بررسی ساختاری و سیستماتیک نانوذرات مناسیلیکات لیتیوم (Li$_2$SiO$_3$) سنتر شده به روش گرمایی

سجاد احمدپور، عبدالعالی عالیان، شاهین خادمی‌نا

دانشکده شیمی، دانشگاه تبریز

چکیده: در این کار پژوهشی نانوذرات مناسیلیکات لیتیوم به روش گرمایی به امکان کار در دماهای پایین و رسیدن به ذرات رزازی بخش مستقل باعث افزایش قرار گرفته با گروه فضایی Cmc21 و با استفاده از XRD، FT-IR و SEM مورد بررسی قرار گرفت. ابعاد سولوی نانوذرات مناسیلیکات لیتیوم با استفاده از ترم افزار Celref (version 3) نوری سیلیکات سنترشده با بهره‌گیری از اسپکتروسکوپی جذب UV-Vis و آنالیز فتوتپریتری بررسی شدند.

واژه‌های کلیدی: مناسیلیکات لیتیوم؛ نانوذرات؛ گرمایی ؛طبیعی‌ساختار؛ پروپژه‌های آثار

مقدمه

مناسیلیکات لیتیوم خاکی چرب در پژوهش‌های هسته‌ای به عنوان مواد رها کننده تریتیم و مواد جاذب دی‌کسید کربنی در اسپرمیک و باستنی در اثرات نوری مورد استفاده قرار می‌گیرند. این مواد غذایی از نظر خوشه‌بندی از دو وسیله بهتر برای واکنش اتمی است. این واکنش باعث افزایش سختی می‌شود. ساختار الکترونی مناسیلیکات لیتیوم با استفاده از قانون اول ترکیب خلیف رستگارشی روش خوشه‌بندی خوشه‌بندی از دو وسیله بهتر برای واکنش اتمی است. این واکنش باعث افزایش سختی می‌شود. ساختار الکترونی مناسیلیکات لیتیوم با استفاده از قانون اول ترکیب خلیف رستگارشی روش خوشه‌بندی خوشه‌بندی از دو وسیله بهتر برای واکنش اتمی است. این واکنش باعث افزایش سختی می‌شود. ساختار الکترونی مناسیلیکات لیتیوم با استفاده از قانون اول ترکیب خلیف رستگارشی روش خوشه‌بندی خوشه‌بندی از دو وسیله بهتر برای واکنش اتمی است. این واکنش باعث افزایش سختی می‌شود. ساختار الکترونی مناسیلیکات لیتیوم با استفاده از قانون اول ترکیب خلیف رستگارشی Rستگارشی (LixSiO3) به عنوان مواد رها کننده تریتیم و مواد جاذب دی‌کسید کربنی در اسپرمیک و باستنی در اثرات نوری مورد استفاده قرار می‌گیرند. این مواد غذایی از نظر خوشه‌بندی از دو وسیله بهتر برای واکنش اتمی است. این واکنش باعث افزایش سختی می‌شود. ساختار الکترونی مناسیلیکات لیتیوم با استفاده از قانون اول ترکیب خلیف Rستگارشی (LixSiO3) به عنوان مواد رها کننده تریتیم و مواد جاذب دی‌کسید کربنی در اسپرمیک و باستنی در اثرات نوری مورد استفاده Cmc21 و با استفاده از XRD، FT-IR و SEM مورد بررسی Cmc21 با استفاده از XRD، FT-IR و SEM مورد بررسی قرار گرفت. ابعاد سولوی Nانوذرات منасیلیکات لیتیوم با استفاده از ترم افزار Celref (version 3) نوری سیلیکات سنترشده با بهره‌گیری از اسپکتروسکوپی جذب UV-Vis و آنالیز فتوتپریتری بررسی شدند.
روش‌های بررسی و آزمون
مقادیر معنی‌داری از نمک‌های نیترات لیتیم، کربنات لیتیم و سولفات لیتیم همراه با اسید سلیسیک با سلیس برای جدول-های (۳-۴) انتخاب شده. نخست اسید سلیسیک با سلیس را در ۳۰ میلی‌لیتر محلول باید به نحوی تغییر حلالی قدره و با استفاده از همین میزان نموده و به سپس مقادیر معنی‌دار از ترکیب حلالی لیتیم بان اضافه می‌شود و ۵ دقیقه دیگر نیز هم و سپس حجم محلول به ۶۰ میلی‌لیتر رسانده می‌شود. تقلیل حلال مخلوط واکنش‌ها را در راکتور فلزی با دو بروش کاملاً محکم قرار داده و به مدت ۲۴ و ۹۶ ساعت در دمای ۱۸۰ درجه سانتی‌گراد مورد ارزیابی قرار می‌گیرد. از ظرفیت و اکتشاف، ضریب حلال را صفحه گرد و با دوشان تا حدی به‌طور کامل محاسبه و در ۱۸۰ درجه سانتی‌گراد و به مدت ۲۰ دقیقه خشک می‌شود.

