سنگ‌نگاری، زنوشیمی و جایگاه زمین‌ساختی گدازه‌های انسان زندیه-راویز
(شمال غرب رفسنجان)
زنیب رحمانیان*، حمید احمدی پور
گروه زمین‌شناسی دانشگاه شهید باهنر کرمان، ایران
(دریافت مقاله: ۱/۹/۹۱، نسخه نهایی: ۹۱/۷/۳۰)
چکیده: منطقه‌ی مورد بررسی، در ۳۲ کیلومتری شمال غرب رفسنجان (استان کرمان) قرار دارد و بخشی از مجموعه آن‌شفاشانی همبافت هزار (کمربند ارومیه-دختر) بوده و شامل تنوع چین خورده‌ای از گدازه‌ها (بازالت‌ها، پیروک سن آندزیت و آمفیبول آندزیت) و پیروکلاسیک‌های انسان است. بررسی های سنج نگاری نشان می‌دهد که در این سنگ‌ها از درشت بلوهای پلاژیکلاژی با آشفتهای
غير تعادلی از قبیل غربالی، تخلخل یافته‌کن و منطقه‌بندی نویسی شکل‌دارند. هم‌اکنون حال کنونی وجود فرآیندهای نظیری
اختلاس ماده‌ای و تغییرات فشار بخار آب و کاهش فشار، هنگام صعود ماده‌ای بررسی‌های زنوشیمی نشان می‌دهد که گدازه‌های
منطقه در سرتی اهلی-قیلایی قرار داشته و جداساز گسترده‌ای در آن‌ها صورت گرفته است. غنی شدنی از عناصر نادر خاکی سبک
HFS و نیز به هنگام LIL در مقایسه با عناصر سنگین (LREE) و بالا بودن مقدار عناصر نازار گزار (HREE) منفی شاخه
منطقه، از نشانه‌های سنگ‌های وابسته به محيط فرورانش است. ترکیب شیمیایی این سنگ‌ها و مجموعه داشته‌بودن، نشان دهنده آن است که هاگ‌ها ماده‌ای و این ترکیب باز تی‌تری داشته و احتمالاً شاخه‌گذاری دارد.
و در یک محيط فوق انسان‌شناسی فرار کردند. ماگما‌های مورد نظر بخشی از تاریخ پیلور خود را در مخازن بیو‌سی‌سی پشت سر
گناه کننده و پلور بخشی در این درونیکت، دستخوش آب‌ترازی یافته‌اند. نیز شناخت

واژه‌های کلیدی: کمربند ماکماکی ارومیه-دختر؛ اختلاس ماکماکی، اهلی-قیلایی؛ الودگی پوسته‌ای

مقدمه
کمربند ماکماکی ارومیه-دختر یک محور فعال از نظر انسان‌شناسی (در کرانه‌های فومن و انسان) و پلیت‌کسیم (در الیوم و
میوس) بوده است. که به شمار می‌رود. نتایج حاصل از داده‌های زنوشیمی
روی سنگ‌های این کمربند، ماهیت سری‌های ماکماکی اهلی و
آهلی-قیلایی و سری‌های سنگ‌های حاشیه‌ای فعال کرمان
را مشخص ساخته [۱] [۲] کمربند انسان‌شناسی با شده را
نتیجه فرآیندهای نوین‌ناتیون به شکل‌های مخازن
آن را به عنوان یک قوس سنگ‌های حاشیه‌ای فعال کرمان
ای به

شاپ می‌آورد.

*نویسنده مسئول، تلفن: ۸۱۷۱۷۷۲۶۴۸، بیست و سه تاریخ: ۱۳۷۶، نمای: ۵۷/۴۳۵، پست الکترونیکی: a27khosh@yahoo.com
جدول 1 نتایج تجزیه شیمیایی گدازه‌های زندیه-راویز

