زئوشیمی دگرگانی زئولیتی در سنگهای آنتشفانسی منطقه کجل
(شمال غرب هشجین - استان اردبیل)

قرار حسن‌زاده، مریم مهندس، اسلام مقدمی
گروه زئوشیمی، دانشکده علوم طبیعی، دانشگاه تبریز

چکیده: منطقه مورد بررسی در ۲۰ کیلومتری شمال غربی هشجین، جنوب غربی استان اردبیل واقع شده و جزئی از زون دگرگانی کجل - شمس آباد در کمربند انثنی‌شکل طرح - هشتجین است. زئولیت و کانی‌های همراه آن مانند کوارتز و کلسیت در زنده در ساختار زئولیتی مورد بررسی، استثناپذیر کانی اصلی بوده و کانی‌های ابتدا، ساییندین، کلریت، کلسیت و کوارتز به عنوان کانی فرعی حضور دارند. بر اساس مشاهده‌های سنگ‌نگاری، کانی‌های اصلی سنگهای میزبان شمال پیشخاکی، فلدوس پناسبم و ارتفاع هرمها با شیشه‌ای آنتشفانسی بوده و بافت پورفیری نشان می‌دهند. بررسی‌های زئوشیمی‌ای و محاسبات غیردرست ۴ رم عناصر اصلی و فرعی نشان میدهه که عناصری مانند Mn و Fe، Mg، Ca، K، Na در سنگ‌های دگرگانی شده نسبت به سنگ‌های تراکی نزدیکی تیه و غنی شده‌اند. عناصر نادر خاکی برج و عناصر Eu در سنگ‌های دگرگانی شده نسبت به سنگ‌های تراکی نزدیکی تیه و غنی شده‌اند. عناصر نادر خاکی برج و عناصر Eu در سنگ‌های دگرگانی شده نسبت به سنگ‌های تراکی نزدیکی تیه و غنی شده‌اند.

واژه‌های کلیدی: هشتجین، کجل - شمس آباد، زئوشیمی، دگرگانی زئولیتی، زئولیتی استثناپذیر

مقدمه
منطقه رژیمی زئولیتی درکک جنگ در ۲۰ کیلومتری شمال غربی هشجین از توابع استان اردبیل قرار دارد. از جمله مناطقی است با پتانسیل بی‌جوابی استخراج و فراوری زئولیتی که کانی ارزشمندی است هم‌هاربا دختر غیرقیمتی دیری آن جمله کانی- های رسی. که زئوشیمی فعالیت‌های آبزدی ما را در این منطقه فراهم آورده است. تحقیق کلی بررسی‌های اندکی روز زئوشیمی دختر زئولیتی صورت گرفته است. از جمله توانسته مقدمه‌ای[۱] که بررسی‌هایی در زمینه شکل‌گیری زئولیتی‌ها و...
و گسترده‌ای از زون‌های دوره‌ای انجام شد و سپس ۳۰ مقطع نازک تهیه و مورد بررسی سنگ‌نگاری قرار گرفتند. ضمناً در بررسی‌های زئوشنیمیابی تعداد ۷ نمونه برای آنالیز به روش طیف‌سنج جرمی پلاسمای جفت شده‌ای بالایی (ICP-MS) آزمایش گردیده‌اند که در ALS-Chemex آزمایش‌های کانسپرایس بینالود به روش XRD تجزیه شدند.

