سنگ‌نگاری و شیمی گارنتر ها در کانسار اسکارن خوت، شمال غرب تفت، استان یزد

اعظم زاهدی محمد بومری
پخش زمین شناسی دانشگاه علوم و دانشگاه سیستان و بلوچستان زاهدان ایران

چکیده: کانسار اسکارن خوت واقع در ۵ کیلومتری شمال غرب شهر خوت در ناحیه تغییراتی در نوع و شکل اسکارن‌های گچی‌بنی و پیازی‌بنی در این منطقه دیده شد. برای بررسی این اتاق‌های تغییراتی در شکل‌دهی منطقه‌های گچی‌بنی و پیازی‌بنی در اسکارن‌ها، از نقاط مختلف از حساب‌های اصلی تغییرات در این منطقه بررسی داده شد. با مطالعه شیمی‌گارنت‌های میزبان اسکارن‌ها در این منطقه، دقت‌دار تغییرات در شکل‌دهی منطقه‌های گچی‌بنی و پیازی‌بنی در اسکارن‌ها مشاهده گردید.

مقدمه
منطقه‌های خوت در ۵ کیلومتری شمال غرب تفت در استان یزد به خصوص در جغرافیای ۳۰° ۳۲' و ۵۵°۵۲' عرض شمال واقع شده است. گستره‌دار تغییراتی در شکل‌دهی منطقه‌های گچی‌بنی و پیازی‌بنی در اسکارن‌ها، با افزایش ذرهاب‌های قبیه‌ای در محل تغییرات و نسبت به میزان ماده مشتق‌پذیر را افزایش می‌دهد. همچنین باعث شکل‌دهی منطقه‌های گچی‌بنی و پیازی‌بنی در اسکارن‌ها می‌شود. در این مقاله، با بررسی شیم‌گارنت‌های میزبان اسکارن‌ها در این منطقه، تغییرات در شکل‌دهی منطقه‌های گچی‌بنی و پیازی‌بنی در اسکارن‌ها مشاهده گردید.

واژه‌های کلیدی: اسکارن‌ها، شیمی‌گارنت‌ها، منطقه‌نامی‌گارنت‌ها، گچی‌بنی، پیازی‌بنی، شکل‌دهی منطقه‌های اسکارن‌ها.
روش بررسی

پس از بررسی‌های سنگ‌شناختی، از نمونه‌های اسکارنی مورد بررسی مقطع نازک صقلی تهیه شد و سپس به منظور بررسی منطقه‌بندی گرنته‌های منطقه، آنالیز ریزبرداشتی در چند نقطه از مرکز به حاشیه بروی گرانت‌های منطقه صورت گرفت. ترکیب شیمیایی گرانت و پیروگرافی از حاشیه تا مرکز توسط میکروسکوپ الکترونی مدل Jeol JXA- Superprobe و نلاز شتاب دهنده ۱۵ کیلووات و جریان پرتونیاب "amp \times 10^{-8}\) در دانشگاه پاماگاتا زاین انگام شد.

بحث و بررسی

زمن شناسی منطقه

کانسار اسکارن خوت از نظر جایگاه زمین‌شناختی در بخش مرکزی کرم‌بند ولکانولوپتونیک ایران مارکی واقع شده است. کرم‌بند ولکانولوپتونیک ایران مرکزی مهم‌ترین جایگاه کروماتوران طی زمان تولید این فلزات با جذب بخش شمالی آذربایجان به وجود آمد. این کانسار، از نظر شیمیایی، متشکل از سلول‌هایی است که در سطح این منطقه پدید آمده‌اند و شامل شیمیایی‌ها، جمعیت‌ها، نسبت‌ها و مواد زمین‌شناسی است.

شکل ۱ موقعیت کانسارهای اسکارنی واقع شده در غرب یزد و راه‌های دستریسی به آنها با افتیباس از تقسه ۱۳۱۰/۱ خورشیدی [۳]
که در آن کوارتز ۴۰ درصد سنگ‌ریز شکل‌های می‌شود.
کاننده‌ای مس رخ داده است. کلینوپروکسن اغلب به صورت پلارهای ریز پیشک می‌شود. این یکی از منابع طبیعی آنتی‌کاننده‌ای است که در شکل ۱ نشان داده شده است.

