اثرجانشانی سریوم با ویژگیهای ساختاری و مغناطیسی نانوذرات گارنت ایتربیوم آهن
تیپه‌شده به روش سل - زل

محمد نیایی فر. نرگس خلفی، احمد حسین پور

دانشگاه آزاد اسلامی، واحد علوم و تحقیقات خویستان، گروه فیزیک

(دریافت مقاله:۱۳۹۸/۸/۱۱، پذیرش نهایی:۱۳۹۸/۳/۲۵)

چکیده: در این پژوهش، نانوذرات گارنت ایتربیوم آهن با جانشانی سریوم با فرمول $Y_3\text{Fe}_5\text{O}_{12}$، $Y_3\text{Ce}_5\text{Fe}_5\text{O}_{12}$ و $Y_3\text{Fe}_5\text{O}_{12}$ با روش ریزش فلزی ساخته و در دمای معادل نمونه به نانوذرات سپرده شده و در شرایط مختلف دو افزایش نانوذرات و سپس به سیستم آشپزی برای نانوذرات سپرده شده است. بررسی بینیانهای موسیقار نشان داد که افزایش جانشانی سریوم به جای ایتربیوم در گارنت ZrSiO$_4$ موجب تغییرات مغناطیسی و سبب تغییرات شکل و شکل جدیدی هستند و می‌تواند به سبب باعث ناشی شود برای این سیستم. X $	ext{TO}_{3}$ توجه شده است.

واژه‌های کلیدی: گارنت/ایتربیوم/آهن/سی/زل/سریوم/بینیانهای موسیقار

مقدمه

گارنت ایتربیوم آهن (YIG) و استفاده به کامپیوتر نهایی مغناطیسی آهن در جاگاه‌های (d) و (a) مهم‌ترین نقش را در ویژگی‌های مغناطیسی گارنت بر عهده دارد. با این حال جاگاه‌های بهبودی که مختلف در جاگاه دوازدهوجهی (c) نیز می‌تواند درهم كنش‌های تبادل را به‌طور فراوانی تحت تاثیر قرار دهد و بی‌گیاهی مغناطیسی جالبی را عرضه نماید. عملکرد سیستم به عنوان داشتن بالاترین انرژی خارجی در ناحیه ذرات و تکلف کم در میان اکسترا دیگر، نام‌های خوب برای ساخت ابراهای موج مقدمه

گارنت ایتربیوم آهن (YIG) و استفاده به کامپیوتر نهایی مغناطیسی به عنوان دادن شکل شکل مناسب و ایجاد به ویژگی‌های دیالله‌های الکتریکی و مغناطیسی که به ویژه در ساختارهای با کربندهای فراوانی دارد. نیاز به کامپیوتر نهایی پیچیده در شکل‌دهی یا لیستین این گارنت، به ساختار مکانیکی مرکز حجمی (bcc) و گره فضایی (O_{24}^{h}) شکل. سیستم ویژگی‌های الکتریکی، هسته و نواحی مغناطیسی و با استفاده از ویژگی‌های اکسترا آهن شامل هست.

Md.niyaifar@gmail.com

نویسنده مسئول: تلفن: ۰۲۱۶۵۱۱۷۶۷۴، دیم: ۴۴۴۳۴۲۸۸۸، پست الکترونیکی: Md.niyaifar@gmail.com
برای ناوارون، بیکرینی‌های انسانی ایبتکار، خسیره‌های جریان الکتریکی و... است [4]. با پیشرفت روش‌های ساخت نانوذرات در سال‌های اخیر، گزارش‌هایی از ساخت این ماده با روش‌های گوناگون شیمیایی داده شده که از آن جمله می‌توان به روش سل-زل اصل حشدار [6]، همسایه [7] و سل-زل معمولی [8] اشاره کرد. این پژوهش‌ها یکی از نتایج متفاوتی از بیشینه مقدار جانشین سربیوم در ساخت کراتن است. در این پژوهش روست سل-زل به دلیل دمای پایین لازم برای سنتز آلی، انتخاب شد. همگنی انتقال از افرکس سربیوم Y3+، Ce6FeO12 و پژوهش ساخت و گسترش نانوذرات CeO2 با (8 و ۶) برابر و با نمونه های مقایسه‌ی شنید.