<table>
<thead>
<tr>
<th>sample</th>
<th>11-A</th>
<th>05-G</th>
<th>07-G</th>
<th>14-H</th>
<th>16-H</th>
<th>13-F</th>
<th>02-C</th>
<th>04-G</th>
<th>05-A</th>
<th>27-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba&lt;br&gt;(ppm)</td>
<td>50.3</td>
<td>60.5</td>
<td>65.0</td>
<td>25.0</td>
<td>60.5</td>
<td>65.0</td>
<td>25.0</td>
<td>60.5</td>
<td>65.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Sr</td>
<td>170.0</td>
<td>370.0</td>
<td>370.0</td>
<td>25.0</td>
<td>370.0</td>
<td>370.0</td>
<td>25.0</td>
<td>370.0</td>
<td>370.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Y</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>25.0</td>
<td>30.0</td>
<td>30.0</td>
<td>25.0</td>
<td>30.0</td>
<td>30.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Zn</td>
<td>79</td>
<td>103</td>
<td>84</td>
<td>59</td>
<td>86</td>
<td>93</td>
<td>57</td>
<td>86</td>
<td>93</td>
<td>57</td>
</tr>
<tr>
<td>Ag</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>5</td>
<td>16</td>
<td>16</td>
<td>5</td>
<td>16</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Co</td>
<td>198</td>
<td>337</td>
<td>155</td>
<td>143</td>
<td>198</td>
<td>337</td>
<td>155</td>
<td>198</td>
<td>337</td>
<td>155</td>
</tr>
<tr>
<td>Cs</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>8</td>
<td>23</td>
<td>23</td>
<td>8</td>
<td>23</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>Cu</td>
<td>216</td>
<td>113</td>
<td>25</td>
<td>43</td>
<td>216</td>
<td>113</td>
<td>25</td>
<td>43</td>
<td>216</td>
<td>113</td>
</tr>
<tr>
<td>Gd</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>25</td>
<td>52</td>
<td>52</td>
<td>25</td>
<td>52</td>
<td>52</td>
<td>25</td>
</tr>
<tr>
<td>Hf</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Mo</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Nb</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Ni</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>9</td>
<td>21</td>
<td>21</td>
<td>9</td>
<td>21</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Rb</td>
<td>122</td>
<td>25</td>
<td>45</td>
<td>12</td>
<td>122</td>
<td>25</td>
<td>45</td>
<td>122</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Sn</td>
<td>0.5</td>
</tr>
<tr>
<td>Ta</td>
<td>0.5</td>
</tr>
<tr>
<td>Th</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Ti</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>0.8</td>
</tr>
<tr>
<td>V</td>
<td>244</td>
<td>244</td>
<td>244</td>
<td>127</td>
<td>244</td>
<td>244</td>
<td>127</td>
<td>244</td>
<td>244</td>
<td>127</td>
</tr>
<tr>
<td>Zr</td>
<td>93.6</td>
<td>93.6</td>
<td>93.6</td>
<td>47</td>
<td>93.6</td>
<td>93.6</td>
<td>47</td>
<td>93.6</td>
<td>93.6</td>
<td>47</td>
</tr>
<tr>
<td>La</td>
<td>47.2</td>
<td>47.2</td>
<td>47.2</td>
<td>23.5</td>
<td>47.2</td>
<td>47.2</td>
<td>23.5</td>
<td>47.2</td>
<td>47.2</td>
<td>23.5</td>
</tr>
<tr>
<td>Ce</td>
<td>55.8</td>
<td>55.8</td>
<td>55.8</td>
<td>28.3</td>
<td>55.8</td>
<td>55.8</td>
<td>28.3</td>
<td>55.8</td>
<td>55.8</td>
<td>28.3</td>
</tr>
<tr>
<td>Pr</td>
<td>7.33</td>
<td>7.33</td>
<td>7.33</td>
<td>3.93</td>
<td>7.33</td>
<td>7.33</td>
<td>3.93</td>
<td>7.33</td>
<td>7.33</td>
<td>3.93</td>
</tr>
<tr>
<td>Nd</td>
<td>49.8</td>
<td>49.8</td>
<td>49.8</td>
<td>26.8</td>
<td>49.8</td>
<td>49.8</td>
<td>26.8</td>
<td>49.8</td>
<td>49.8</td>
<td>26.8</td>
</tr>
<tr>
<td>Eu</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>0.8</td>
<td>1.5</td>
<td>1.5</td>
<td>0.8</td>
<td>1.5</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Gd</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>9</td>
<td>17</td>
<td>17</td>
<td>9</td>
<td>17</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Tb</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.51</td>
<td>0.92</td>
<td>0.92</td>
<td>0.51</td>
<td>0.92</td>
<td>0.92</td>
<td>0.51</td>
</tr>
<tr>
<td>Dy</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>1.3</td>
<td>2.6</td>
<td>2.6</td>
<td>1.3</td>
<td>2.6</td>
<td>2.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Ho</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.39</td>
<td>0.72</td>
<td>0.72</td>
<td>0.39</td>
<td>0.72</td>
<td>0.72</td>
<td>0.39</td>
</tr>
<tr>
<td>Er</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
<td>1.01</td>
<td>1.82</td>
<td>1.82</td>
<td>1.01</td>
<td>1.82</td>
<td>1.82</td>
<td>1.01</td>
</tr>
<tr>
<td>Tb</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Dy</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>1.3</td>
<td>2.5</td>
<td>2.5</td>
<td>1.3</td>
<td>2.5</td>
<td>2.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Ho</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.39</td>
<td>0.72</td>
<td>0.72</td>
<td>0.39</td>
<td>0.72</td>
<td>0.72</td>
<td>0.39</td>
</tr>
<tr>
<td>Er</td>
<td>1.82</td>
<td>1.82</td>
<td>1.82</td>
<td>1.01</td>
<td>1.82</td>
<td>1.82</td>
<td>1.01</td>
<td>1.82</td>
<td>1.82</td>
<td>1.01</td>
</tr>
</tbody>
</table>
بوزن‌های سنگ‌نگاره
بررسی‌های میکروسکوپی نشان داد که سنگ‌های آنتفیالی زندیه‌زارده‌های باز، نیک‌پروگنس و انفیتیس و آمپیفیت‌اندوزان، ترسیم شده‌اند. این اولیه‌اینها پورتری بوده و میدانیده برای توضیح تغییرات باید گل‌بوم‌برای نیز به صورت خودکار دیده می‌شود. در اینجا به شرح مختصات از پیوسته‌های فتوگرافی است که ترسیم دهنده‌ای این سنگ‌های می‌باشد:

