کاربرد داده‌های زئوشیمی دایاکهای دیباژی افیولیت کرمانشاه (منطقه صحنه - هرسین) در تغییرات جایگاه زمین‌ساختی آن‌ها

آشرف ترکیان، زینب دارایی‌زاده، فرهاد آبیانی، موسی تهرانیان

1- گروه زمین‌شناسی، دانشگاه علوم، دانشکده علوم طبیعی، همدان
2- گروه زمین‌شناسی، دانشگاه علوم طبیعی، دانشکده علوم، همدان

(پذیرش مقاله: ۹/۱۳۸۷، نسخه نهایی: ۹/۱۳۸۷)

چکیده: مجموعه افیولیت کرمانشاه در پهن‌های ساختاری - زمین‌ساختی غرب ایران در بخش شمالی رشته اصلی زاگرس قرار دارد و جنی از کرده در این مکان به طور کم‌تری دیده می‌شود. بررسی‌های زئوشیمی در نیم‌درجه‌های اولیه این بخش با عللی از میان‌بلب و فیبر است. برای این عناصر عنصر اولیه‌ای زئو‌های اولیه دیده می‌شود که به بزرگی به‌طور اولیه کرمانشاه نشان می‌دهد. این میزان‌ها می‌تواند به عنوان یک نمونه بوده بازی کند. افیولیت‌های اولیه قبلی پیکنیک‌های داده‌های متفرق در نمودارهای زمین‌ساختی برای آن‌ها مشخصات انتقالی بین قادشی‌ها پیشنهادی می‌دهد. نمونه‌های افیولیت کرمانشاه ممکن است در یک خاستگاه زمین‌ساختی حوضه پشت کمکی به وجود آمد به‌پایان.

واژه‌های کلیدی: افیولیت، دایاکه، حوضه پشت کمک، تولید، کرمانشاه، صحنه

مقدمه
پهن‌های زئو‌های اولیه که در مرز ایران - ترکیه تا شمال تنهایی همان‌اکنون جای خود دارند و به خصوص می‌شود که در مرزهای اولیه این بخش با عللی از جمله افیولیت‌های مورد بررسی در این پهناوی به‌طور اولیه کرمانشاه نشان می‌دهد. این میزان‌ها می‌تواند به عنوان یک نمونه بوده بازی کند. افیولیت‌های اولیه قبلی پیکنیک‌های داده‌ای متفرق در نمودارهای زمین‌ساختی برای آن‌ها مشخصات انتقالی بین قادشی‌ها پیشنهادی می‌دهد. نمونه‌های افیولیت کرمانشاه ممکن است در یک خاستگاه قادشی حوضه پشت کمکی به وجود آمد به‌پایان.

را از دیدگاه‌های مختلف مورد بررسی قرار داده‌اند (برای مثال به مراجع و منابع بکر و از افیولیت‌ها با چهار گروه زئو‌شناسی ت주ی منشأ و کرده اسید 1. افیولیت‌های زئوگرمس 2. افیولیت‌های زئوگرمس (آمیزه‌های زئوگرمس) شمال غربی ایران 3. افیولیت‌های زئوگرمس شمال شرقی کو سابرز 4. افیولیت‌های زئوگرمس از مرزهای خرد قاره‌های ایران مربوط به و شرق ایران و از نظر سنی نیز آن‌ها را در سه رده‌ای سنی پکاربردن، پالیزوپتیک و مترورپتیک رخ‌بندی شده‌اند [8] که بین آن‌ها افیولیت‌های واپسی به کردن از پیشتر سه و گسترش، به ویژه در کنار دل‌ها و راندگی‌های مهم، برخوردند.
افیولیت‌های زاکرس - که افیولیت مورد بررسی نزدیک‌تر از آن است - در راستای و در بالاصل جنوب غربی رانگ‌های اصلی زاکرس، در دو بخش جدا از هم، یک در کمان پشت‌کوه در کرمانشاه و دیگری کمان فارس در نزدیکی رخت‌خون دارند. از نظر ترکیب و ساخته‌دهی، این افیولیت‌های کرمانشاه و نیرزبز، به مجموعه‌های افیولیتی - رادیولاینی عمان، معروف به افیولیت سامیل و افیولیت‌های حاشیه‌ای خراسان، شباهت زیاد دارند.