روش بررسی

مواد اولیه به کار رفته در تهیه نانوذرات شامل نیترات‌های X(NO3)3.6H2O و سربیوم Fe(NO3)3.9H2O آهن بوده که همیشه آنها از شرکت مدرک آلمن با کیفیت خلوص 99 درصد تهیه شده‌اند. با نظر گرفتن مقدار pH بهره‌ی ۳ = [C/N] (نسبت اسید سیتریک به بیون نیترات) مواد اولیه و اسدسیتریک را به نسبت‌های استرکورمتری مناسب در pH ۱۰۰ آب مقرط حل کردیم و برای دستیابی به ٩ به مدت ٣ ساعت در دمای ١١۵ گرم‌ها داده شد تا اکسید شود و پس از سایه‌دن، در گریده آهک‌سازی ساخت پروتی‌نبی نیترات به سربیوم Y(NO3)3.6H2O. سربیوم Fe(NO3)3.9H2O با کیفیت خلوص ۹۹ درصد تهیه شده از شرکت مدرک آلمن با کیفیت خلوص ۹۹ درصد تهیه شده‌اند.

مقدار متوسط در دمای ۱۱۵ گرم‌ها داده شد تا اکسید شود و پس از سایه‌دن در گریده آهک‌سازی ساخت پروتی‌نبی نیترات به سربیوم Y(NO3)3.6H2O سربیوم Fe(NO3)3.9H2O با کیفیت خلوص ۹۹ درصد تهیه شده‌اند. در این رابطه Z تعداد فرمول در هر پاکتی به وسیله a وزن فرمولی Wm عدد آوگادرو با (x) نسبت به ابتراکس (140،124 gr) و در این رابطه Z تعداد فرمول در هر پاکتی به وسیله a وزن فرمولی Wm عدد آوگادرو با (x) نسبت به ابتراکس (140،124 gr) و در این رابطه Z تعداد فرمول در هر پاکتی به وسیله a وزن فرمولی Wm عدد آوگادرو با (x) نسبت به ابتراکس (140،124 gr) و در این رابطه Z تعداد فرمول در هر پاکتی به وسیله a وزن فرمولی Wm عدد آوگادرو با (x) نسبت به ابتراکس (140،124 gr) و
نمونه بینایی تصادف (شکل ۲) نشان‌دهنده نانوذرات با شکل گریزی همگن و پیچچسبیده با اندازه‌ی ۷۰–۵۰ نانومتر است. این بهم چسبیدگی زیاد، ناشی از اثری سطحی بالا در نانوذرات است [۱۰۱].

۳۴۴ تغییرات میانگین اندازه‌ی بلوک‌ها با رابطه‌ی شرر در گستره ۳۰ تا ۳۴ نانومتر تعیین شد. از آنجا که دما اصلی ترین فاکتور برای افزایش اندازه‌ی بلوک‌های سیال در دمای پخت یکسان (۲۰۰°C) تغییرات زیادی در اندازه‌ی بلوک‌ها

شعر ۱ اگه‌های پراش پرتوهای ایکس نانوذرات Y۳۳Ce۳Fe۲O۱۲ با همان قوانین

شعر ۲ تغییرات ثابت شبکه بر حسب مقدار جانشینی سربیوم.
شکل ۲ تصور میکروسکوپ الکترونی روند تاندرت Y۳۳Ce۳Fe۳O۱۲ برای x = ۱ (الف) x = ۳ (ب) x = ۵ (پ) x = ۷ (ت).

شکل ۳ بینابهای تبدیل فوریه فروسرخ نانوذرات را نشان می‌دهد. گازانتکه درگره فضایی IR اند و بیناب آنها IR ۱۷۱ می‌دهند. این اسناد آزمایش گره‌های Fe-O فاصله‌های طول و زاویه‌های پیوندهای Fe-O-N تشکیل نشانه‌هایی این آزمایش‌ها برای خود مشخص جهتبندی پهنه‌های آزمایش گره‌های Fe-O-N ادامه می‌دهد. یک لظ از منحنی‌های نمونه‌برداری وابسته است.

