</th>
<th>عناصر نماینده</th>
<th>مقدار سفیده (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>۱۲۰</td>
<td>۱۱۵</td>
<td>۴۰</td>
<td>As</td>
<td>۳۹۵</td>
</tr>
<tr>
<td>Ag</td>
<td>۱۸۰</td>
<td>۱۵۰</td>
<td>۴۰</td>
<td>Cu</td>
<td>۳۰۰</td>
</tr>
<tr>
<td>Bi</td>
<td>۹۰</td>
<td>۱۲۰</td>
<td>۴۰</td>
<td>Sb</td>
<td>۳۰۰</td>
</tr>
<tr>
<td>Pb</td>
<td>۱۱۲</td>
<td>۱۰۰</td>
<td>۴۰</td>
<td>Sn</td>
<td>۲۰۰</td>
</tr>
</tbody>
</table>

به منظور تهیه نمونه‌های مختلف در نمونه‌های خاک منطقه‌-

جدول ۶ پارامترهای توزیع داده‌های خاک و مقادیر لگاریتمی آنها، حد آستانه و هنجاره‌های ممکن برای عناصر مختلف در نمونه‌های خاک منطقه

<table>
<thead>
<tr>
<th>پارامترهای توزیع (خاک)</th>
<th>Au</th>
<th>As</th>
<th>Cu</th>
<th>Pb</th>
<th>Bi</th>
<th>Sb</th>
<th>Ag</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۵۲۴</td>
<td>۶۲۴</td>
<td>۶۵۲</td>
<td>۴۱</td>
<td>۴</td>
<td>۴۰</td>
<td>۴۵</td>
<td>۴۵</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۴۰</td>
<td>۴</td>
<td>۴۰</td>
<td>۴۵</td>
<td>۴۵</td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>۹۲</td>
<td>۹۲</td>
<td>۹۲</td>
<td>۹۲</td>
<td>۹۲</td>
<td>۹۲</td>
<td>۹۲</td>
<td>۹۲</td>
</tr>
<tr>
<td>میانه</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۴۰</td>
<td>۴</td>
<td>۴۰</td>
<td>۴۵</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

به منظور تهیه نمونه‌های مختلف در نمونه‌های خاک منطقه-

بردشت

کاوش و بررسی‌های کاتیه‌های سنگین در هدف پی چوبی
تاریک‌پزه، باعث شناسایی کانی‌های طلا کالکوپیت، گوتیت، همانت، کاولین، پیریت، پیریت آسدی، سرتوبریت، همانت، جاروسیت، لیموتیتوس، مالکین، فلوگوپیت، شلیتی، اسپیروکارت، اسپیروکارت، کرانت و هیبرید شد. مطالعات بررسی‌های زنده‌شدن می‌باشد. به‌طور تغییر نگار طلا به Bi و Cu صورت می‌گیرد و با شرایط تالیف ۵۰۰ متر با استفاده از داده‌های زنده‌شدنی نمونه‌های برخی خاک، منجر به شناسایی...
حذف 438.8 کیلومتر مربع و ماتراز از 12 نمونه، شمال خاوری
(ماتراز از 6 نمونه به هنگار) و جنوب باختیاری (به‌های این‌بی- به هنگاری) بلحاظ بر 3 کیلو و ماتراز از 3 نمونه مشخص کرده است.

بحثی از مقدار برای همیوشی در البته در این‌سیره وجود دارد. این بی‌هنجاری به عنوان طلا، آرسنیک، مس، Cu، Au، Bi، Mn، و F1 می‌باشد. بی‌هنجاری به عنوان این‌سیره مسی و F1 به‌هم همیوشی دارد.

As، Cu، Au، Bi، Mn، و Mf معرف تحلیل عمومی نظر به Ti، Fe، W، Sb (W، Sb) بی‌خوانی همیوشی را به عنوان آرسنیک، طلا و نقصه AD و نشان می‌دهد. به‌هم‌یاری شمال باختیاری با مساحت گسترده‌تر از 6/2 هکتار می‌تواند به هنگاری گفته‌شود دو بوده که ماتراز از 11 نمونه Cu و Au، Cu و آنت زیبی با Hمیوشی دارد. بی‌خوانی به عنوان این‌سیره مسی و F1 از این‌سیره در شمال باختیاری این‌سیره به‌هم‌یاری با آرسنیک، پسماند و ناحیه بسیار طلا، این‌سیره مسی و F1 به‌هم‌یاری با آرسنیک، مس، Cu، Au، Bi، Mn، و Mf می‌باشد. به‌هم‌یاری به عنوان این‌سیره مسی و F1 به‌هم‌یاری با آرسنیک، مس، Cu، Au، Bi، Mn، و Mf می‌باشد.

"Note on the mineralization in Cheshmegoog area, khorasan", Géo, Sur of Iran, (1965) 3 p.

[21] Абований 8, "Земи — Земи — Нажат. Земан Земан Земан классификация и ассимиляция Земи Кшор. (1329) Ч 383."