سنگ‌نگاری و شیمی گارنتره در کانسار اسکارن خوت، شمال غرب تفت، استان یزد

اعظم زاهدی\1 محمد بومری

پیش زمین شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده: کانسار اسکارن خوت واقع در ۵ کیلومتری شمال غرب شهر خوت در تنها نفوذ توده گرانودورپتی خوت به بهترین ناحیه کریستالی ناخالص ترتیب بایا تحقیق شده است. مشاهدهات‌های اساسی و پرسی‌های کاتیوشنالی نشان داده که اسکارن خوت از نوع کلیپیکی‌هایورو موزایکی به یون اسکارن مهندی‌های افق اسکارنی در منطقه توده به همراه با کانساری‌ای است. اتاقز زیستی‌رزکان نشان داد که تدوین هگونه‌هایی گلول‌دار، درون‌گارنتره می‌باشد. گارنتره در زون گارنتره بروزکس اسکارن وجود دارد. بررسی‌های ناحص‌افشکارک خشک با ریزی‌پردازش الکترونی نشان داد که از ناحیه شیمی‌های اساسی در مقدار عادی تمامی، آلومینیوم، آهن، مس و نیکل به سه ناحیه مختلف. تغییرات عناصر آلومینیوم، تیتانیم و آلیاژ به طور متناوب کنار همدیگر و فاز اصلی بوده است که نشان دهنده پالس‌های پی در پی شکل‌گیری و تاسیس‌گری است. واژه‌های کلیدی: اسکارن; سنگ‌نگاری; منطقه‌بندی; گارنتره; خوت. یزد

مقدمه

منطقه‌بندی خوت در ۵ کیلومتری شمال غرب تفت در استان یزد به اخترصوصی جغرافیایی ۵۳ ۵۴۶۵ و ۵۲ ۵۸۵۰ عرض شما واقع شده است. سنگ‌های گارنتره در زون‌های مختلف تغییرات در ابعاد آلومینیوم، تیتانیم و آلیاژ به طور متناوب کنار همدیگر و فاز اصلی بوده است که نشان دهنده پالس‌های پی در پی شکل‌گیری و تاسیس‌گری است.

جدایی انواع اسکارن‌ها موجب واقع شود. گارنتره یکی از فراوان‌ترین کانی‌های تشکیل دهنده اسکارن خوت است که در تنها نفوذ توده گرانودورپتی خوت به بهترین ناحیه کریستالی ناخالص ترتیب بایا تحقیق شده است. مشاهدهات‌های اساسی و پرسی‌های کاتیوشنالی نشان داده که اسکارن خوت از نوع کلیپیکی‌هایورو موزاییکی به یون اسکارن مهندی‌های افق اسکارنی در منطقه توده به همراه با کانساری‌ای است. اتاقز زیستی‌رزکان نشان داد که تدوین هگونه‌هایی گلول‌دار، درون‌گارنتره می‌باشد. گارنتره در زون گارنتره بروزکس اسکارن وجود دارد. بررسی‌های ناحص‌افشکارک خشک با ریزی‌پردازش الکترونی نشان داد که از ناحیه شیمی‌های اساسی در مقدار عادی تمامی، آلومینیوم، آهن، مس و نیکل به سه ناحیه مختلف. تغییرات عناصر آلومینیوم، تیتانیم و آلیاژ به طور متناوب کنار همدیگر و فاز اصلی بوده است که نشان دهنده پالس‌های پی در پی شکل‌گیری و تاسیس‌گری است.

واژه‌های کلیدی: اسکارن; سنگ‌نگاری; منطقه‌بندی; گارنتره; خوت. یزد

zaheedi.geochemistry@gmail.com

نویسنده مسئول، تلفن: ۰۹۱۷۲۳۱۷۲۴۲، پست الکترونیکی: ۰۹۱۷۲۳۱۷۲۴۲
روش بررسی
پس از بررسی‌های سنگ‌شناسی، از نمونه‌های اسکارنی مورد بررسی مقطع نازک صاقط تهیه شد و سپس به منظور بررسی منطقه‌بندی گارتن‌های منطقه، آنالیز ریزپردازشی در چند نقطه از مرکز به حاشیه بر روی گارتن‌های منطقه صورت گرفت.

ترکیب شیمیایی گارتن و پروکسی از حاشیه تا مرکز توسط میکروسکوپ الکترونی مدل JEOL JXA- Superprobe و لنز شتاب دهنده 15 کیلووات و جریان پرتوی 2×10^-16 amp در دانشگاه یاماغاتا ژاپن انجام شد.