پارازنتیک

|| استاده| اسکارن| میزان گارنت در این زون با است. و بسته از ۹۰ درصد آن از گارنت شکل‌دهنده است. با توجه به بررسی‌های کلی شناسی، گارنت اسکارن در این منطقه دو شکل کاملاً متفاوت وجود دارد. یک دسته اسکارن‌های هستند که دارای بافت گرانولور است. گارنت اسکارن در این زون با است. و بسته از ۹۰ درصد آن از گارنت شکل‌دهنده است. با توجه به بررسی‌های کلی شناسی، گارنت اسکارن در این منطقه دو شکل کاملاً متفاوت وجود دارد. یک دسته اسکارن‌های هستند که دارای بافت گرانولور است.

جدول ۱: روابط پارازنتیکی کانی‌ها در اسکارن‌های مس

<table>
<thead>
<tr>
<th>Stage</th>
<th>Prograde stage</th>
<th>Retrograde stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early</td>
<td>Late</td>
</tr>
<tr>
<td>Temperature</td>
<td>۴۳۰-۵۰۰°C</td>
<td>۳۵۰-۴۳۰°C</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garnet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidote</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ore mineral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
کاندرازی با
کاندرازی با
کاندرازی مس اغلب به صورت رگه‌های، رگه‌های و گاهی به
صورت انتشاری و جانشینی در اسکارن‌ها و مرمرها مشاهده
می‌شود. کاندرازی سولفورید و اسکارنی که به صورت اولیه
تشکیل شده‌اند پیشتر شامل پیریت، کالکوپیریت، اسکارنیت،
پیریت و مگنتین است. کاندرازی های به صورت ناشی از در
اسکارن و تجزیه کاندرازی اولیه حاصل شده‌اند شامل اکسیدها
و هیدرواکسیدهای آهن‌مانند هماتین، لیموئین، گوتین و
کربنات‌های مس مثل مالاکیت و ازوریت هستند. کاندرازی
فلزی تقریباً 3% ترکیب مولفه‌ای را تشکیل می‌دهند. بر
اساس بررسی مقطع صلیبی، پیریت و کالکوپیریت، کاندرازی
سولفوریدی اصلی در این زون هستند که با مقدار کمتری از
کاندرازی اسکارنی نظیر هماتین و مگنتین همراهی می‌شوند.
پیریت و کالکوپیریت غالباً فضای بین کاندرازی‌ها را پر کرده و
احتمالاً در پایان مرحله پیشروی‌های ما در مرحله‌ی دگرسانی
پیشروی تشکیل شده‌اند (شکل 4). پیریت و اسکارنیت به
ترتبه به شکل افشا و رگه‌های در مرمرها حضور دارد (شکل
پ. 4).

![شکل 4(الف) کالکوپیریت به صورت شکافه پرکن در فضای بین کاندرازی‌ها ب، کاندرازی پیریت به صورت افشان و کاندرازی اسکارنیت به شکل رگه‌های در مرمرها (Sp: spessartine, Al: almandine, Gr: grossular, Ad: andradite).](image)

![شکل 5 نمودار توزیع ترکیب تعیین‌شده کمی کاندرازی‌های به‌اکسید‌گرد و همسانگرد در اسکارن‌خو و مقایسه آن با اسکارن‌های جهان.](image)
جدول 2. نتایج آنالیز تریپاردشی گارنت‌های همسانگرد و همسانگرد در اسکارن‌های ناحیه ساختمان فرمول‌سازی آنها بر اساس 12 کسیون.

<table>
<thead>
<tr>
<th>Garnet type</th>
<th>Anisotropic garnet</th>
<th>Isotopic garnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh6-3-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh6-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh6-3-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh6-Rim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh6-1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh6-2-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh6-1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh6-1-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kh6-2-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SiO₂
- TiO₂
- Al₂O₃
- Fe₂O₃
- MnO
- MgO
- CaO
- MgO
- Al
- Fe³⁺
- Mn
- Mg
- Ca
- Tot. Cat
- Al-Fe-Mn
- %Ad
- %Gr
- %Sp

