ذوب بخشی سنگ‌های رسی و نیمه‌رسی درب هاله‌های دیگرگونی منطقه‌های سرایی تویسرکان، همدان

کاظم بروزی¹، علی اصغر سیاهی²، محسن مودن³

¹ - گروه زمین شناسی، دانشکده علوم، دانشگاه بو اثر سیستان، همدان
² - گروه زمین شناسی، دانشکده علوم طبیعی دانشگاه تبریز، تبریز
³ - دانشگاه تهران

چکیده: تنوع مجموعه بلژونیکونی‌های درب در سنگ‌های رسی و نیمه‌رسی منطقه تویسرکان باعث تطالع و تحقیق در اطراف آن در منطقه سرایی شده است. درگون شدن سنگ‌های نیمه‌رسی باعث شکل‌گیری اینوگون‌های دربی‌دار می‌شود. پدیده بخشی و نیمه‌رسی در سنگ‌های تیتراستیک و اولیتاکس در منطقه سرایی درد آور و ممکن است باعث شکل‌گیری در اینوگون‌های دربی‌دار می‌شود.

مقدمه

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند. میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند. میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند. میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند. میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

روشن خشک است. ترکیب کانی‌های سنگ‌های رسی در منطقه سرایی دربگونی در منطقه سرایی درد آور و ممکن است باعث شکل‌گیری در اینوگون‌های دربی‌دار می‌شود.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.

میگماتیتهای سنگ‌های رسی در نتیجه بخشی سنگ‌های دربگون با دمای بالا تنشکل می‌شوند.
سنج و مقدار حضور شاره طی فرآیند آنتانکی نیز بستگی دارد [2]. حضور شاره به ویژه آب، در فرآیند آنتانکی نقش ویژه‌ای دارد و به نوبه آن به دلیل نمودن سطحی‌های فیزیکی توسط سبک‌های دفع نشان می‌دهد. شیمیایی مناسب در دماهای بالا است که در منطقه هیمالیا قابل در نظر گرفتن است. در میان حاضر در بخشی همه شاره‌های موجود در محل حوض با توجه به آنها کاهش واحد تولید و تغییر شرایط تبدیلی شیمیایی‌های قابلیت‌های می‌شود [3].

موقفت زمین شناسی

انفجار انفجار در زمین‌های زیرین هیمالیا، استان هندیان واقع شده است (شکل 1). این منطقه به خشکی بر مبنای دز پاتوریا نیز در نظر می‌گرفته و آن را زون زارگری فلز مانند (Zagros Imbricate) می‌دانند. بنابراین منطقه مورد بررسی شده است که در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی

در حوضه دز و رودخانه‌های دیگر رودخانه‌های دیگر نیز زیر نیز دو بار انتظار می‌رود.

مکانیزم ایستادگی
شکل 1: موقعیت زمین‌شناسی منطقه‌ی مورد بررسی؛ موقعیت زمین‌شناسی سرچشمه و موقعیت منطقه‌ی مورد نظر با نقشه شده است. را نشان می‌دهد.

سنج نگاری سنج‌هایی که دستخوش ذوب بخشی شده، سنج‌هایی که در منطقه‌ی سرایی دستخوش ذوب بخشی شده، اند شامل ۳ دسته‌اند (جدول ۱): ۱) سنج‌های دارای کانی‌های آندالوژی، اسپینال، کردریت، پلاژیوکلاز، بروتیت، فلدسپارناتمام، سیلیمایت و کوارتز. از بزرگ‌ترین های این دسته از سنج‌ها، این است که در بخش مرکزی بخش از هرشتی کردریت با اسپینال پیرامون آندالوژیت رشد کردریت به دور این هرشتیدی از ناحیه‌ای که در منطقه‌ی سنج‌ها و جود سیلیماییت.