بحث و بررسی
زمین شناسی منطقه
کانسار اسکارنی خوت از نظر جایگاه زمین‌شناسی در بخش مرکزی کمرنگ ولکانولوژیک ایران مرکزی واقع شده است. کمرنگ ولکانولوژیک ایران مرکزی مهم‌ترین جایگاه

شکل 1 موقعیت‌های اسکارنی واقع شده در غرب یزد و راه‌های دسترسی به آنها با افتیاس از نقش‌های 1:100000 خرابه‌ای [32].
سنجشگری و شیمی گرانث‌ها در کانسپر اسکارین خوت، شمال...
کانه‌ای مس رخ داده است. کلینوپیروکسن اغلب به صورت بلورهای ریز یا شکلی به شکل دایره مشاهده می‌شود. این کانی به صورت اصلی در گرنزه تشکیل شده است که این تشکل را به گونه‌ای هستند که دارای یک گره‌دانه‌ایک پیش‌تر گزینه‌های گرانولاری نشان داده است. گرنت اسکارن میزان گرانت در این زون بالاست و بیش از 90 درصد آن از گرانت تشکیل شده است. با توجه به بررسی‌های کلاسیفیکاسیون، گرانت اسکارن در منطقه خوت به دو شکل کامل متفاوت وجود دارد. به دست اسکارن‌های هستند که دارای یک گره‌دانه‌ایک پیش‌تر گزینه‌های گرانولاری

جدول ۱ روابط پارازنتیکی کانی‌ها در اسکارن خوت.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Prograde stage</th>
<th>Retrograde stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substage</td>
<td>Early</td>
<td>Late</td>
</tr>
<tr>
<td>Temperature</td>
<td>430-500°C</td>
<td>350-430°C</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garnet</td>
<td>(Gro25-67)</td>
<td>(And 0-99)</td>
</tr>
<tr>
<td>Actinolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidote</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ore mineral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
کاندرازی
کاندرازی مس اغلب به صورت رگه‌ای، رگه‌های و گاهی به صورت انشالی و ناشناخته از اسکارن‌ها و مرمرها مشاهده می‌شود. کاتی‌ها سولفیدی و کاسپیکی که به صورت اولیه تشکیل شده‌اند مشابه پیریت، کالکوپیریت، اسفالتیت، پیروتیت و مگنتیت است. کاندرازی که به صورت تانیوهای در ارگاسیک و تجزیه کانی‌های اولیه حاصل شده‌اند مشابه اکسیدها و هیدروافاسیدها آهن مانند هماییت، لیموئید، کوتید و کربنات‌های سن مثل مالاکیت و ازوریت هستند. کانی‌های فلزی تقریباً ٣٪ ترکیب مودال اسکارن را تشکیل می‌دهند. بر اساس بررسی مقاطع صریغی، پیریت و کالکوپیریت کاتی‌های سولفیدی اصلی در این رون هستند که بدقت مقداری از کانی‌های اکسیدی نظر هماییت و مگنتیت همراه می‌شوند. پیریت و کالکوپیریت غالباً فضای بین کانترها را پر کرده‌اند و احتمالاً در پایان مرحله پیتروپنسیا به مراتب دیگری آسیب و پرورش تشکیل شده‌اند (شکل ٤). پیریت و اسفالتیت به ترتیب به شکل آفتاب و رگه‌های در مرمرها حضور دارد (شکل ٥).

![کاندرازی](image1)

شکل ٤: کالکوپیریت به صورت شکافه پرکنده بین اسکارن‌ها با رگه‌ای در مرمرها (Sp: spessartine، Al: almandine، Gr: grossular، Ad: andradite).

![کاندرازی](image2)

شکل ٥: نمودار توزیع ترکیب تجزیه‌های نقطه‌ای کمی کاتی‌های ناهمسانگرد و همسانگرد در اسکارن‌ها و مقایسه آن با اسکارن‌های جهان (Sp: spessartine، Al: almandine، Gr: grossular، Ad: andradite).
جدول 2

نتایج آنالیز ریزدارشی گارنت‌های هساگاندر و هساگاندر در اسکارن‌های تند حسابه در فروم ساختاری آنها به اساس ۱۲ آمیزه.

<table>
<thead>
<tr>
<th>Garnet type</th>
<th>Anisotropic garnet</th>
<th>Isotropic garnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Kh6-1-1</td>
<td>Kh6-1-6</td>
</tr>
<tr>
<td>SiO₂</td>
<td>72.11</td>
<td>72.11</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.63</td>
<td>12.63</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>MnO</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Ca</td>
<td>2.35</td>
<td>2.35</td>
</tr>
<tr>
<td>Tot. Cat</td>
<td>8.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Al-F₂O₃-Mn</td>
<td>2.49</td>
<td>2.49</td>
</tr>
<tr>
<td>%Ad</td>
<td>45.51</td>
<td>45.51</td>
</tr>
<tr>
<td>%Gr</td>
<td>38.78</td>
<td>38.78</td>
</tr>
<tr>
<td>%Sp</td>
<td>1.22</td>
<td>1.22</td>
</tr>
</tbody>
</table>

بیانیه‌ی است (جدول ۳) و هیچ‌یاک از تغییرات گربه و محلول‌ی اتمیک در بلورهای پیروکس می‌شانده است. ترتیب پیروکس‌های خوشه‌شان با پیروکس‌های اسکارن‌های مس و آهن در دیگر نقاط دیالپس (شکل ۶) مبتنی است.