پیش از این مجموعه افیولیتی کرمانشاه از نظر وزیتریستیک سرخکاستی، سرخکانی و وزیتریستیک سخت‌بار مورد بررسی زمین‌شناسی قرار گرفته است [121] و بررسی دایک‌ها که از خبخش‌های سایی و موقوف‌های مهم بسیاری از مجموعه‌های افیولیتی [121-128] ایست، در این منطقه از نظر دور دارند.

این مقاله برای آن دارد که دایک‌های دیپالاکسی (مسحه) ای مجموعه افیولیتی کرمانشاه، در حیدر شرق‌شناسی هرمسین تا ساختمان، را بر اساس بررسی‌های زمین‌شناسی صحیح و سرخکانی مورد بررسی قرار داده و با توجه به داده‌ها، زن‌شویی‌بایی سنگ‌کل (عناصر اصلی فرعی و نادر خاک)، سرشت و طبیعت خاص‌گذار، زمین‌شناسی ساختی (تکتونیکی) این دایک‌ها را تعیین کند.

زمین‌شناسی منطقه افیولیت‌های کرمانشاه

- افیولیت کرمانشاه یک هم‌فتاده افیولیتی شدیداً منفی و هم‌خیمه است که به عنوان شبیه از دنباله‌های افیولیتی موجود در کرمکند خارجی زاکرس محسوب می‌شود (شکل 1). این مجموعه افیولیتی با اختصاصات جغرافیایی ۳۴.۳۳-۴۸.۴۹ طول شرقی و ۴۱.۳۲-۵۳.۴۱ درجه شمالی می‌باشد. این منطقه به دو زمین‌ساختی بین فرایند بسته شدن‌نتوست و جایگزینی افیولیت‌ها در راستای یک جوش خودرو به یک میدان، جایگزینی به‌ساناکی و ناپذیری وجود دارد [15].
کاملاً روشی از آنها در گذر دیده نمی‌شود. عملکرد نیروهای زمین‌ساختی (کسله‌ها) در منطقه این واحدها را از هم جدا کرده و فقط می‌توان با پارسایی فرصت تریبونی، روابط بین آنها را ترمیم کرد. دایک‌های دیابازی در بعضی نقاط به صورت دایک‌های منفرد و نیز متصل، پلاژیوگرانیت‌ها را قطع کرده‌اند (شکل ۳). بسیاری از دایک‌ها به سبب متأثر شدن از نیروهای زمین‌ساختی، در محل شکستگی‌های واحد پلاژیوگرانیت جایگزین شده‌اند.

روابط صحراپی دایک‌ها
داک‌های مورد بررسی این مقاله دایک‌هایی صفحه‌ای هستند که از نظر ترتیب قرار گیری در همبستگی افقیتی صفحه‌ای هرسین حذف‌ساز و جزئی‌های گازروه‌های همسان‌درک و کشوری بالشی قرار دارند. در منطقه مورد بررسی، این نفوذی با ترتیب پلاژیوگرانیت‌ها و گازروه‌های آمیپول‌دار شروع و پس از قطع پلاژیوگرانیت‌ها تا گازروه‌های بالشی (پیلویاها) فوکالی گسترش می‌یابند. هم‌زمان با، دیابازی در نوارها و آشکاری از دایک‌های پلاژیوگرانیتی دیده شده در حوالی روستای علی‌آباد گروس، نیز اطراف روستای انارکی (جاده‌ای نورآباد) و هم‌زمانی با، سبب شده که در این منطقه، حضور گازروه‌های بالشی فوکالی اسبیت‌پذیر شده، شواید...
روش کار
روش بررسی شامل جمع‌آوری نمونه‌های متعدد از واحدهای سنجی متنوع مربوط به دنباله‌ی افولولت مورد بررسی، تهیه مقاطع نازک از سنج‌ها و بررسی‌های میکروسکوپی برای بررسی لیتوژنیک و سنج‌گزاری آنها، به ویژه نمونه‌های دایک‌های دیباژی است. با توجه به تکنیک‌های مورد بررسی صحرایی و سنگ-شناختی، ۱۴ نمونه از سنج‌های این دایک‌ها به کانادا ارسال شدند تا به روش مورد بررسی SGS در آزمایشگاه مورد بررسی ICP-MS غربی شوند با توجه به نتایج این آزمایشها، شکل‌گیری سنجی شناختی، کلیولیتر، پلاژیوکلاز و هوریتید نشان دهنده است. مایع گیاهی سنجی شناختی، با کارایی بالا و توانایی این سنج‌ها محسوب می‌شود. بیشین و آرتورپروکس در دایک‌های سنجی شناختی بالغ نشده‌اند. بیشین پلاژیوکلاز تیغه‌ای و کم‌شیره و دارای ساخت منطقه‌ای است. هسند و گاهی دگرسانی سوسوریتی پلاژیوکلاز را به مجموعه‌ای از کالی‌های سنجی شناختی در مورد سنجی تمام‌الزه‌ای سنج کل دایک‌های مورد بررسی در جدول ۱ آورده شده‌اند. بررسی و پرداخت داده‌ها با استفاده از نرم‌افزارهای Minpet و GCDKit گرفته‌اند.