جدول ۱ نوع و جرم مواد اولیه مورد استفاده، با نسبت مولی ۱۱:۱ در سنتر لیتیم سیلیکات به روش هیدروتامال

<table>
<thead>
<tr>
<th>نوع مواد و لیتیم مسگرف/ساکت</th>
<th>محتوای واکنش (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li۲SiO۳</td>
<td>[۲۴]</td>
</tr>
<tr>
<td>Li۲SiO۴</td>
<td>[۴۴]</td>
</tr>
<tr>
<td>Li۲SiO۵</td>
<td>[۳۲]</td>
</tr>
</tbody>
</table>

جدول ۲ نوع و جرم مواد اولیه مورد استفاده، با نسبت مولی ۳۳:۲۳ در سنتر سیلیکات لیتیم به روش گرممایی

<table>
<thead>
<tr>
<th>نوع مواد و لیتیم مسگرف/ساکت</th>
<th>محتوای واکنش (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li۲SiO۳</td>
<td>[۲۴]</td>
</tr>
<tr>
<td>Li۲SiO۴</td>
<td>[۴۴]</td>
</tr>
<tr>
<td>Li۲SiO۵</td>
<td>[۳۲]</td>
</tr>
</tbody>
</table>

جدول ۳ نوع و جرم موادولویه مورد استفاده، با نسبت مولی ۱۳:۱۴ در سنتر سیلیکات لیتیم به روش گرممایی

<table>
<thead>
<tr>
<th>نوع مواد ولولویه مسگرف/ساکت</th>
<th>محتوای واکنش (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li۲SiO۳</td>
<td>[۲۴]</td>
</tr>
<tr>
<td>Li۲SiO۴</td>
<td>[۴۴]</td>
</tr>
<tr>
<td>Li۲SiO۵</td>
<td>[۳۲]</td>
</tr>
</tbody>
</table>

وب: شکل (۱) نمودار XRD نمونه‌های سنتر شده سیلیکات لیتیم با نسبت مولی ۱۱:۱ از دو لیتر نیترات لیتیم و اسید سلیسیک در شرایط گرمایی در درجه سانتی‌گراد ۱۸۰ در مدت ۷۲ ساعت را نشان می‌دهد. نمودار XRD نماینده انرژی لیتیم است. قله‌های ریز که در زاویه‌های حدود ۱۵، ۱۶ و ۲۹ درجه مشاهده می‌شوند، به فاصله سنتر سیلیکات لیتیم واکنش است که با مقادیر سایر اندازه‌ها به صورت ناخالصی در مسیر واکنش تشکیل شده است. برای محاسبه اینکه در نمودار لیتیم سنتری از واکنش‌های اولیه در زاویه واکنش (۴) انتخاب شده و با از رابطه (۱) ارتفاع درجه مربوط که برابر ۱۰۳ نانومتر می‌شود.