بررسی شیمیایی که فراخوانی در گارنت‌ها بررسی شیمیایی که فراخوانی در گارنت‌ها یکی از مهم‌ترین ابزارهای تشخیص تغییرات شیمیایی گرماب در زمان کاپت‌های است. [۴] ترکیب شیمیایی بلورهای گارت در حاشیه تا مرکز متغیر است (جدول ۶) این تغییرات شامل تغییر در عنصرهای همچون سیلیس، الومینیوم، آهن، مینیزمو کلسیم است (جدول ۶).

در اثر است (جدول ۲) و چهار اثر سرمایه‌گذاری در است (جدول ۴) و چهار اثر سرمایه‌گذاری در است (جدول ۲).
جدول 3 نتایج حاصل از تجزیه کانی کلینوبیروکس‌سین در اسکارن خود و محاسبه فرمول ساختاری آن براساس آکسیژن

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Kh-6-1</th>
<th>Kh-6-2</th>
<th>Kh-6-3</th>
<th>Kh-6-4</th>
<th>Kh-6-5</th>
<th>Kh-6-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (wt%)</td>
<td>51.19</td>
<td>51.00</td>
<td>51.79</td>
<td>51.59</td>
<td>51.39</td>
<td>51.27</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.77</td>
<td>0.73</td>
<td>0.79</td>
<td>0.80</td>
<td>0.67</td>
<td>0.49</td>
</tr>
<tr>
<td>FeOT</td>
<td>25.32</td>
<td>24.96</td>
<td>25.03</td>
<td>24.88</td>
<td>25.63</td>
<td>24.76</td>
</tr>
<tr>
<td>MnO</td>
<td>0.87</td>
<td>0.76</td>
<td>0.72</td>
<td>0.74</td>
<td>1.24</td>
<td>1.21</td>
</tr>
<tr>
<td>MgO</td>
<td>2.01</td>
<td>2.05</td>
<td>2.06</td>
<td>2.09</td>
<td>2.13</td>
<td>2.00</td>
</tr>
<tr>
<td>CaO</td>
<td>4.22</td>
<td>4.21</td>
<td>4.31</td>
<td>4.19</td>
<td>4.33</td>
<td>4.27</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.80</td>
<td>0.76</td>
<td>0.79</td>
<td>0.78</td>
<td>0.70</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>10.04</td>
<td>10.30</td>
<td>10.17</td>
<td>10.29</td>
<td>10.64</td>
<td>10.26</td>
</tr>
</tbody>
</table>

Si	2.02	2.01	2.00	2.00	2.00	2.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.00	0.00	0.00	0.00	0.00	0.00
Fe²⁺	0.84	0.77	0.83	0.78	0.82	0.53
Fe³⁺	0.00	0.00	0.00	0.00	0.00	0.00
Mn	0.42	0.41	0.43	0.41	0.40	0.40
Mg	0.20	0.21	0.18	0.18	0.17	0.12
Ca	0.93	0.94	0.94	0.94	0.92	0.81
Na	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.94	3.98	3.98	3.98	3.98	3.91

Fe²⁺+Mg+Mn	2.10	2.01	2.13	2.03	1.97	1.92
%Di	11.89	18.3	15.44	20.83	9.0	22.31
%Hd	47.44	47.73	47.88	48.24	48.81	53.66
%Jo	2.27	2.97	3.28	2.82	2.44	4.02

در مورد توزیع ترکیب تجزیه‌های نقطه‌ای کانی کلینوبیروکس‌سین با محققیه‌ای از اسکارن‌های جهان (2)

(Jo: johannsenite-hedenbergite)

شکل 6 مسایل توزیع ترکیب تجزیه‌های نقطه‌ای کانی کلینوبیروکس‌سین با محققیه‌ای از اسکارن‌های جهان (2)*

