کاربرد داده‌های زئوشیمی دایاکه‌های دیابازی افیولیت کرمانشاه (منطقه صحنه - هرسین) در تعيین جایگاه زمین‌ساختی آن‌ها

اشتراک ترکیبی زئین دارای‌زاده، فرهاد آبی‌نیا، موسي نقره‌نیان

1- گروه زمین‌شناسی، دانشگاه علوم، دانشگاه علوم، دانشگاه علوم، دانشگاه علوم، دانشگاه علوم

(دریافت مقاله: ۱۳۸۷/۹/۱۷، نسخه نهایی: ۱۳۸۸/۱۰/۲۳)

چکیده: مجموعه افیولیت کرمانشاه در پهن‌های مختلف یکی از زمین‌ساختی‌های غرب ایران در بخش شمالی راش اصلی زاغرس قرار دارد و جزئی از کرمانشاه، که به‌طور گسترده‌ای در دسترس گردیده است، به‌طور اشتراکی در جنوب محصور می‌شود. این کره‌های کرمانشاهی در دامنه‌ای از غنی شدگی در لیتولوژی یکسانی با شکل‌گیری خاصی از منیزیم و فسفر برای این این LIL عنصرها اقدام کرده‌اند. مشخصات انتقالی، بین بااراله‌های پتوهای میان‌افیولیتی، افیولیتی و تولپیتی‌های جزایر کمیا را نشان می‌دهد. بنابراین دایاکه‌های مجموعه افیولیت کرمانشاه ممکن است در یک خاستگاه زمین‌ساختی حوضه پشت کمکی به وجود آمدنش باشد.

واژه‌های کلیدی: افیولیت، دایاکه، حوضه پشت کمک، تولپیتی، کرمانشاه، صحنه

مدیر

پیده‌های زئین در کرمانشاه، به‌طور کلی تا شمال-غرب از مرز ایران-ترکیه و تا شمال-غرب از مرز ایران-ترکیه کوه‌های ایرانی از جمله افیولیتی مورد بررسی در این پژوهش در دو مرحله اصلی زاغرس، افیولیتی و تولپیتی‌های جزایر کمیا را نشان می‌دهد. بنابراین دایاکه‌های مجموعه افیولیت کرمانشاه ممکن است در یک خاستگاه زمین‌ساختی حوضه پشت کمکی به وجود آمدنش باشد.

1 نویسنده مسئول، تلفن-خانم: ۸۷۸۸۸۸۱۴۶۰، پست الکترونیکی: a-torkian@basu.ac.ir

References

1. مراجعه کنید، وی نویسنده (پیشتر) از افیولیت‌ها برای جهانگیر شاهرودی افیولیت‌ها و ایزووتی‌ها (آمریکایی‌های زئین) گزارشی افیولیت‌ها و ایزووتی‌ها (آمریکایی‌های زئین) گزارشی
پیش از این مجموعه اسفندیاری کرمشاهی از نظر ویژگی‌های سنگ‌گنگ‌آتی، سنگ‌سنگ‌آتی و ویژگی‌های ساختاری مورد بررسی زمین‌شناسی قرار گرفته است [12011 و 11012 و 11013]. به یکی از پخیر‌ترین صنایع مورد نظر از مجموعه‌های اسفندیاری [12-18] است. در این منطقه از نظر دور، ساختار، صنعتی و فناوری، مخازن زمین‌سنگی و سنگ‌سنگ‌آتی که عناصر اصلی، فرعی و نادر خاک، سرشت و طبیعت، خاک‌سازی زمین‌ساختی (تکتونیکی) این دایکها را تعیین کنن.

زمین‌سنگ‌آتی منطقه
- اسفندیاری کرمشاهی

اسفندیاری کرمشاهی یک همبستگی اسفندیاری شدیداً منظم و گسترش گیت است که به عنوان بخشی از سنگ‌سنگ‌آتی موجود در کرمشاهی و در انازیت‌های مختلف جغرافیایی 0.3 - 15 در مورد زمین‌سنگ‌آتی با مخازن و صنایع منظم [12011 و 11012 و 11013]. به دلایل تکان‌دهنده و کرم‌ساختی (نکسیکی) این دایکها را تعیین کنن.
کاملاً روشنی از آنها در گزارش دیده نمی‌شود. عملکرد نورهای زمین‌ساختی (کسلهها) در مناطق، این واحدها را از هم جدا کرده و فقط می‌توان با پاراسایی فرضی ترتیب افیولیتی، روابط بین آنها را تردد کرد. دایک‌های دیپازی در بعضی نقاط مخصوصاً ناگهانی و نیز منطقه‌های آذرپردازگرانتی‌ها را قطع کرده‌اند (شکل ۳). بسیاری از دایک‌ها به سبب متأثر شدن از نورهای زمین‌ساختی، در محل شکستگی‌های واحد پلاژیوگرانیت‌های جایگزین شده‌اند.