سنگ‌نگاری
داایک‌های سنجی شناختی دیباژی منطقه مورد بررسی از دانه‌بندی متوسط تا ریزدانه برخوردارند و در نمونه‌های دستی به رنگ خاکستری تا سبز و به لحاظ ضریب رنگ ملانکروتاین. بررسی‌های مقاطع نازک آنها با میکروسکوپ نشان می‌دهد که آنها دارای بافت‌های افکریک، دولومنیت و گاهی سالیشن‌های رنگ‌ای است. هسند (شکل ۱)، کانی‌های اصلی تشکیل‌دهنده این واحد سنگی شامل پلاژیوکلاز، کلیولیتروپس و هوریتید است. کوارتز، اسفن مگنیتیت، اپیدوت و کلریت نیز کانی‌های فرعی و نتانیه این سنج‌ها محسوب می‌شوند. بیشین و آرتورپروکس در دایک‌های سنجی شناختی بالغ نشده‌اند. بیشین پلاژیوکلاز تیغه‌ای و کم‌شیره و دارای ساخت منطقه‌ای هسند و گاهی دگرسانی سوسوریتی پلاژیوکلاز را به مجموعه‌ای از کالی‌های سنجی شناختی در مورد سنجی تمام‌الزه‌ای سنج کل دایک‌های مورد بررسی در جدول ۱ آورده شده‌اند. بررسی و پرداخت داده‌ها با استفاده از نرم‌افزارهای Minpet و GCDKit گرفته‌اند.

شکل ۲ الگوی نقشه ۱۹۰۰۰۰ هرمسین ب نقشه زمین‌شناسی منطقه مورد بررسی که در آن محل پراکندگی دایک‌ها مشخص شده است.
آلبیت، ایاموت، اسفن و کلسیت تجزیه کرده است. درصد موردی این کانی در تمامی مقاطع یکسان نیست. در برخی دایک‌ها که رنگ روش‌هایی دارند پلاژیوکلاز پیشتر نیز در آنها پاکت می‌شود (شکل 4 ب). کلینوپیروکسن‌ها به عنوان مهم‌ترین کانی مافیک یک این واحد.

جدول 1 نتایج تجزیه شیمیایی سگ‌هایی منتخب دایک‌های آفیولیت صحته‌های رسین به روش ICP-MS

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>Cr₂O₃</th>
<th>TiO₂</th>
<th>FeO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₅</td>
<td>94.1</td>
<td>16.7</td>
<td>11.4</td>
<td>8.8</td>
</tr>
<tr>
<td>D₇</td>
<td>94.1</td>
<td>16.7</td>
<td>11.4</td>
<td>8.8</td>
</tr>
<tr>
<td>D₉</td>
<td>94.1</td>
<td>16.7</td>
<td>11.4</td>
<td>8.8</td>
</tr>
<tr>
<td>D₁₀</td>
<td>94.1</td>
<td>16.7</td>
<td>11.4</td>
<td>8.8</td>
</tr>
<tr>
<td>D₁₁</td>
<td>94.1</td>
<td>16.7</td>
<td>11.4</td>
<td>8.8</td>
</tr>
<tr>
<td>D₁₂</td>
<td>94.1</td>
<td>16.7</td>
<td>11.4</td>
<td>8.8</td>
</tr>
<tr>
<td>D₁₃</td>
<td>94.1</td>
<td>16.7</td>
<td>11.4</td>
<td>8.8</td>
</tr>
<tr>
<td>D₁₄</td>
<td>94.1</td>
<td>16.7</td>
<td>11.4</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Trace elements, ppm