بنا به جدول ۱ مجموعه لیک‌های دگرگونی هاله مجاری منطقه‌ی سرایی که دستخوش ذوب بخشی شده‌اند.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Bt</th>
<th>Ms</th>
<th>Qtz</th>
<th>Crd</th>
<th>Kf</th>
<th>Sil</th>
<th>Spl</th>
<th>Pl</th>
<th>Zr</th>
<th>Gr</th>
<th>And</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM31</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>NM11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>N78</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>N83</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>N93</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>NM52</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>N31</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>
و نمایش تصویری میکروسکوپی از نمونه‌های مشابه عرضه نموده و برش بالینی و گردیونی به دور از آن‌لوژیت (ب) سنگ‌های دارای کیرزین با امید دریافتی بود که کوارتز به صورت بافت‌هایی از دانه‌های فضاهای فاسیورام پیش‌تر اثر گرفته است.

شکل 2: تصویر میکروسکوپی از میکروسکوپی بافت‌هایی از نمونه‌های دارای همدما نشان دهنده ترکیبی از دانه‌های نسبتاً کوچک و بزرگ

فلسفی‌سانیم را بر گرد کرده است. در صورتی که در مالون‌های فلسفی‌سانیم به صورت بی‌پیش‌بینی با صورت داخلی قرار گرفته است. در بافت‌های لوله‌ای دوران بافت‌های نسبتاً کوچک و بزرگی که کوارتز به صورت بافت‌هایی از دانه‌های فضاهای فاسیورام پیش‌تر اثر گرفته است.

شکل 2: تصویر میکروسکوپی از میکروسکوپی بافت‌هایی از نمونه‌های دارای همدما نشان دهنده ترکیبی از دانه‌های نسبتاً کوچک و بزرگ

فلسفی‌سانیم را بر گرد کرده است. در صورتی که در مالون‌های فلسفی‌سانیم به صورت بی‌پیش‌بینی با صورت داخلی قرار گرفته است. در بافت‌های لوله‌ای دوران بافت‌های نسبتاً کوچک و بزرگی که کوارتز به صورت بافت‌هایی از دانه‌های فضاهای فاسیورام پیش‌تر اثر گرفته است.

شکل 2: تصویر میکروسکوپی از میکروسکوپی بافت‌هایی از نمونه‌های دارای همدما نشان دهنده ترکیبی از دانه‌های نسبتاً کوچک و بزرگ

فلسفی‌سانیم را بر گرد کرده است. در صورتی که در مالون‌های فلسفی‌سانیم به صورت بی‌پیش‌بینی با صورت داخلی قرار گرفته است. در بافت‌های لوله‌ای دوران بافت‌های نسبتاً کوچک و بزرگی که کوارتز به صورت بافت‌هایی از دانه‌های فضاهای فاسیورام پیش‌تر اثر گرفته است.
با یافتن بین بلوری فواصل بین کاتی‌ها راپر کرده و بیونیت نیز بهصورت ریز و شکل‌دار است.

(3) لوکوسوم‌های داری کوارتز + فلدسپارتناسم + کردریت، در این لوکوسوم‌ها فلدسپارتناسم به‌صورت شکل‌دار و بلورهای کردریت به‌صورت قطره‌ای و بدون مالک و ادخال دیده می‌شود که کوارتز فضای بین کردریت و فلدسپارتناسم را به‌صورت بین دانه‌ای بر کرده است (شکل 3-خ).

واکنش‌های دوب و عوامل کننده کننده‌ای دوب در هاله‌ای

dگرگونی سرایی

بر اساس پارامتر سنجش‌های دگرگونی رسمی و نیمه‌رسی، منطقه‌ی

در نتایج تیمار‌ها و برای مکان‌های مختلف سنجش‌های دگرگونی

را تایید می‌کنیم. (تربیت 3) فرمول‌های دگرگونی کوارتز و بلورکلاز در بخش لوکوسوم، (تربیت 2) لوکوسوم قطره‌ای با یافته‌ای آذرین. (تربیت 1) فرمول‌های دگرگونی با یافته‌ای بلوری، فلدسپارتناسم دارای شکل‌دار که فضای بین آن‌ها را کوارتز پرکرده است. (خ) فرمول‌های از لیوکوسوم‌ها که دارای کوارتز قطره‌ای بین کردریت و فلدسپارتناسم را پر کرده است.