۱ Li۲SiO۳ (S) + H۲O = Li۲SiO۴ (S) + SiO۲ + H۲۰
شکل 1. الگوهای XRD مناسیلیکات لیتیوم با نسبت مولی 1:1 در شرایط دمایی 180°C و مدت زمان 22 ساعت به روش گرمایی. مدت 48 و 96 ساعت را نشان می‌دهد. بررسی این الگوهای XRD نشان دهنده همکتیکی کامل با داده‌های پرداخته به‌طور X نمونه X (الگوهای مناسیلیکات لیتیوم است. شکل‌های (ب) و (ج) الگوهای XRD وابسته به نمونه‌های سنتر شده با نسبت 1:1 از مواد اولیه نیترات لیتیوم و سیلیسیک در شرایط گرمایی است. شکل (ب) الگوهای XRD وابسته به نمونه‌ی سنتر شده با نسبت 2:1 از مواد اولیه نیترات لیتیوم و سیلیسیک در شرایط گرمایی و در دمای 180 °C به مدت 22 ساعت را نشان می‌دهد که فاز پایدار در این شرایط مناسیلیکات لیتیوم است. اندیشه فرآیند سنتر نمونه‌ی سنتر شده با استفاده از رابطه‌ی شریف در زاویه 180° برای 2θ نانومتر است.\[\beta = \frac{k \lambda}{\cos \theta} \]

 Raphaelی 1 رابطه‌ی شریف برای محاسبه اندازه نمونه‌های سنتری.

شکل‌های (ب)- (د) الگوهای XRD وابسته به نمونه‌ی سنتر شده سیلیسیک لیتیوم با نسبت 1:1 از مواد اولیه نیترات لیتیم و اسید سیلیسیک در شرایط گرمایی و در دمای 180 °C به مدت 48 ساعت به روش گرمایی.

شکل 2. الگوهای XRD مناسیلیکات لیتیوم با نسبت مولی 1:2:4 در شرایط دمایی 180°C و طول زمان 48 ساعت به روش گرمایی.

شکل 3. طیف XRD مناسیلیکات لیتیوم با نسبت مولی 1:2:4 در شرایط دمایی 180°C و طول زمان 22 ساعت به روش گرمایی.
شکل ۴ گروه XRD سیلیکات لیتیوم با نسبت موادلی ۱:۲ در شرایط دمایی ۱۸۰°C و طول زمان ۹۶ ساعت به روش گرماپیل

شکل ۵ گروه XRD سیلیکات لیتیوم با نسبت ۱:۳ در شرایط دمایی ۱۸۰°C و طول زمان ۴۸ ساعت به روش گرماپیل.

شکل ۶ گروه XRD سیلیکات لیتیوم با نسبت ۱:۲ در شرایط دمایی ۱۸۰°C و طول زمان ۲۲ ساعت به روش گرماپیل.

شکل ۷ گروه XRD سیلیکات لیتیوم با نسبت ۱:۲ در شرایط دمایی ۱۸۰°C و طول زمان ۹۶ ساعت به روش گرماپیل.

شکل ۸ گروه XRD سیلیکات لیتیوم با نسبت ۱:۲ در شرایط دمایی ۱۸۰°C و طول زمان ۹۶ ساعت به روش گرماپیل.
نمونه‌های سریالیتی لیتیوم‌زدایی FT-IR نشان داد که در طول 84 ساعت به روش گرمایی شکل گرفته شده که را یک در طول 84 ساعت به روش گرمایی شکل گرفته است نشان می‌دهد. این شکل، از ناحیه به هم برخورد که تشکیل شده است که شبیه به یک پایپون بیشتر می‌رسد و قابلیت بین صفحات زیاد و سهولت سطح آنها خیلی بیشتر از ضخامت آنهاست که می‌توان به صفحات پهن و نازک اشاره داشت که دسته‌هایی از صفحات سخت‌های نازک نکنند و ساختارهایی شبیه به گل به‌دبست آمده است. شکل (13) که ذرات ریزتر و ساختارهایی با شکل کمی متفاوت نسبت به نمونه‌های سنتر در طول 84 ساعت سنتر شدند و صحیح و میلهای مانندی این صفحات نسبت به محصولات با زمان 48 ساعت به هم فشارده‌تراند.
شکل ۱۰ طیف FT-IR نمونه سیلیکات لیتیم سنتر شده در طول زمان ۴۸ ساعت به روش گرمایی.

شکل ۱۱ طیف FT-IR نمونه سیلیکات لیتیم سنتر شده در طول زمان ۲۲ ساعت به روش گرمایی.