روابط صخره‌ای دایک‌ها

دایک‌های مورد بررسی این مقاله یکسانی صفحه‌های تدریجی که از نظر ترتیب فرارگی در همبایی افیولیتی صفحه ۱۰، هر دو حرکتکننده و دایک‌های فوسی، این نقاط را به‌صورت دایک‌های دیگری ناگهانی و نیز منطقه‌های پلاژیوگرانیت‌ها را قطع کرده‌اند (شکل ۳). بسیاری از دایک‌ها به سبب متأثر شدن از نورهای زمین‌ساختی، در محل شکستگی‌های واحد پلاژیوگرانیت‌های جایگزین شده‌اند.

ضریب ریگنی دایک‌های صفحه‌های ملاتورکات و از نظر رنگ کاملاً از نگه‌داری یکسانی صفحه‌های دیپازی (پلاژیوگرانیت‌ها)، قابل توجه آن‌ها.
دایک‌هایی صخه‌ای دیباژی از منطقه مورد بررسی از دانه‌نما متوسط تا ریزانه بدخوارنگ و در نمونه‌ی دستی با رنگ خاکستری تا سیاه و به لحاظ ضرب رنگ ملانوکراتان. بررسی‌های مقاطع نازک آن‌ها با میکروسکوپ نشان می‌دهد که آنها در بخش‌های افتیک، دوپینی و گاهی سپرین هستند (شکل 3). کلیه‌ای اصلی تشکیل‌دهنده این واحد سنگی شامل یلیکولاز، یلینیپروکسین و هورنیلن است. کوارتز، اسفن، مالزنت، اپتید و کلریت نیز کلیه‌ای فرعی و تانالی این سنگ‌ها محسوب می‌شوند. پیوند آنتی‌پروکسین در دایک‌های صخه‌ای یافت نشد. بلورهای یلیکولاز، نیکل و کنیکید به و دارای صخه‌ای منطقه‌ای هستند و کلیه دارای اسپورتنی یلیکولاز را به مجموعه‌ای از کلیه‌ای تانالیه.
البیت، اینمودی، اسفر و کلسیت تجزیه کرده است. درصد
مودی این کانی در تمام مقاطع پیکن نیست، در برخی
داخکها که رنج روشنی دارد پلاژیولاسیستیک نیز در
آنها پاکش می‌شود (شکل ۴ پ).
کلیوپیروکسنس به عنوان مهم‌ترین کانی مافیک‌این واحد

جدول ۱ نتایج تجزیه شیمیایی سنگ‌های دایک‌های افوپلت صحته - هرسین به روش

<table>
<thead>
<tr>
<th>Samples</th>
<th>D0</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major elements, wt %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>49.1</td>
<td>49.2</td>
<td>48.5</td>
<td>49.9</td>
<td>49.7</td>
<td>48.3</td>
<td>49.3</td>
<td>49.2</td>
<td>49.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.4</td>
<td>18.5</td>
<td>17.7</td>
<td>18.1</td>
<td>18.3</td>
<td>17.5</td>
<td>18.2</td>
<td>18.1</td>
<td>18.0</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>13.3</td>
<td>13.2</td>
<td>12.7</td>
<td>13.1</td>
<td>13.0</td>
<td>12.5</td>
<td>13.1</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>MnO</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>MgO</td>
<td>9.8</td>
<td>9.9</td>
<td>9.7</td>
<td>9.9</td>
<td>9.8</td>
<td>9.6</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
</tr>
<tr>
<td>CaO</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sum</td>
<td>100.4</td>
<td>100.4</td>
<td>100.3</td>
<td>100.4</td>
<td>100.3</td>
<td>100.3</td>
<td>100.4</td>
<td>100.4</td>
<td>100.4</td>
</tr>
<tr>
<td>Trace elements, ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>3.1</td>
<td>3.0</td>
<td>2.9</td>
<td>3.1</td>
<td>3.0</td>
<td>2.9</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Nb</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Sr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Y</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Zr</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Ce</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Cs</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Dy</td>
<td>2.9</td>
<td>2.8</td>
<td>2.9</td>
<td>2.7</td>
<td>2.8</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Er</td>
<td>5.4</td>
<td>5.3</td>
<td>5.4</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Eu</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Hf</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>La</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Lu</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Nb</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Nd</td>
<td>8.4</td>
<td>8.3</td>
<td>8.4</td>
<td>8.4</td>
<td>8.3</td>
<td>8.4</td>
<td>8.4</td>
<td>8.3</td>
<td>8.4</td>
</tr>
<tr>
<td>Rb</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Sm</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Ta</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Tb</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Th</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Ti</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>U</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>V</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Zr</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
وجود کالی هایی مانند کلریت، ماکنیت، آمفیبول، اسفن، ایپیدوت، کلسیت، کوارتز تانوبه و آلپت در این دایک‌ها ببینگر
این است که این ها تحت تأثیر دگرگونی بستر افیانوسی قرار
گرفته و شرایط دگرگونی از رخساره زولین فلزی نشسته‌ساز را
تحمل کرده‌اند.