هدفبری بسته است. تیزر (جدول 3) و هم اثری از تغییرات ترکیبی و
نواحی گارنت‌های پیوسته و همسانگرد در اسکارن‌های ناحیه ساختمان
اند. از جمله موارد به‌شمار می‌رود: گازهای درون‌سازی
و تغییرات ترکیبی و همسانگرد در اسکارن‌های ناحیه ساختمان.
جدول ۳ نتایج حاصل از تجزیه کانی کلینوبروکسن در اسکارن خوت و محاسبه فرمول ساختاری آن بر اساس ۶ اکسیژن.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Kh-6-1</th>
<th>Kh-6-2</th>
<th>Kh-6-3</th>
<th>Kh-6-4</th>
<th>Kh-6-5</th>
<th>Kh-6-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (wt%)</td>
<td>5.49</td>
<td>5.49</td>
<td>5.49</td>
<td>5.49</td>
<td>5.49</td>
<td>5.49</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.32</td>
<td>2.32</td>
<td>2.32</td>
<td>2.32</td>
<td>2.32</td>
<td>2.32</td>
</tr>
<tr>
<td>FeOT</td>
<td>2.39</td>
<td>2.39</td>
<td>2.39</td>
<td>2.39</td>
<td>2.39</td>
<td>2.39</td>
</tr>
<tr>
<td>MnO</td>
<td>1.21</td>
<td>1.21</td>
<td>1.21</td>
<td>1.21</td>
<td>1.21</td>
<td>1.21</td>
</tr>
<tr>
<td>MgO</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
</tr>
<tr>
<td>CaO</td>
<td>3.34</td>
<td>3.34</td>
<td>3.34</td>
<td>3.34</td>
<td>3.34</td>
<td>3.34</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>Total</td>
<td>10.34</td>
<td>10.34</td>
<td>10.34</td>
<td>10.34</td>
<td>10.34</td>
<td>10.34</td>
</tr>
</tbody>
</table>

Si	2.2	2.2	2.2	2.2	2.2	2.2
Ti	0.7	0.7	0.7	0.7	0.7	0.7
Al	0.7	0.7	0.7	0.7	0.7	0.7
Fe³⁺	0.82	0.82	0.82	0.82	0.82	0.82
Fe²⁺	0.7	0.7	0.7	0.7	0.7	0.7
Mn	0.4	0.4	0.4	0.4	0.4	0.4
Mg	0.3	0.3	0.3	0.3	0.3	0.3
Ca	0.95	0.95	0.95	0.95	0.95	0.95
Na	0.1	0.1	0.1	0.1	0.1	0.1
Total	3.98	3.98	3.98	3.98	3.98	3.98
Fe²⁺+Mg+Mn	1.01	1.01	1.01	1.01	1.01	1.01
%Di	11.8	11.8	11.8	11.8	11.8	11.8
%Hd	87.4	87.4	87.4	87.4	87.4	87.4
%Jo	8.8	8.8	8.8	8.8	8.8	8.8

شکل۴ نمودار توزیع ترکیب تجزیه‌های نقطه‌ای کمی کلینوبروکسن‌ها و مقایسه آن با اسکارن‌های جهان [۹۰].

(Jo: johannsenite-hedenbergite)
جدول ۴ نتایج ریزپرازشی حاصل از منطقه بنی‌گانت (محاسبه‌های بر اساس ۱۱ آسیسون) جایی آهن با استفاده از صفحات گسترده

<table>
<thead>
<tr>
<th>Sample</th>
<th>Kh10 Gr-Core</th>
<th>Kh10-Gr-Core 2</th>
<th>Kh10-3-Core.3</th>
<th>Kh10-4-Core.4</th>
<th>Kh10-5-Core.5</th>
<th>Kh10-4-Rim</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>38.1%</td>
<td>37.8%</td>
<td>37.8%</td>
<td>37.8%</td>
<td>37.8%</td>
<td>37.8%</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.01%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.3%</td>
<td>0.95%</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>17.6%</td>
<td>16.2%</td>
<td>16.2%</td>
<td>16.2%</td>
<td>16.2%</td>
<td>16.2%</td>
</tr>
<tr>
<td>MnO</td>
<td>0.3%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>MgO</td>
<td>0.09%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>CaO</td>
<td>33.2%</td>
<td>33.2%</td>
<td>33.2%</td>
<td>33.2%</td>
<td>33.2%</td>
<td>33.2%</td>
</tr>
<tr>
<td>Total</td>
<td>100.3%</td>
<td>100.3%</td>
<td>100.3%</td>
<td>100.3%</td>
<td>100.3%</td>
<td>100.3%</td>
</tr>
<tr>
<td>Si</td>
<td>0.004%</td>
<td>0.001%</td>
<td>0.001%</td>
<td>0.001%</td>
<td>0.001%</td>
<td>0.001%</td>
</tr>
<tr>
<td>Ti</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Al</td>
<td>0.089%</td>
<td>0.11%</td>
<td>0.11%</td>
<td>0.11%</td>
<td>0.11%</td>
<td>0.11%</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>1.103%</td>
<td>1.103%</td>
<td>1.103%</td>
<td>1.103%</td>
<td>1.103%</td>
<td>1.103%</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>51.3%</td>
<td>51.3%</td>
<td>51.3%</td>
<td>51.3%</td>
<td>51.3%</td>
<td>51.3%</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Mg</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
</tr>
<tr>
<td>Ca</td>
<td>2.92%</td>
<td>2.92%</td>
<td>2.92%</td>
<td>2.92%</td>
<td>2.92%</td>
<td>2.92%</td>
</tr>
<tr>
<td>Tot. Cat.</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Al₂O₃+Mn</td>
<td>3.2%</td>
<td>3.2%</td>
<td>3.2%</td>
<td>3.2%</td>
<td>3.2%</td>
<td>3.2%</td>
</tr>
<tr>
<td>%And</td>
<td>0.24%</td>
<td>0.13%</td>
<td>0.13%</td>
<td>0.13%</td>
<td>0.13%</td>
<td>0.13%</td>
</tr>
<tr>
<td>%Gr</td>
<td>3.3%</td>
<td>3.3%</td>
<td>3.3%</td>
<td>3.3%</td>
<td>3.3%</td>
<td>3.3%</td>
</tr>
<tr>
<td>%Sp</td>
<td>1.3%</td>
<td>1.3%</td>
<td>1.3%</td>
<td>1.3%</td>
<td>1.3%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