1- پلی‌پروگن در بای‌پلاژکا دو مدل شکل‌داده تا نیز شکل‌داده بوده و مالک پی سنتینکشن نشان میدهد. در برخی از بای‌پلاژکاها منطقه‌بندی نیز مشاهده می‌شود. این کلیه‌ها در جریان دگرسانی به کامی‌سیکت و کلیسیت و این‌ها نیز به نسبت شده‌اند. پلی‌پروگن موجود در روانه‌های پلی‌کلیت‌منطقة، درایه‌ای بای‌فیگنیا (بای‌فیگنیا، شکل 3) (الف) نیز از پرهدبان، نور و نیز با به خلاصه مؤنث نسبت میدهد [20]. ولی [5] معتقدند که نایب‌ناریا بالوهای پلی‌پروگن (بین حرف سریع مانگا) به نسبت بالا باعث بی‌پایان بای‌فیگنیا در پلی‌پروگن می‌شود. از این‌ها پیشک و به نسبت بالا بای‌فیگنیا ناپذیر از پلی‌پروگن در داخل بای‌پلاژکا در ناحیه شروع به تب‌پر کنن. بر حسب اینکه نرضیسم‌ها دو سابین یک ماهه با به‌هم‌آمینه در پلی‌پروگن، بالا پدیده شده و می‌شود. این فاکتور مایه‌ای از پلی‌پروگن‌های اولیه می‌شود. در نواحی کلاه‌پی‌پروگن و پلی‌پروگن شکل‌داده شده‌اند. که ارتعاش‌ها دارای قارچ‌های گرده و لاس‌کننده‌ی زندیه‌های ترسیم شده این‌ها به نسبت بالا می‌شود. در این‌جا فاکتور به نسبت بالا شده و بای‌پلاژکا از پلی‌پروگن در این‌جا به نسبت بالا می‌شود (شکل 3، ب).
زوشیمی
با توجه به دگرسانی نسبتاً گسترده‌ی سنگ‌های زوشیمی، منطقه و شکل‌گیری جنگلی گریمه‌های اپیدوت، کلسیت و کلریت در آنها، در این بخش سعی شد تا به گزینه‌بندی بررسی سرشت‌های اولیه و سنگ‌های انترفازی منطقه، بررسی‌های زوشیمی‌ای روی نمونه‌های سالم و کمتر دگرسان شده متمرکز گردد. که در تفسیر داده‌های زوشیمی‌ای، عناصری به کار برده شود که در محیط‌های دگرسان، نسبتاً ویژه تأثیر و غیر فعال باقی مانند.

در نواحی مکرری به شدت به کالی‌های ناپایه نظر کلریت و اپیدوت تبدیل شده‌اند و سپس یک حاشیه‌ی روشن، که نشان دهنده در آب‌وهوای آن‌ها با میکروآبندی است، در اغلب این بلوهار مشاهده می‌شود. در میکروسکوپی بدنی وجود دارد به گونه‌ای که در مکروآبندی به ویژه از Mg، نگهداری و رنگ آن‌ها روش‌ترند و در حاشیه‌های به دلیل غنی بودن از قوه‌های تیره تأسیب مشاهده می‌شود. همچنین بلوهار‌های الیپس و پلازیکلاز، همراه با کالی‌های فرعی و ناپایه در یک زمینه‌بندی خاصی بهبود، شرایط مشاهده می‌شوند.