بحث

زمین‌شناسی منطقه

منطقه‌ی مورد بررسی در حاشیه‌ی شمال غربی ارتفاعات هشجین واقع شده است (شکل ۱). این ارتفاعات جزئی از سلسله جبال البرز غربی- آذربایجان و زون آنتفیشی‌ترشیری و گسترده‌ای از زون‌های دوره‌ای انجام شد و سپس ۳۰ مقطع

شکل ۱ موقعیت و راه‌های دسترسی به منطقه‌ی مورد بررسی در شمال غرب ایران (الف) و نقشه‌ی ساده زمین‌شناسی گسترده (ب).
روش‌های اصلی گسترده مورد بررسی که در آن دگرسانی‌های شیده زولیتی و کانولینی در واحدهای (Ol) و (Oli) شده است (شکل‌های ۲ ب، ث، ج)، ذخیره‌کننده کانولین منطقه‌ای کج در واحدهای (Ol) و ذخیره‌کننده زولیتی در هر دو واحدهای (Oli) و (Ol) تشکیل شده است (شکل‌های ۱ ب). به احتمال زیاد این دگرسانی‌های حاصل جایگیری استوکه‌های بی‌پروازی در این منطقه و استفاده در برخی از مناطق اطراف از جمله کاوا-کمر، نمی‌بلند، جیروان و مندجین، این توده‌های غنی از بزرگ‌پر و سطح رخندگان یافته-اند ولی در منطقه‌ای کج فقط می‌توان اثر بسیار جریزی از رخندگان آن‌ها را در ذون و واحدهای ییگوس مشاهده کرد.

خشمندی‌های اصلی گسترده مورد بررسی که در آن دگرسانی‌های شیده زولیتی و کانولینی دیده می‌شوند، مشتمل بر سنج‌های آتش‌نگی و آذرآواری بین الیگوس هستند (شکل ۱ ب و ۲). این نهشت‌ها با یک قاعدت تفوق سفید‌نگ و با درشت‌کردن زاویه‌های حدود ۳۵ درجه روز رنگ‌های آن‌ها مشابه به سن انسن قرار گرفته‌اند. واحدهای آتش‌نگی شامل گاردسته‌های پس از پس‌ساخته (Oi)، گاردسته‌های تراکی اندزیتی‌های تراکی اندزیت بازالتی (Oi)، و سنج‌های آذرآواری شامل واحدهای لیتیک تفوق و تفوق برخی همراه با برخی آتش‌نگی‌ها، تفوق قطع‌دار و نادر (Oi) هستند (شکل‌های ۲ ج نا).
سنگ نگاری

ویکی‌پدیا، کتابچه‌ای دموکراتیک برای همهٔ جهان واندیری (۲۰۲۰/۰۱) با تبدیل‌شدن به کانی‌های رسی درد می‌شود. میزان دگرگونی پلاژیوکلاژ در فلسفه‌های قلبی‌های بی‌حذف که در برخی موارد فلسفه‌ها کلاً به کانین ناهنجاری تبدیل‌شده‌اند. کلیپتیزن کانین (شکل ۳ و) و سپسیزیی‌شدن از تغییرات واقعی در این سنگ‌ها سه‌نست. دگرگونی زئولیتی؛ واحد زئولیتی موجود در این منطقه به عنوان کانسر سنگ زئولیتی مطرح بوده و یک کلیه از گستره مورد بررسی را به خود اختصاص داده است. کانی‌های زئولیتی در نمونه‌های سختی به رنگ صورتی و زرد مایل به قرمز و در سطح تازه شکسته به رنگ صورتی کم‌رنگ دیده می‌شود (شکل ۲ ج). در این واحد، کانی‌های درشت‌تر زئولیت (نوع استبلیت) با پایت موزاپیک و اسفالتی، به‌همراه کانی‌های نابینای کوارتز و کلسیت دیده می‌شوند (شکل‌های ۴، ۶ و ۸). بر اساس بررسی‌های میکروسکوپی به نظر می‌رسد ترکیب شکل‌گیری کانی‌ها به این صورت است که نخست کانی استبلیت شکل شده و سپس گرم‌گمانی از کلسیم باعث تشکیل کانی کلسیت شده و در نها نه‌ای هر کانی به وسیله‌ی کوارتز قطع شده‌اند.