شکل‌های ۵ و ۶ بینابهای مصنوعی های بندهای اشباع تشکیل می‌دهند و x ۳ نانوذرات بر حسب x ۶ تشکیل می‌دهند. با توجه به شکل، منحنی‌های اشباع تا x = ۳ آفراشیون و سپس کاهش می‌یابد. این آفراشیون به نظر می‌رسد نسبت داده شد. YIG منحنی‌های آهنه در زیرشکل‌های a و d به‌گونه‌ای بادفرم و مغناطیسی نظم میدهند. نوارهای گستاور مغناطیسی کل در یکی فرمولی گازانتکه این‌تریوم آهنه برای: Y۳۳Ce۳Fe۳O۱۲
در جایگاه Ce در موارد با گشتاور برابر بیشتری از فاکتور های آهن قرار می‌گیرد. بنابراین بر اساس رابطه زیر انتظار داریم مغناطیش کل ساختار با افزایش مقادیر جانشینی افزایش یابد:

\[M = |M_d - M_e| = |xM_e + 3M_{Fe}^{3+} - 2M_{Fe}^{3+}| \]

\[= 5\mu_B xM_e (M_e \neq 0) \]

(3)

\[M = |M_d - M_e| = \frac{3M_{Fe}^{3+} - 2M_{Fe}^{3+}}{|M_e|} \]

\[= 5\mu_B (M_e = 0) \]

(2)

\[\mu_B = 1.14 \mu_B \]

\[\text{اجابه:} \text{ } Y_{3-x}Ce_{x}Fe_{3}O_{12} \]

\[\text{بدن بندی این فرآیند ناحیه} \text{ } Y_{3-x}Ce_{x}Fe_{3}O_{12} \]

\[\text{سایر دیگر گیاهی می‌شود. از سوی دیگر گیاه مغناطیسی} \]

\[\text{شکل 4: بینابندی ناحیه} \text{ } Y_{3-x}Ce_{x}Fe_{3}O_{12} \]

\[\text{بدن بندی این فرآیند ناحیه} \text{ } Y_{3-x}Ce_{x}Fe_{3}O_{12} \]

\[\text{سایر دیگر گیاهی می‌شود. از سوی دیگر گیاه مغناطیسی} \]

\[\text{شکل 5: منحنی‌های پسماند مغناطیسی نانوذرات} \text{ } Y_{3-x}Ce_{x}Fe_{3}O_{12} \]

\[\text{با} \text{ } x \text{ } \text{گوناگون.} \]
افرازی جانشانی سرمون جایگزین یازهورمی (IS) (زیرشیکه‌های Ce-YIG) برابری به افزایش جهت‌های Fe3+ پراهمه از افزایش جهتی الکترونی s پوسته RM می‌باشد. این رفتار به افزایش چهارتغیبی CSS و نیز a1 و d1 دایر علامت‌های دارا و d1 از بیان افزایش جاتوهای (QS) و نیز a1 و d1 جهت‌های نیمگامی که بار الکترونی فرآینده باشد به سمت و بهینگی که بار الکترونی تخت هستند که بار الکترونی تخت و فشرده باشد از نظریه کلاسیک YIG نسبت به d و a جایگاه دواردویی باعث آشفتگی در زیرشیکه‌های Ce-YIG می‌شود. بدین ترتیب نمونه‌های جانشانی سرمو در دو جفت زیرشیکه‌های چهار و هشت‌وجهی ناشتافتند. همچنین این اشتاق نشتمانه به دو دایر جادوگری از این نتایج هم‌چنین اولویت‌های دیگر جایگاه‌های چهار و هشت و به‌طور عمده سیستماتیک به‌یون Ce3+ را تأثیر گذاری می‌کرد. با توجه به از این نتایج، نشتمانه a1 و d1 نا آشفته و نیز زیرشیکه‌های Ce-YIG و نیز شیکه‌های {
} 4- Isomer Shift
5- Shielding Effect
6- Lataifeh