(Jo: johannsenite-hedenbergite)
جدول ۴ نتایج ریزپزشکی حاصل از منطقه‌بندی گرنت (مکان‌های فرمول ساختاری بر اساس ۱۲ اکسیژن) جایی در هنگام با استفاده از صحنه‌های گسترده (spread sheet)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Kh10 Gr-Core</th>
<th>Kh10-Gr Core 2</th>
<th>Kh10-3-Core.3</th>
<th>Kh10-4-Core.4</th>
<th>Kh10-5-Core.5</th>
<th>Kh10-4-Rim</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۷۸.۱۱</td>
<td>۷۸.۷۸</td>
<td>۷۸.۷۸</td>
<td>۷۸.۷۸</td>
<td>۷۸.۷۸</td>
<td>۷۸.۷۸</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۱۱</td>
<td>۰.۲۱</td>
<td>۰.۲۱</td>
<td>۰.۲۱</td>
<td>۰.۲۱</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۲.۲۳</td>
<td>۲.۲۱</td>
<td>۲.۲۱</td>
<td>۲.۲۱</td>
<td>۲.۲۱</td>
<td>۲.۲۱</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۱۷.۶۸</td>
<td>۱۷.۶۸</td>
<td>۱۷.۶۸</td>
<td>۱۷.۶۸</td>
<td>۱۷.۶۸</td>
<td>۱۷.۶۸</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۴۳</td>
<td>۰.۴۳</td>
<td>۰.۴۳</td>
<td>۰.۴۳</td>
<td>۰.۴۳</td>
<td>۰.۴۳</td>
</tr>
<tr>
<td>MgO</td>
<td>۰.۰۵</td>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
<td>۰.۰۷</td>
</tr>
<tr>
<td>CaO</td>
<td>۳۲.۳۲</td>
<td>۳۲.۳۲</td>
<td>۳۲.۳۲</td>
<td>۳۲.۳۲</td>
<td>۳۲.۳۲</td>
<td>۳۲.۳۲</td>
</tr>
<tr>
<td>Total</td>
<td>۹۹.۲۱</td>
<td>۹۹.۲۱</td>
<td>۹۹.۲۱</td>
<td>۹۹.۲۱</td>
<td>۹۹.۲۱</td>
<td>۹۹.۲۱</td>
</tr>
<tr>
<td>Si</td>
<td>۳.۰۱</td>
<td>۳.۰۱</td>
<td>۳.۰۱</td>
<td>۳.۰۱</td>
<td>۳.۰۱</td>
<td>۳.۰۱</td>
</tr>
<tr>
<td>Ti</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
</tr>
<tr>
<td>Al</td>
<td>۰.۹۳</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
<td>۰.۱۱</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>۱.۱۳۲</td>
<td>۱.۱۳۲</td>
<td>۱.۱۳۲</td>
<td>۱.۱۳۲</td>
<td>۱.۱۳۲</td>
<td>۱.۱۳۲</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
</tr>
<tr>
<td>Mn</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Mg</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>Ca</td>
<td>۲.۹۲</td>
<td>۲.۹۲</td>
<td>۲.۹۲</td>
<td>۲.۹۲</td>
<td>۲.۹۲</td>
<td>۲.۹۲</td>
</tr>
<tr>
<td>Tot. Cat</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
</tr>
<tr>
<td>Al+Fe+Mn</td>
<td>۳.۲</td>
<td>۳.۲</td>
<td>۳.۲</td>
<td>۳.۲</td>
<td>۳.۲</td>
<td>۳.۲</td>
</tr>
<tr>
<td>%And</td>
<td>۵۵۰.۰</td>
<td>۵۵۰.۰</td>
<td>۵۵۰.۰</td>
<td>۵۵۰.۰</td>
<td>۵۵۰.۰</td>
<td>۵۵۰.۰</td>
</tr>
<tr>
<td>%Gr</td>
<td>۰.۹۳</td>
<td>۰.۹۳</td>
<td>۰.۹۳</td>
<td>۰.۹۳</td>
<td>۰.۹۳</td>
<td>۰.۹۳</td>
</tr>
<tr>
<td>%Sp</td>
<td>۱.۳۵</td>
<td>۱.۳۵</td>
<td>۱.۳۵</td>
<td>۱.۳۵</td>
<td>۱.۳۵</td>
<td>۱.۳۵</td>
</tr>
</tbody>
</table>

مجرید، برای این نمونه‌ها و ترکیب‌ها، ترکیب گرنت‌های پیش‌برنده پیش‌برن‌
در مورد گرن‌های جایی منطقه‌بندی علی‌گری نیز تحت عنوان عوامل خارجی به‌صورت زیر بیان کرده‌اند [15]:
الف) جنبش‌های گسلی به ویژه حرکت‌های مستر و تینڈی،
ب) مدل ده‌سیری‌های: این جنبش‌ها می‌توانند سبب تغییر دوره‌ای
ق) فشار بر سامانه‌های گرمایی شود. این تغییرات دوره‌ای احتمالاً
د) می‌تواند با جوشش و اکسی‌سایش دوره‌ای گرمای و نهشت دوره‌ای

اندرادیت ـ گروسولار همرأه باشد.

شکل 7 تغییرات عناصر اصلی در منطقه‌بندی‌های تجزیه شدید گرن‌های.