شکل ۳ تصاویر میکروسکوپی از واحد‌های سنگی مورد بررسی. گر. فن‌کریست پلاژیوکلاژ به همراه اوزیت در زمین‌های رسی برای تکمیل افزوده‌کرده‌اند. (XPL)، گر. یافته‌های بوزی برای پلاژیوکلاژ اورزیت برای تکمیل افزوده‌کرده‌اند. (XPL). کلینوپیکوسکس در زمین‌های رسی برای تکمیل افزوده‌کرده‌اند (XPL).
دگرگانی کاملاً مستحکم تغییر شده‌اند.

اکسیدهای اصلی این کالی در کج به شرح زیرند:

\[\begin{align*}
\text{SiO}_2 & \quad 51.8 \\
\text{Al}_2\text{O}_3 & \quad 10.5 \\
\text{Fe}_2\text{O}_3 & \quad 14.8 \\
\text{MgO} & \quad 3.3 \\
\text{CaO} & \quad 1.8 \\
\text{Na}_2\text{O} & \quad 1.0 \\
\text{K}_2\text{O} & \quad 0.4 \\
\end{align*}\]

جدول 1: نتایج آنالیز XRD از نمونه‌های ذخیره‌می‌پذیرانه کج.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>کالی‌های فرمی</th>
<th>کالی‌های اصلی</th>
<th>نوع نمونه</th>
<th>نتایج آنالیز XRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DZAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TZJA42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DZKB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2: مقایسه مقدار اکسیدهای اصلی زلولیت کج با ذخیره‌می‌پذیرانه شده در دیگر مناطق.

<table>
<thead>
<tr>
<th></th>
<th>کالی‌های اصلی</th>
<th>نوع نمونه</th>
<th>نتایج آنالیز XRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>کالی‌های اصلی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کالی‌های فرمی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کالی‌های اصلی</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نمونه‌های افزایش - کاهش ترسيم شده. برای این منظور به ترتیب از روی برش استفاده شد [10].

TF

فرآیند عنصر Ti در نمونه گذرانش شده / فراوای عنصر

\[\text{فاکتور غنی‌ساختگی} = \text{نمونه گذرانش} \times \text{نمونه ترکیب اکسیدی عنصر در نمونه ترکیب اکسیدی شده (R.C.)} = \text{نمونه در نمونه ترکیب اکسیدی شده (M.C.)} \]

جرم بر این اساس، در نیم‌خوره دوم پررسی بین‌ترین تغییر در Fe و Ca,Mg,K,Na عنصر جرم این عناصر در نیم‌خوره دوم پررسی ماباشه هم‌مستند (شکل 6) و در تمامی موارد در سه خاستگاه مقادیر این عنصر بالاست و علی‌رغم دگرگرایی زلولیتی و یا افزایش شدت دگرگرایی از مقادیر این عنصر به واسطه قابلیت تحرک بالای آنها کاسته شده است. این کاهش به دلیل تجزیه کانی‌های پلاژیکالی زنده به کانی‌های رسی و سرسبز بوده و اثر این تغییرات به‌صورت گسترده بیان‌های دگرگرایی آژیریک در Si و Al از جمله مشاهده است. غنی‌ساختگی مشاهده شده در Al و Mg عنصر قلابی و Fe عناصر قلابی و

برداری، یکی از نمونه‌های ترکیب اندزیت نادرست بعنوان سگ بیانی مغزی و عصب Ti وضعیت عناصر انتخاب شدند. برای محاسبه کمی میزان تغییر جرم عنصر اصلی و فرعی از روش محاسبه تغییر جرم عناصر مکانیکی [10] استفاده شد که به‌صورت عناصر ناظر پی‌تحرک، خاک و غنی‌ساختگی (Enrichment Factor) و ترکیب پارسیانی (Reconstructed Composition) است. در نهایت تغییر جرم (Mass Change) محاسبه و نتایج حاصل در قابل

\[\text{نیم‌خوره دوم پررسی در نمودار وینچستر و فلوید [16] به‌صورت انجام شد. برای ترکیب اندزیت و دو نمونه در گسترده تراکتی فرار گرفته‌اند.} \]

\[\text{نیم‌خوره دوم پررسی در نمودار وینچستر و فلوید [16] به‌صورت انجام شد. برای ترکیب اندزیت و دو نمونه در گسترده تراکتی فرار گرفته‌اند.} \]

\[\text{نیم‌خوره دوم پررسی در نمودار وینچستر و فلوید [16] به‌صورت انجام شد. برای ترکیب اندزیت و دو نمونه در گسترده تراکتی فرار گرفته‌اند.} \]
جدول 3