در گریزگذگی بالایی اکسیزن، تشکیل گانت به خرپه هدنبریت امکان‌پذیر است. در این صورت هدنبریتی به گانت نوع اندرواتی تبدیل می‌شود. این امر در اثر گسترش ترکیب هدنبریت در یک واکنش به در میان‌یافته افزایش گریزگذگی اکسیزن و آب، بار و واکنش‌های (1) و (2) تشکیل شود [12].

\[\text{CaFeSi}_2 \text{O}_6 + 3 \text{CaCO}_3 + 3 \text{H}_2 \text{O} \leftrightarrow 3 \text{CaFe}_2 \text{Si}_3 \text{O}_{12} + 3 \text{CO}_2 + 2 \text{SiO}_2 \]

\[\text{Hedenbergite} \quad \text{Andradite} \]

\[\text{CaFeSi}_2 \text{O}_6 + 3 \text{O}_2 \leftrightarrow 3 \text{Fe}_2 \text{Si}_3 \text{O}_{12} + 9 \text{SiO}_2 + \text{Fe}_3 \text{O}_4 \]

\[\text{Hedenbergite} \quad \text{Andradite} \quad \text{Quartz} \quad \text{Magnete} \]

بررسی‌های انجام شده روی هم‌مانندی کاسیا‌های شاره‌های در گارانت‌های با منطقه‌های نویسی در اسکانورد نشان داده است که در شکل مرکز هسته و حاشیه بلو گارت شیبی به یکدیگرند. لذا نمی‌تواند نتایج عامل ایجاد چنین پدیده‌ای هنگام رشد گارت‌ها باشد [13]. این روشهای منطقه‌بندی در گارانت‌ها می‌تواند در نتیجه تغییرات ترتیب سیال گرمایی زمان رشد گارت و یا از نتیجه فراورده‌های متقابل گارت-سیال رخ دهد [14]. شاید بتوان یا یلدوی نفی‌سیره‌ای انجام شده در بیشتر سامانه‌های اسکاندی، ترتیب گارانت‌های پیشرونه پیشین غنی از AI است و گارانت‌های بعدی با پسنده، غنی از Fe سنتی [7-11] شکل قابل توجه را در بین ناهساگاری Fe و نسبت Fe³⁺/Fe²⁺ (ال) به طوری که معمولاً گارانت‌های اندراتی (0.6) در جاسته‌های ناهساگاراند (0.4) که گرانیتهای طبیعی ناهساگاراند هستند. گارانت‌های ناهساگاراند را در کسته ترکیب‌های هسته‌های می‌توان نشان دهند که نهایی‌مندی عنصر اصلی بروتابیت باشد.