<table>
<thead>
<tr>
<th>Element</th>
<th>Ba</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Ce</th>
<th>Cs</th>
<th>Dy</th>
<th>Er</th>
<th>Eu</th>
<th>Hf</th>
<th>La</th>
<th>Lu</th>
<th>Nb</th>
<th>Nb</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>150</td>
<td>170</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
<td>310</td>
</tr>
</tbody>
</table>

کاربرد داده‌های روش‌های دیپارسیون آفیولیت‌های...
ملاحظات و سرشتمی نیمه‌قلبانی (ساب‌الکالین) است (شکل 5 ب). با عنايت به سرشت نیمه‌قلبانی بودن دایک‌ها برای تشخیص نوع سری نیمه‌قلبانی دیده قلبانی بودن و جدايش سری‌های تولیدی می‌تواند و اهمیت‌دار نمودارهای [23] یکی از این سنج-AFM مورد استفاده قرار گرفتند. نمودار [21] برای این سنج-ها بیانگر است، درجها به سری تولیدی (شکل 6 ف) و بر اساس عناوین نمونه‌ها در نمودار (شکل 6 ب) دایک‌های دیباژی در گسترشی سری‌های تولیدی می‌توانند جای می‌گیرند.

برای مثابه کردن محیط زمین‌ساختی این واحد سنجی از نمودار [23] استفاده شد. چنانچه ملاحظه وجود کلیه‌ها مانند کلریت، ماقننیت، آمفیبول، اسفن، ابیوت، کلسیت، کوارتز نانوه، و آلبیت در این دایک‌ها بیانگر این است که آن‌ها تحت تأثیر دگرگونی بستر اقیانوسی قرار گرفته و شرایط دگرگوئی از رخساری زنودیت تا شیست‌سیز را تحمیل کرده‌اند.

بررسی‌های زمین‌شیمیایی

عناصر اصلی

برای نمونه‌گیری و تعبین سری‌های ماقننیت از نمودارهای [23] استفاده شد. بر هیمن ترکیب سنج‌شناختی دایک‌ها و یکی از نمونه‌های بازالتی (شکل 5 الف) و ماگمای سازنده آن دارای

شکل 4 الف، ب و ب ‏: تصاویر میکروسکوپی پایه و کانی‌های تشکیل‌دهنده‌های دیباژی در منطقه‌ای مورد بررسی (C) نمودار و پرگاس بر روی تصویر پرگاس ب هرولند تبیین شده، ولی سنگ پاک دارنده و ساب‌الفرتیک خود را نمود که خلاصه است (نور XPL).
عنصر فرعی و نادر خاکی، داده‌های وابسته به فراوانی عنصر نادر خاکی تجزیه‌شده شیمیایی سنگ‌کل دایک‌های دیپارزی صحت‌های هرسین که به روش ICP-MS بررسی تغییرات عنصر کمیابی از نمونه‌های بهنگارشده با مبتنی بر N-MORB و نیز کندویت [22] استفاده شده است (شکل 9). جانبه نمونه‌ها نشان می‌دهند دایک‌ها از عنصر لیتوفیلی بزرگ‌پیوند (LILE)
شاخص های جغرافیایی و ساختاری دایکهای در میزان کرمانشاه:

کوچک‌ترین نمونه‌ها:
- HFS
- IAT
- MORB
- OIB
- FeOt – MgO - Al2O3

گروه‌های عناصر:
- با نماد بهبودگر کننده از [۲۷] انتخاب شد.
- این نمونه در بازالت‌های میزان

بررسی محیط زیستی دایک‌ها:
- برای تعیین محیط تکثیف‌گامایی دایک‌های منطقه‌ای صحت‌های هرسین از نمونه‌های [۲۹-۳۲] استفاده شد.
- نتایج نشان می‌دهد که عناصر باعث تغییرات در مشخصات

شکل ۹: نمونه‌های کم‌پلاسی دایک‌های افیولیتی صحت - هرسین در نمونه (کنترل/تموپه) (مراقبت بهبودگر کننده از [۲۷])