نتایج آنالیز نمونه‌های برداشت شده از منطقه‌ای مورد بررسی به روش ICP-MS

<table>
<thead>
<tr>
<th>لیست مواد</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>Zeolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیلیکا</td>
<td>57.8</td>
<td>56.0</td>
<td>52.2</td>
<td>53.4</td>
<td>59.1</td>
<td>53.9</td>
<td>51.8</td>
</tr>
<tr>
<td>آلومین</td>
<td>15.8</td>
<td>14.3</td>
<td>15.9</td>
<td>14.7</td>
<td>14.1</td>
<td>18.1</td>
<td>14.0</td>
</tr>
<tr>
<td>فسفر</td>
<td>6.9</td>
<td>6.7</td>
<td>5.7</td>
<td>7.9</td>
<td>6.7</td>
<td>2.9</td>
<td>1.2</td>
</tr>
<tr>
<td>نیترات</td>
<td>3.6</td>
<td>2.9</td>
<td>2.6</td>
<td>2.4</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>خوراک</td>
<td>3.5</td>
<td>3.8</td>
<td>3.9</td>
<td>1.9</td>
<td>0.5</td>
<td>0.4</td>
<td>1.4</td>
</tr>
<tr>
<td>کلسیم</td>
<td>2.5</td>
<td>5.3</td>
<td>3.6</td>
<td>3.1</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>النگر</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>مگنیسیوم</td>
<td>1.3</td>
<td>0.6</td>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>عناصر (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>240</td>
<td>35.0</td>
<td>34.0</td>
<td>34.0</td>
<td>30.0</td>
<td>24.0</td>
<td>23.0</td>
</tr>
<tr>
<td>N</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>S</td>
<td>100</td>
<td>30.0</td>
<td>30.0</td>
<td>7.0</td>
<td>10.0</td>
<td>7.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Z</td>
<td>95.7</td>
<td>95.3</td>
<td>7.7</td>
<td>12.4</td>
<td>7.7</td>
<td>12.4</td>
<td>7.7</td>
</tr>
<tr>
<td>Ag</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Ce</td>
<td>59.3</td>
<td>51.4</td>
<td>51.4</td>
<td>31.7</td>
<td>31.7</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cs</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Cu</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Dy</td>
<td>7.8</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Er</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Eu</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ga</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Hf</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ho</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>La</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Lu</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Mo</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nd</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ni</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Pr</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Rb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sm</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Sr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ta</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tb</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Th</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Ti</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Tm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>U</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>V</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>W</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Y</td>
<td>0.8</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Zr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

جدول نتایج آنالیز نمونه‌های برداشت شده از منطقه‌ای مورد بررسی به روش ICP-MS
شکل 6 نمودار تغییرات جرم اکسیدهای اصلی در طی نیم‌مرخ نمونه‌برداری (B1-B6).

جرم تقریباً مشابهی داشته و در همه نمونه‌های دگرسان شده نسبت به تراکی آندزیت دگرسان نشده غنی‌شودگی نشان می‌دهد، ولی الگوی تغییرات جرم این دو عناصر نامنظم است. مقدار عنصر Rb در طی دگرسانی با کاهش جرم همراه بوده و نوعی تغییر نسبت به سنگ خاستگاه دگرسان نشده نشان.