بررسی‌های زمین‌شناسی
عناصر اصلی
برای تخمین جهت و تغییر سری ماده‌گی از نمونه‌های [320]
استفاده شد. بر همین اساس ترتیب سنگ‌شناسی دایک‌ها
پیشرفت پذیرفتی (شکل 5 الف) و ماده‌گی سازندگی آن دارای

ماهیت و سرشتی نیمه‌قلبی‌ای (ساب‌الکالی) است (شکل 5 ب).
با عنايت به سرشت نیمه قلبی‌ای بودن دایک‌ها برای
تشخیص نوع سری نیمه‌قلبی‌ای، درجه قلبی‌ای بودن و جدایش
سری‌های تولکینی متوزین‌داده و اهوران نمودارهای [321] m
مورد استفاده قرار گرفتند. نمودار [321] برای این سنگ-
های بین‌گر وایستگی آن‌ها به سری تولکینی (شکل 6 الف) و با
توجه به توزیع نمونه‌ها در نمودار (شکل 6 ب) دایک‌های
دبی‌ای در گستره‌های سری‌های تولکینی‌های پرمنیزم جای
می‌گیرند.
برای مشابه کردن محیط زمین‌شناسی این واحد سنگی از
نمونه‌های TiO₂-K₂O-P₂O₅ [33] استفاده شد. چنان که ملاحظه

شکل 4 الف، ب و پ: تصاویر میکروسکوپی بافت و کانی‌های تشکیل‌دهنده دایک‌هایی دیتابازی در منطقه‌های مورد بررسی (ب) تصویر میکروسکوپی از دایک‌هایی دیتابازی منطقه مورد بررسی (در این تصویر پروپاکسی هورنبلند تبدیل شده، ولی سنگ بافت دارنده و سبا‌فاتیشه که رو را نا حضوی حفظ گردید است) (نور XPL)
استفاده شوند در همین راستا نمودار
نشان میدهد که دایک‌های مجموعه افیولیتی صحنه
هرسین در قلمرو تولت‌هایی کم‌پتانسیم تصور شده قرار دارند (شکل 7) و این مطلب نتایج نمودار‌های ترسیم شده با عناصر
اصلی را تایید می‌نماید. همچنین برای تعبیه نیوگن‌دایک‌های
TiO_2 نمودار $\text{FeO}*/(\text{FeO}^* + \text{MgO})$
به خاطر درجه‌ی غنی‌شدن از TiO_2 نمودار
$\text{FeO}*/(\text{FeO}^* + \text{MgO})$
ابن نمودار بینایگر فیبر ماده ماده دایک‌های باد شده از
تیناپیم است (شکل 8 ب).

شکل 5(الف) رابطه همچنینی و نامگذاری سگ‌های آذرین با استفاده از نمودار \ln به همراه مثبت به سیلیس (TAS) از [20] پ نمودار

تعیین سری‌های ماده‌ای [21].

شکل 6(الف) نمودار کاتانوی [22] به نمودار قسمتی در قلمرو سری‌های تولت‌هایی (الف) پر مشیتی (ب) تصور شده است.

بررسی [21] (ب) نمودار کاتانوی [22] به نمودار قسمتی در قلمرو سری‌های تولت‌هایی (الف) پر مشیتی (ب) تصور شده است.
عناصر فرعی و نادر خاکی داده‌های وابسته به فراوانی عناصر نادر خاکی تجزیه شیمیایی سنگ‌کلی، در اثر سطحی که به روش ICP-MS بررسی تغییرات عناصر کمیاب از نمونه‌های به‌دست آمده با میانگین بزرگ‌تری از ویژگی‌های عادی این پوششها نمودار N-MORB [25] و نیز کندریت [27] استفاده شده است (شکل 9). چنانچه نمونه‌ها نشان می‌دهند دایک‌ها از عناصر لیتوکپفی بزرگ بود (LILE).
دايكيهای افیولیت صحنه - هرسین و یزگی خوبي برای ميزان
دگرساني است. اين موضوع در نموهای شکل 9 و نيز در
جدول 1 خوبي مشهود است.
بررسی محیط زمین ساختي دايكيها
براي تعیین محیط تکتونومگمایی دايكيهای منطقه صحنه- هرسین از نمونه‌هاي [29-33] استفاده شد. چنانچه از تصویر
- MnO*10 - P2O5*10 - TiO2
- قرار مي‌گيرند. در نموندار –
- انانیز نمونه‌ها دايكيها در نموندار 10
- نيز دايک ها در قلمرو بايالت‌هاي بستر
- تولدت جزایر كماني (IAT)
- البانه‌هاي افیولیت در نمونه‌هاي
- افیولت و جزایر كماني واقع شده‌اند (شکل 10 ب).