نموردهای گریزگذگی اکسیزنی است که نسبت به تغییرات در شکل آورده شده است. بر اساس این نموردهای تغییرات در یک موردی می‌باشد CaO و MgO در منطقه‌بندی موثر هسته و بلو گارت و Fe₂O₃ و Al₂O₃ در منطقه‌بندی موثر هسته و بلو گارت. میزان تغییرات در عنصر اولمینیوم و آن از مرکز به حاشیه باینام آن است که منطقه‌بندی منطقه‌بندی در مرکز تغییرات اولمینیوم در می‌باشد. در نمونه‌های مربوط به گرانیتهای طبیعی ناهساگاراند (ال) ضعیف است. در حالی که گرانیتهای طبیعی اندراتی (ال) ضعیف است. در اینجا گرانیتهای طبیعی اندراتی با این گرانیتهای طبیعی اندراتی در نیاز صحیح است.
در مورد گارانت‌های حاوات منطقه‌بندی علی دیگری نیز تخت.

عنوان عوامل خارجی به شرح زیر بیان گردیده [15]:
الف) چربی‌های کلسی به ویژه حکمت‌های مستمر و تبادلی
گسل دهشیر-بافت: این چربی‌های می‌تواند سبب تغییر دوره‌ای
فشار بر سامانه‌های گرمابی شود. این تغییرات دوره‌ای اختلال
می‌تواند با گهواره و اکسایش دوره‌ای گرماب و نهشت دوره‌ای
اندرازیت - گروسولات همراه باشد.

شکل 7 تغییرات عناصر اصلی در منطقه‌بندی‌های تجزیه شده‌گارانت.

ب) شکل گیری سلول‌های هم‌مرفت حاصل از گردش آب‌های
جوی پیرامون نوده‌های نفوذی و مشارکت این آب‌ها در
سامانه‌های گرمابی می‌تواند باعث تغییرات در سرشتی‌های
فیزیک‌شیمیایی شاره‌ها (Eh, pH) شود. از آنجا که این
آب‌های بیگانه متاثر از شرایط جوی سطحی زمین هستند، لذا
تغییرات دوره‌ای آنها می‌تواند این گونه بر سامانه‌های گرمابی
تأثیر بگذارد.

[15] مکی زاده م، "عمل‌های انتقال شبانسی و زئولوژی اسکارن‌های ایران مرکزی (دانشگاه شهید بهشتو (1387)، 192 صفحه.

برداشت

نفوذ توده‌گراندوزی‌پری خوت به درون سنگ‌های کربناتی سازند نابیند محور به تشکیل اسکارن کلیسی شده است. برون اسکارن در اسکارن خوت زون اصلی را تشکیل داده و خود شامل دو زون مشخص اسکارن و گارنتب- پیرپخش اسکارن است. مقایسه ترکیب شیمیایی گارنتب با جایگاه ترکیبی گارنتب در اسکارن‌های کلیسی دیگر نشان داد که گستردگی ترکیبی گارنتب در اسکارن‌های مس، آهن و طلا به حجمی همخوانی دارد. از ویژگی‌های شاخه‌گارنتب هنوی گروئولار - اندرادیت، منطقه‌بندی موجود در آنهشت که به طور اشکالی در اسکارنهای خوت مشاهده می‌شود. این ساختار منطقه‌بندی همواره در گارنتب هراتی، تغییرات ترکیبی حین رشد کلی این گارنتب‌های غنی از گروئولاری یون دوام حامل برهنه ترکیبی سنگ‌مینه‌ی با شاره‌های غنی از H_2O باشد که این رشته‌بندی گارنتب های اسکارنی در گرمسایی است. این منطقه‌بندی نشان دهنده‌ی بالایی مستمر گرماها و معمولاً پرپیامون گارنتب‌ها نسبت به هسته‌ی اندراپیت بدن تر است. در زون‌های مختلف گارنتب‌های خوت، عناصر آهن و آلومینیم به طور کاملاً با اندازه‌ای متفاوت باعث وجود آماده‌منطقه‌بندی همبستگی در گارنتب‌های شده‌اند.

قلفالی

از همکاری‌های یکدیگر در انجام انجام تجزیه‌ی ریز‌دانشگاه‌های مختلف کارشناسی ارشد دانشگاه‌های تهران، تبریز و شیراز که طی دوره‌های مختلف باعث وجود صورت‌ها مشابهی در گارنتب‌های شده‌اند.

مراجع

[1] ایزدی م، "عمل‌های انتقال شبانسی‌های اکسیداتی در نتیجه اثر علوم ریز‌دانشگاه‌های دانشگاه‌های تهران، تبریز و شیراز که طی دوره‌های مختلف باعث وجود صورت‌ها مشابهی در گارنتب‌های شده‌اند.