عناصر لیتوژئیک درشت بیون (LILE) شامل عناصر Pb, U, Th, Sr الگوی تغییرات جرم عناصر Th و U کاملاً مشابه بوده و در راستای نیم‌مرخ نمونه‌برداری با افزایش شدت دگرسانی سیر صعودی نشان می‌دهند. دو عناصر Rb و Ba نیز الگوی تغییرات
با افزایش شدت دگرسانی افزایش جرم نشان می‌دهد. نسبت به سنگ خاستگاه دگرسان نشته غنی شدهاد (شکل 8). عناصر مادر خاکی تغییرات جرم مشابه داشته و روند افزایشی طی فراخوان دگرسانی نشان می‌دهد (شکل 9). چندین دسته از REE این دسته‌ها به نمونه‌های مایع مانند کمپرسیون و جوشی و چندین دسته از REE در محصولات هوازه باعث پیوسته‌گرایی مختلف پیشنهاد شدهاند که از آن جمله Ca نیز به دلیل既可以 گذشت، و نتیجه‌گیری‌های این را در کامی‌های دگرسان شده، و نتیجه‌گیری‌های Ca سخت شد.
Ca

می‌دهد. به‌نظر می‌رسد این رفتار Rb/Sr تابعی از نهشته‌گری Ba است. تغییرات در مقادیر عنصر Rb و Sr و Rb/Sr با احتمال این تغییر در تركیب کانی‌شناسی طی دگرسانی باشد. این تغییرات علیه افزایش نسبت Rb/Sr در سنگ‌های دگرسانی و نتیجه‌گیری در سنگ‌های Ba نتایج متغیر حجمی در ارتباط با تشکیل سریه سی و جانشینی فلز سیار نتایج به جای پلایکولاز اولیه باشد.

روند تغییرات عنصر با قدرت میدان بالا (HFSE) طی فراخوان دگرسانی کاملاً مشابه همدیگرند. به‌طور غیر منتظره، عنصر Y که در نمونه‌های شماره‌های 5 نهشته‌گری نسبت به دگرسانی کاهش جرم پیدا می‌کند، میزان عنصر سیگار‌گری این گروه.

شکل 7 نمودار تغییرات جرم عنصر LILE در طی نیم‌بزرگ‌نموداری (B1-B6).

(B1-B6)
نمودار تغییرات جرم عناصر HFSE در طی نیم‌ erw نمونه برداری (B_1–B_6).
شکل 9 نمودار تغییرات جرم برخی از عنصر REE در طی نیم‌مرخ نمونه برداری (B₁-B₆).

در این بین، رفتار Eu در نمونه کاهش جرم و در ۲ نمونه دیگر افزایش جرم نسبت به سنگ میزان نشان می‌دهد. نهایت‌داشت Eu به رها شدن از کاتیون‌های رسی تجزیه می‌شود که در طی آن در نمونه ۴ عنصر Eu به نیکل می‌شود. نمونه ۲ نمونه اکسیدهای CaO و Na₂O از تجزیه پلیپیکلازه‌ها مربوط به فلدسپارهای بنیان‌گذاری شده و نیکل می‌شود.

در نمونه ۴ عنصر Eu به نیکل می‌شود. نمونه ۲ نمونه اکسیدهای CaO و Na₂O از تجزیه پلیپیکلازه‌ها مربوط به فلدسپارهای بنیان‌گذاری شده و نیکل می‌شود.

در نمونه ۴ عنصر Eu به نیکل می‌شود. نمونه ۲ نمونه اکسیدهای CaO و Na₂O از تجزیه پلیپیکلازه‌ها مربوط به فلدسپارهای بنیان‌گذاری شده و نیکل می‌شود.
برخوردار این همچنین نوع زولیتیت تشکیل شده تابعی از ترکیب شیشه‌های آنتفرشی موجود است [11]. زولیتیتی‌های غنی از سیلیس مانند کلینپتولیت و موردتی از دگرگان شیشه‌های سیلیکاتی به وجود می‌آیند. در حالت زولیتیت‌های غنی از آلومین مانند فیلیپسیت، ناتورلت، انالسیم استیلیبت و هولاندیت اغلب از شیشه‌های بازلیتی حاصل می‌شوند.