X = major phase O = Minor phase

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Br</th>
<th>Ms</th>
<th>Qtz</th>
<th>Crd</th>
<th>Kf</th>
<th>Ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM31</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N78</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N83</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM32</td>
<td>O</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N31</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
در سنگ‌های درگزونی همبند منطقه‌ی سرایی واکنش‌های ذوب با حضور شاره‌ای آزاد و بدون حضور شاره‌ای آزاد مهم‌ترین واکنش‌های ذوب را شامل می‌شوند. واکنش‌ها بدون حضور شاره‌ای آزاد در نمونه سنگ‌زایی شکل (۴-الف) و نمونه‌ای شکل (۴-ب و پ) (که شامل سنگ‌های همره با پلاژیوکلاز: پتاسیم فلدسپار و (NC)TFMASH ایمنی‌تی است) رسم شده است. با توجه به این که کانی‌های گارنت و اسپینل معمولاً فشارهای بالاتری را نسبت به کربنیت می‌طلبدن در تصویر نمونه‌ای کانی‌های اسپینل و گارنت در فشارهای بالاتر و کربنیت در فشارهای پایین تر قرار می‌گیرند. واکنش‌های احتمالی ذوب در منطقه‌ی با توجه به کانی‌شناسی لیکوسوم‌ها بطور زیرند.

(۱) واکنش‌های ذوب با حضور شاره‌ای آزاد

\[
\text{Qtz} + \text{Kf} + \text{Crd} + \text{H}_2\text{O} = L
\]

(۲) واکنش‌های ذوب بدون حضور شاره‌ای آزاد

\[
\begin{align*}
\text{Crd} + \text{Kf} + \text{Qtz} + \text{Sil} + \text{H}_2\text{O} &= L \\
\text{Gr} + \text{Kf} + \text{Qtz} + \text{Sil} + \text{H}_2\text{O} &= L \\
\text{Crd} + \text{Kf} + \text{Qtz} + \text{Spl} + \text{H}_2\text{O} &= L
\end{align*}
\]

شکل ۴ روابط فازی و واکنش‌های درگزونی در سنگ‌های رسی و نیمه رسی درگزون منطقه‌ی سرایی.
جدول ۳ مجموعه کاتیونها و واکنش‌های الکترلیک در سلول‌های رسی نیم‌رسی منطقه‌های سرایی.

<table>
<thead>
<tr>
<th>واکنش‌های الکترلیک</th>
<th>ZnO کاتیونها</th>
<th>Pd</th>
<th>Cu</th>
<th>Ag</th>
<th>Au</th>
<th>Pt</th>
<th>Ni</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi + Q + Si → Crd + SpI + Kf + H2O</td>
<td>(دوب نامتعض)</td>
</tr>
<tr>
<td>Bi + SiL + Q → Kf + Crd + H2O</td>
<td>(دوب نامتعض)</td>
</tr>
<tr>
<td>Bi + SiL + Q → Kf + Gr + H2O</td>
<td>(دوب نامتعض)</td>
</tr>
<tr>
<td>Bi + SiL + Q → Kf + H2O + L</td>
<td>(دوب نامتعض)</td>
</tr>
</tbody>
</table>

با توجه به اینکه این دسته از سنگ‌های معمولی در گسترش دما و فشار نسبت به قرار دادن تغییرات می‌تواند به استثنای این سنگ‌های دیگر گروه تشکیل شود که در مکانیزم مواد الکتروشیمیایی باشد. این واکنش‌های نشان دهنده نیروی تشکیل سنگ‌های در حد رخت‌های کریستالی تحتنی است. عوامل کنترل کننده ذوب در سنگ‌هایی که دستگاه ذوب بخشی شده‌اند عبارتند از:

1. کانال‌های سنگ‌های دسته‌های پیک نشان می‌دهدکه سنگ در زون اسپیل - کریستال - الکترلیک نمی‌تواند با توجه به جهور مواد الکترلیک در این دسته از سنگ‌ها و واکنش‌های سنگگذاری (شکل ۵) و جدول ۳) نیز می‌توان نتیجه گرفت که عامل ذوب بخشی حضور شاره منفی آب آزاد شده از شکسته‌های کاتیون‌های آبادار مصرف شدن سنگ‌های اکسید و سطح مواد الکترلیک با مقدار کم است.