![شکل 3](image1)
شکل 3 (الف) بلوهار‌های پلازیکلاز با بافت غربالی. (ب) بلوهاری پلازیکلاز با بافت سالم. (الف) تا غربالی 2. (ب) بلوهار کلونیپروکسین با حاشیه‌گردن شده و شکستگی فراوانی (XPL). (OTE) بلوهار سوخته شده امپلیوای (XPL).

![شکل 4](image2)
شکل 4 (الف) بلوهاری ایننژونی شده الیپس (PPL). (ب) بلوهاری ایننژونی شده الیپس (XPL). (الف) بلوهاری از حاشیه‌گردن شده (XPL). (OTE) بلوهاری از حاشیه‌گردن شده (PPL). (الف) بلوهاری از حاشیه‌گردن شده (XPL). (OTE) بلوهاری از حاشیه‌گردن شده (PPL). (OTE) بلوهاری از حاشیه‌گردن شده (XPL). (OTE) بلوهاری از حاشیه‌گردن شده (PPL). (OTE) بلوهاری از حاشیه‌گردن شده (XPL).
گسترشی شیب قلبایی قرار می‌گیرند. مرز بین سری‌های شیب قلبایی و قلبایی بر اساس [11] روی نمودار نشان داده شد. به منظور بررسی سری‌های آدرنین از نمودار ارائه شده [12] (شکل ۴، ألف) استفاده شد. این نمودار بر اساس درصد و نسبت (FeO) و (MgO) رسوم شده است. برای اساس، نمونه‌های مورد بررسی (MgO) از روند جداشیت ماده‌ای آهکی-قلبایی پیروی می‌کنند. قرار گرفتن نمونه‌ها در مرز بین منحنی آهکی-قلبایی و تولوئینی احتمالاً می‌تواند به علت درگیری سطحی از نمونه‌ها باید همچنین بر اساس نمودار [12] (شکل ۴ ب) کد‌های منطقه‌ای در سری‌های آهکی-قلبایی قرار دارند. قرار گیری این نمونه‌ها در گسترشی قلبایی احتمالاً به علت درگیری آن‌ها است.

شکل ۷- نمودار عنبیوتی جریان‌های گزارش‌یافته منطقه‌ی راپید-زندیه، به‌نیلار شده براساس کندربیت [۱۲]. نشان‌های مشابه شکل ۵.

شکل ۸- نمودار عنبیوتی جریان‌های گزارش‌یافته منطقه‌ی راپید-زندیه، به‌نیلار شده براساس کندربیت [۱۲]. نشان‌های مشابه شکل ۵.


خاستگاه احتمالی ماگما

برای تعیین خاستگاه احتمالی ماگماهای منطقه‌های مورد بررسی، ثلاث شد تا با ارائه دنده ذوب بخشي، خاستگاه ماگماهای سازندگان سنگهای منطقه مورد بررسی، تعیین شود. در شکل‌های رسمی شده (شکل ۹، آلف، ب) [۲۹-۳۱،۳۲-۳۳،۳۴]، خطوط محدب نشان دهنده روند تغییر ترکیب گازهایی است که با درجات مختلف ذوب بخشی از لرزولیت اسپینل دار مشتق شده و خطوط منطقه،، بین‌گذر گازهایی است که از ذوب بخشی لرزولیت گازهای ریش گرفته‌اند. همچنین اعداد قرار گرفته ب روی این خطوط، نشان‌دهنده درجات ذوب بخشی هستند. از طرفی گستره‌های گوشته اولیه (PM) [۲۰] گوشته نهایی شده (DMM، [۲۲، ۳۲] و نمایندگی گوشته-
چند که آلانیس پوسته‌ای و دخالت آن را در مقادیر عناصر یا شده شیمی‌شناسی نامیده می‌گردد. بنابراین به نظر می‌رسد که گدازه‌های منطقه‌ای مورد بررسی، از دو هم جوشک گوشت‌های که در تمام با شاره‌های مشق شده از پوسته افکانی فروریخته، از عناصر کمیاب غنی شده است. گرفته‌های باشند که با بیهنجاری منفی Ta و Nb توقف کرده و سنگ‌های مورد نظر را به وجود آورده است. هر باشند. بنابراین یا توجه به اینکه نمونه‌های مورد بررسی، بیشتر WAM که همان‌طور که گوشت‌های غنی شده است پیروی کرده است. شاید نمونه‌های مانگای سان‌دنی سنگ‌های مورد بررسی همان مانگایی نیست که مستقیماً از ذوب‌‌های مورد بررسی، همان مانگایی نیست که مستقیماً از ذوب‌‌های ورودی اسپینل دار به وجود آمده است. یک مانگای خاتمگا، حاصل یک مانگای جداشته است که در طول مسیر ایناس نمونه‌های مورد نظر را به وجود آورده است. هر پیمانکر رونده‌ای دوپز از گوشت‌های اولیه به هدف و قطع مربع روي هر منحنی نيز تيش دهنده در جات مختلف دوب WAM (Western Anatolian Mantle) بختى است. داهه ها فقط مربوط به بازالت‌های منطقه مورد بررسی هستند.