دما مهم‌ترین پارامتر در تشکیل زولیتیت است. در شکل 11 [22] گسترش‌های پایداری انتهای مختلف زولیتیت‌ها به‌عنوان تابعی از دما ترسیم شده است. بنابراین نمودار، گسترش‌های پایداری استیلتیت از 25 درجه به 100 درجه سانتیگراد (شکل 11، انتهای B) به شدت کاهش یافته و در دماهای بالاتر بکلی از بین رفته است. همچنین بررسی گسترش‌های پایداری این کانی در شرایط متفاوت فعالیت سیلیس (شکل 11، انتهای A) نشان می‌دهد که حداکثر پایداری استیلتیت در Log(ASI02) برای با 4.1 (شکل 11، انتهای B) است.

کلی استیلتیت در سنگ‌های مافیک با سیستم دمای زمین گرمانی پایین در منطقه Reykjavik اسلسلا، در دمای 90 تا 110 درجه و عمق 800 تا 1000 متر پیدا شده است [23]. همچنین با [24] این کانی از ابتدای سطحی قلیانی در دمای حدود 50 تا 88 درجه سانتی‌گراد تشکیل می‌شود.

شکل 10 تعیین روند دگرگاری در طول بروز نمونه‌برداری بر روی نمودار ملئی (K2O – Al2O3 – (CaO + Na2O) [10].

شرايطفيزيکوشيمياتي تشکيل زولیتیت كجل بهطور كلي شواهد محکمی از جمله بافت، رگه - رگه، و اسفروتي، بلورهای درشت و شکل‌دار استیلتیت و نابود کانی- های دگرگون تبدیلی از خاستگاه گرمانی زولیتیت‌های كجل حمایت می‌كند.

طبق [19] محلول‌های مسول تشکیل زولیتیت کلسیدار دارای pH متوسط بین 8 تا 9 و دماي حدود 50 تا 100 درجه سانتیگراد با خاستگاه جوى و رقيقان. ضمناً بررسی شرایط تشکیل زولیتیت [20] نشان داده است که فعالیت سیلیس محلول نسبت به غلظت کاتيون‌ها از اهمیت بیشتری.
برداشت

از بررسی‌های به عمل آمده می‌توان چنین برداشت کرد:

1- زئولیت‌های دی اسیده‌ای اولیه ترین تشکیل‌دهنده هستند. به‌طور مکرر، هم‌وقت با تناوب و اثرات غلیظ‌ها و نیز در فاصله‌های صاف‌سازی در داخل و خارج‌های ترمیم‌های توده‌ای از همبستگی فلزات و دی‌گر فاکتورها شده است.

2- با توجه به نتایج آنالیز شیمیایی و XRD، ترکیب اسیدی پیدا شده از این کانی دارای ترکیب الیوپیریت بوده و از نوع کلسیم‌دار محصولی می‌باشد.

3- به‌طور کلی، ناحیه‌های گردگر اَتی‌کیلین نوین ذریت و ترکیب اسیدی و همچنین نواکر، تشکیل‌کننده کانی‌ها در این کانی به‌طور مکرر به‌کار می‌رود.

4- ترکیب اسیدی و ترکیب واحد مشابه‌تر نیز بر پایداری اسلیستیت تأثیر گذاشته.

K, Na

5- بر اساس محاسبات تبدیل جرم، از مقدار عنصر Fe و Ca Mg

6- با افزایش شدت الکترون‌کشی کانی‌ها سه شده و عنصر

7- از روند افزایش نسبی نشان می‌دهد. تغییرات LILE

8- تابعی از این کانی در کنار

9- های اولیه و فاقد دارایی دیگری بوده و در REE

10- با پیشرفت دگرگسایی قلمعی، نه شدید و برای فرآیندهای HFSE