بررسی‌ها که توسط [۳۰] از سنگ‌های دیازی رشیدی اسپیل - پالی‌بیولا - کریستال منطقه‌های منجمد گرفته شده در جدول ۲۰۰ درجه سانتی‌گراد در فشار حذف ۳ چکلی با را پیشنهاد گرده است. همچنین دلیل که توسط [۳۳] از میکرو‌کاتیون‌های همدست بر اثرش، دما به حدود ۳۲۰ تا ۴۵ درجه در فشار حذف ۵ تا ۴ چکلی با است. با توجه به بافت هم رشیدی اسپیل و کریستال به دست آمده به آن، می‌توان گفت که علاوه بر بر مورد فوک که‌کریستال به بازیابی الکترلیک دارد می‌توان به شکل کریستال در این موارد افزایش دقت شناسایی اکسیدار که با بهبود در کنش شکاف و یا افزایش دما همراه است که با توجه به وجود کاتیون در منطقه به نظر می‌رسد که افزایش دما به علت نفوذ بی‌گزینی باشد.
حضور شاره‌ی آزاد در تشکیل آن دخیل بوده است، زیرا زمانی که واکنش‌های پایه‌ای دمای حضور شاره‌ی آزاد مثبت است (32)، این واکنش‌های دمای حضور شاره‌ی آزاد مثبت است (32) به ترتیب باعث احیای فشار به علت ذوب شده و می‌تواند منجر به شکستگی در سنگ و نفوذ گدازه‌ی تشکیل شده در راستای این شکستگی‌ها به صورت رگه‌ای شود. این نتیجه به محض بودن واکنش‌های بدون حضور شاره‌ی آزاد لوكوسومه‌ای رگه‌ای در منطقه گسترش نیافته است. ساخته‌ی سخت در لوكوسوم ساخت قطره‌ای می‌باشد که ممکن است به علت حضور آپ بین منفی زیاد باشد که باعث ایجاد کاهش در خاصیت بار آب در دماهای بالاتر شده است. به همین دلیل واکنش‌های بدون حضور شاره‌ی آزاد کمتر انجام شده است.

مطالعه‌ی گزارش‌دهنده (33) نشان می‌دهد که در مواردی که حضور شاره‌ی آزاد در تشکیل آن دخیل بوده است، زیرا زمانی که واکنش‌های پایه‌ای دمای حضور شاره‌ی آزاد مثبت است (32)، این واکنش‌های دمای حضور شاره‌ی آزاد مثبت است (32) به ترتیب باعث احیای فشار به علت ذوب شده و می‌تواند منجر به شکستگی در سنگ و نفوذ گدازه‌ی تشکیل شده در راستای این شکستگی‌ها به صورت رگه‌ای شود. این نتیجه به محض بودن واکنش‌های بدون حضور شاره‌ی آزاد لوكوسومه‌ای رگه‌ای در منطقه گسترش نیافته است. ساخته‌ی سخت در لوكوسوم ساخت قطره‌ای می‌باشد که ممکن است به علت حضور آپ بین منفی زیاد باشد که باعث ایجاد کاهش در خاصیت بار آب در دماهای بالاتر شده است. به همین دلیل واکنش‌های بدون حضور شاره‌ی آزاد کمتر انجام شده است.

[11] [ص 1386] (1386) ص 13

[22] Tuttle O. F., Bowen N. L., "Origin of granite in the light of experimental studies in the system Na_{2}SiO_{3}-KAlSi_{3}O_{8}-SiO_{2}-H_{2}O", Geol. 74 (1958).