شکل ۱۲ تصویر میکروسکوب الکترونی رویشی نمونه‌ی Li$_2$SiO$_3$ در طول زمان ۴۸ ساعت الاف با بزرگنمایی ۵۰۰۰ برابر (الف) با بزرگنمایی ۵۰۰۰ برابر ب) با بزرگنمایی ۱۵۰۰۰ برابر.

شکل ۱۳ تصویر میکروسکوب الکترونی رویشی نمونه‌ی Li$_2$SiO$_3$ در طول زمان ۲۲ ساعت الاف با بزرگنمایی ۱۵۰۰۰ برابر (الف) با بزرگنمایی ۲۰۰۰۰ برابر ب) با بزرگنمایی ۱۵۰۰۰ برابر.
شکل ۱۴ تصویر میکروسکوپ الکترونی روبشی نمونه و Li$_2$SiO$_3$ در طول زمان ۹۶ ساعت (الف) با بزرگنمایی ۵۰۰۰ برابر، (ب) با بزرگنمایی ۱۵۰۰۰ برابر.

شکل ۱۵ طیف جستجو سیلیکات لیتیوم با نسبت ۱:۲ از مواد اولیه بیشتر لیتیوم و اسید سیلیسیک در طول زمان ۹۶ ساعت (الف) ۲۲ ساعت، (ب) ۴۸ ساعت.

شکل ۱۶ طیف فلوروسکوپی وابسته به مناسیلیکات سنگریت لیتیوم با نسبت ۱:۲ از نیترات لیتیوم و اسید سیلیسیک در طول زمان ۹۶ ساعت (الف) ۲۲ ساعت، (ب) ۹۶ ساعت.

شکل ۱۷ (۵) الگوی جذب سیلیکات لیتیوم با نسبت Li$_2$Si به زمان‌های ۴۸ ساعت و ۷۲ ساعت را نشان می‌دهد. بیشترین طول موج جذبی برای نمونه سنگریت در ۴۸ ساعت برابر ۲۸۰ نانومتر است که با افزایش زمان و اکتش به ۷۲ ساعت به ۲۷۶ نانومتر جابجا می‌شود. نوار شکاف محاسبه شده از روی طول موج الگوی جذبی برای نمونه سنگریت در ۴۸ ساعت برابر ۴:۴۳ الکترون ولت و برای نمونه سنگریت در ۷۲ ساعت برابر ۲:۴۹ الکترون ولت است. بنابراین با افزایش زمان و اکتش، باند شکاف نمونه‌های سنگریت لیتیوم می‌یابد.
صفحه b این بخش با افزایش زمان واکنش پارامتر a کاهش و پارامتر b نخست و سپس افزایش و پارامتر c نخست افزایش و سپس کاهش می‌یابد که نشان می‌دهد با افزایش زمان واکنش
از 48 به 72 ساعت صفحات مناسب‌سازی لیتیم به یکدیگر نزدیک‌تر و فشرده و سطح سطح ذرات نیز کاهش می‌یابد و لی با افزایش زمان واکنش از 72 به 96 ساعت پارامتر a کاهش یافته و پارامتر b افزایش بیشتر و پارامتر c کاهش بیشتری یافته است که نشان دهنده کاهش مساحت سطح (ac) است و لی فاصله‌ی بین دو صفحه افزایش یافته است.

شکل 17 داده‌های پارامتر a یا به‌عنوان یکه برای سیلیکات لیتیم در نسبت 1.2 نیترات لیتیم و اسید سیلیسیک.

شکل 18 داده‌های پارامتر b یا به‌عنوان یکه برای سیلیکات لیتیم در نسبت 1.2 نیترات لیتیم و اسید سیلیسیک.
به صورت یک ناخالصی وجود دارد و نمی‌تواند به صورت مستقل وجود داشته باشد [15].

قردردیان
در این کار پژوهشی از دانش‌های شیمی و فیزیک دانشگاه تبریز تشریح می‌شود.

مراجع

[10] سمانه یزدانیان، ناصر تجبر، محمد بهزادی، "ساخت نانوپورشه‌های YBa2Cu3O7-δ به روش مکانوشیمیایی و بررسی دمای گفتارکپیبات", مجله بلورشناسی و کانی شناسی ایران، سال نوزدهم، شماره ۲، تابستان ۱۳۸۰. از صفحه ۲۱۹ تا ۲۲۶.