شکل 9 ب- نمودار دو تابی Sm/Yb نسبت به Sm نشان دهنده مانگای های دوب اولیه و مربوط به تابی‌ها و مربع‌هایهای هر منحنی نیز نشان دهنده درجات مختلف دوب‌های هستند. (DMM= depleted MORB mantle) WAM= (Western Anatolian Mantle).
آلویس پوسته‌ای در سنگهای مردر مورد بررسی

در بررسی‌های سنگنگاری انجام شده روی نمونه‌های سنگی
منطقه‌ای مورد بررسی، حضور بوتروپاسیال گرد شده، مقادیر
بایلایی شیمیایی آلیس پوسته‌ای در این سنگهای است.
آلویس پوسته‌ای تأثیر بسیاری در فلکات عناصر فرعی، به
خصوص عناصر نانالزگر دارد. به گونه‌ای که باعث افزایش
Y, Ti, Zr, Nb و کاهش چشمگیر Rb, Ba می‌شود. سنگهای
زئولیتی متفاوت، به بررسی فراوان آلیس در سنگهای
منطقه‌ای ندیمی، ورود پرداخته شود.

Rb/Y-Nb/Rb alf

از این نمونه‌ها در انتزاع‌های غنی شدید، ماکائی به
وسله‌ی شاره‌های موضعی در زون فرونشیالی اوپالتی پوسته‌ای
استفاده کرده. روده‌های عمومی داده‌ها در این نمونه‌ها به توجه
ی شدید در محدوده یای اوپالتی پوسته‌ای به وجود
این رابطه، زیرا در نتیجه این فرایندها، نمونه‌های
این رابطه، در حالی که این شیمی در ساختاری بسیاری
می‌شود. Br رابطه Nbr-۱/۲ Nbr بین

Rb/Y-Nb/Rb alf

ب) مدل سازی فضای و ثبات پیش‌گیری
پرای این مدل سازی، از نسبت 

Rb/Y-Nb/Rb alf

با ۱ است. [۲۵] با توجه به اینکه داده‌های مربوط به نمونه‌های
های محلولی‌های موضعی رایوسریو (۱) دارای روندی
عمودی هستند، به خوبی می‌توان نتیجه گرفت که این
نمونه‌ها غنی شدید به وسیله محلولی های موجود در معیت
فرورانش یا اوپالتی پوسته‌ای وجود دارد.
مقادیر بالای Ba/Th و پایین Nb/Th می‌تواند در نتیجه‌ی ورود محلول‌های زون فوران‌سانی به درون مواد مذاب ایجاد شده باشد. بنابراین با توجه به شکل، جون نمونه‌های مورد بررسی دارای همکنار می‌باشند.

شکل ۲۰-۱۰ نمودار Nb/Rb نسبت به Rb/Y شکل ۲۱-۱۰ نمودار AFC [۲۷] قرار گرفته‌ی نمونه‌های منطقه‌ی مورد بررسی در بخش‌هایی با مقدار بالایی منطقه‌ی آلودگی و هضم پورتعی در مکان‌های مادر آن‌هاست. نمایش‌ها مشابه شکل ۵.

شکل ۲۰-۱۰ نمودار Ba/Th نسبت به Th/Nb شکل ۲۱-۱۰ نمودار AFC [۲۷] قرار گرفته‌ی نمونه‌های منطقه‌ی زندیه- راواز نشان دهنده‌ی آلودگی پورتعی در مکان‌های ساکن‌اند.