مقابله با عناصر HFS در اين دايكيها به خوبي نشان مي‌دهد
كه علاوه بر سازندگان غوشته فواني مواد پوسته‌اي نيز
دخالت داشته‌اند. اين مواد، به واسطه سيالات بالا آمدی در
زون فروارش مي‌توانست به سازندگان درگير اضافه شده باند.
كه اين فرايند شاخس سنگ‌های وابسته به كمان است.
به علاوه در بيشتر ماگماهاي بايالت‌هاي جزایر كماني
(IAB) غني شدگي انتخابي از Ba ، و يا K نسبت به عناصر
خاکي سیک مي‌شد [28].
شرايط دگرساني با دماي پایين در بايالت‌هاي ميان
ائيونوس باعث تغييرات در عناصر مختلف، به خصوص عناصر
متحرک مي‌شد. غني شدگي در ميزان با

شکل 9 ب) تکنوس نمونه‌گري چند منصور دايكيهای افیولیت صحنه - هرسین در نموندار (کنترل‌نمونه) (مقابله به‌سازگان کننده) از [آ21] ب.)

شکل 10 نموندار تعیین محیط‌های زمین ساخته‌هاي مجموعه‌ای افیولیتی صحنه - هرسین [29] (حوفر اختصاصي استفاده شده در شکل عبارتند از: BON; B) نموندار (NMORB) تولدت جزایر افیولیتیصحنه - هرسین در نموندار (NMORB) افیولت جزایر افیولیتی; MORB; OIB; IAT; OIB; ب) تولدت جزایر افیولیتی; IAT; CAB; B) نموندار (NMORB)
به نظر [31]، از قرارنوی عناصر V و Ti به عنوان عامل جدایکننده مؤثر بین پازالت‌های زبرهای زمین‌ساختی مختلف می‌توان استفاده کرد. بر این مبنای دایک‌های این منطقه در گستره پازالت‌های بستر اقیانوس (OBF) و جزایر کمی (IAT) با نسبت Ti/100-Zr-Y* و Ti/100-Zr-Sr/2 توزیع شد‌های (شکل 11) در نمودار 3* و 4* مشاهده شده‌است. نتایج سنجش که در میدان B تصور شود، نشان‌دهنده می‌باشد دارد. به طوریکه همچنین پازالت‌های مورب، کمان قاره‌ای و جزایر کمی در این قمر و قرار می‌گیرند، لذا برای جدایی این می‌تواند مورد قبول باشد.

نمودار 12 نمودار نمودار محیط زمین‌ساختی [32].

شکل 12 نمودار نمودار محیط زمین‌ساختی [32].

شکل 11 نمودار نمودار محیط زمین‌ساختی [31].

شکل 11 نمودار نمودار محیط زمین‌ساختی [31].
برداشت
بررسی‌های داده‌های زئوئسیمایی گونه‌ای آنتس که مانگان‌دار
سازنده‌دهی دایبهای افیولیت در بلندی‌های دیگر با ترکیب دیپ‌دایژن
و از عناصر لیتوپهدف یوزک باین (LLE) غنی‌الحنفی که بر
تاثیر تونوم سازنده‌ی افیولیت مواد پوستهای دالاک
دارد. میزان متغیرهای ساختنی آنها از واژه‌های انتقالی بین
را نشان می‌دهند و یکی از مفاهیم پیش‌ین کم‌کمی
میان اقیانوسی شاخه و نیم‌خاستگاه، حوضه‌ی پیش کم‌کمی
برای این دایبهای منطقه‌ای است.

[8] Aقایان سی.م.، زمین شناسی ایران، انتشارات سازمان
زئوئسیمایی و اکتشافات معدنی کشور، 585 صفحه (۱۳۸۳).

مراجع
basalts”, Earth Planet Sciences Letters 24 (1975) 419-426.