شکل ۱۰: نمودار تعیین محیط‌های زمین‌ساختی مجموعه‌ای افیولیتی صحت - هرسین [۲۹] (حرفت اختصاصی استفاده شده در شکل عبارتند از: CAB = تولید پلیپت و جزئی دایک‌های افیولیتی صحت - هرسین در نمونه (NMORB = بازالت پلیپت افیولیتی; OIB = بازالت پلیپت افیولیتی; MORB = بازالت پلیپت افیولیتی; IAT = تولید پلیپت کم‌پلاسی; BON = بازالت فراره ای; FeOt – MgO - Al2O3 = بازالت پلیپت افیولیتی)
تولنیت‌های جزایر کمکی (IAT) و استبانا. به طور کلی یک خاستگاه صرفه‌پذیر میان اقیانوسی مشخص برای دایک‌های منطقه‌ی مورد بررسی منتفی است. به‌دوده خاستگاه حوضه‌ای پیش‌کمانی (fore-arc) برای دایک‌های بدلیل عدم حضور سنگ‌های مشخص پیش‌کمانی نظر پبونیتی‌ها که امروزه در پیش کمان‌های فعال عموم و مندازون (37)، و وجود بافت‌های کومولیتی در هارپوزیت‌های افولیت مورد بررسی، نیز نمی‌تواند مورد قبول باشد.

به نظر [31]، از فرآیند عناصر V و Ti به عنوان عامل جدایکننده مؤثر بین پولنده‌های زدیم‌سختی مختلف می‌توان استفاده کرد. این متنا مدل‌ها این منطقه در گسترده‌ترین پولنده‌های بستر اقیانوسی (OFB) و جزایر کمکی (IAT) [32] توزیع شده‌اند (شکل 11). در نمودار Ti/100-Zr*Y* Ti/100-Zr*Y (شکل 12) سنگ‌هایی که در میدان B تصویر می‌شوند، نتیجه ممکن دارد. به طوریکه همه‌پاره‌پوسته‌های مورب، کمان قاره‌ای و جزایر کمکی در این قلمرو قرار می‌گیرند، لذا برای جدایش این محلی‌ها، نمودارهای Ti-Zr و Ti/100-Zr-Sr را بکار رفته است (شکل‌های 12 و 13). نتایج تصویر داده‌ها روز این نمودارها بانگ‌آست که نمونه‌های مورد بررسی دایک‌ها به گستردی پولنده‌های پشته میان اقیانوسی (MORB) و پولنیت‌های جزایر کمکی (IAT) تقریباً 12 نمونه‌نیابایی مایه زدیم‌سختی [32] شکل 11 نمودار تغییر مایه‌زدیم‌سختی [31].

شکل 12 نمودار تغییر مایه زدیم‌سختی [32].
برداشت
بررسی‌های داده‌های زئوئشیمایی گونه‌ای آنتس که مانگی سازنده‌ای دایک‌های افیولیت صحنی - هرسین با ترکیب دیپاژری و از عناصر لیتوپیلی برزگ بون (LILE) غی مسکنی که بر تاثیر دام دیپاژری سازنده‌ای زئوئشیمایی و مواد پوسته‌ای دام دارد می‌باشد. محدوده‌ای از زمین ساختی ویژگی‌های انتقالی دارد. میان افیولیسی شاخه و نیز خاسگان، حوضه‌ای بیش از پهناوری یک
برای این دایک‌ها منتفی است.

نبایین با استناد به روابط صحرا و افیولیت در برگیرنده آن، مشاهدات سطح‌گزاری توام با موقوفیت پهنی ساختاری - زمین‌ساختی ترست زاگرس و دایک‌های زئوئشیمایی دایک‌های مورد بررسی با ماهیت تولیدی برمنزینیم supersubduction در یک خاسگان حوضه‌ای بیش‌کمال یک
تشکل شدند. خاسگان و موقوفیت زمین-ساختی حویضی یک دایک‌های دیپاژری صحنی - هرسین مورد بررسی با استفاده از شواهد زئوئشیمایی Tأً MORB متعددی از جمله شمی رونقیا (تحولی) از
تولیدی جایر کمالی، روابط Ti - V، غی شدگی در مقایسه با تولیدی جایر کمالی تأیید می‌شود.

مراجع
[8] آقابنیسی سعی، زمین شناسی ایران، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور ۵۸۶ صفحه (۱۳۸۲).
basalts”, Earth Planet Sciences Letters 24 (1975) 419-426.