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>20</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
</tr>
</tbody>
</table>

شکل 4: تغییرات مغناطیسی اشکالات نانودایره با افزایش مقادیر سرمون. از سوی دیگر، نتایج پیشرفت‌های نشته در حاشیه Ce-YIG به‌صورت دو جفت زیرشیکه‌های چهار و هشت‌وجهی ناشتافتند. همچنین این اشتاق نشتمانه به دو دایر جادوگری از این نتایج هم‌چنین اولویت‌های دیگر جایگاه‌های چهار و هشت و به‌طور عمده سیستماتیک به‌یون Ce3+ را تأثیر گذاری می‌کرد. با توجه به از این نتایج، نشتمانه a1 و d1 نا آشفته و نیز زیرشیکه‌های Ce-YIG و نیز شیکه‌های

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>20</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
</tr>
</tbody>
</table>

شکل 4: تغییرات مغناطیسی اشکالات نانودایره با افزایش مقادیر سرمون. از سوی دیگر، نتایج پیشرفت‌های نشته در حاشیه Ce-YIG به‌صورت دو جفت زیرشیکه‌های چهار و هشت‌وجهی ناشتافتند. همچنین این اشتاق نشتمانه به دو دایر جادوگری از این نتایج هم‌چنین اولویت‌های دیگر جایگاه‌های چهار و هشت و به‌طور عمده سیستماتیک به‌یون Ce3+ را تأثیر گذاری می‌کرد. با توجه به از این نتایج، نشتمانه a1 و d1 نا آشفته و نیز زیرشیکه‌های Ce-YIG و نیز شیکه‌های

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>20</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
</tr>
</tbody>
</table>

شکل 4: تغییرات مغناطیسی اشکالات نانودایره با افزایش مقادیر سرمون. از سوی دیگر، نتایج پیشرفت‌های نشته در حاشیه Ce-YIG به‌صورت دو جفت زیرشیکه‌های چهار و هشت‌وجهی ناشتافتند. همچنین این اشتاق نشتمانه به دو دایر جادوگری از این نتایج هم‌چنین اولویت‌های دیگر جایگاه‌های چهار و هشت و به‌طور عمده سیستماتیک به‌یون Ce3+ را تأثیر گذاری می‌کرد. با توجه به از این نتایج، نشتمانه a1 و d1 نا آشفته و نیز زیرشیکه‌های Ce-YIG و نیز شیکه‌های

<table>
<thead>
<tr>
<th>x</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>20</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
</tr>
</tbody>
</table>
کرده:

\[M = |xM_2 + M_1 + M_2| \] (6)

بنابراین با افزایش Ce\(^{3+}\) آشفته در نظر گرفته شدند. هر جفت زیرشیشه‌های (a) و (d) و (b) و (d) دارای گشتاورهای مغناطیسی با نظم پادکست مغناطیسی هستند. در این حالت گشتاور موتر مغناطیسی ایجاد شده با زیرشیشه‌های آشفته و ناشی از تریب با رابطه (5)

\[M_1 = |M_{d_1} - M_{a_1}| \] (4)

\[M_2 = |M_{d_2} - M_{a_2}| \] (5)

در نتیجه می‌توان بردار مغناطیس کل را با رابطه (6) بیان

![igraph](chart.png)

شکل:

جدول 1: نتایج تحلیل بینایهای موپیژن.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>IS(mm.s)</th>
<th>QS(mm.s)</th>
<th>Heff(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YIG</td>
<td>a</td>
<td>0.16</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.11</td>
<td>0.09</td>
<td>0.18</td>
</tr>
<tr>
<td>Y(2)Ce({0.1})Fe({5})O({12})</td>
<td>a1</td>
<td>0.191</td>
<td>0.061</td>
<td>0.371</td>
</tr>
<tr>
<td></td>
<td>d1</td>
<td>0.400</td>
<td>0.115</td>
<td>0.428</td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>0.093</td>
<td>0.183</td>
<td>0.358</td>
</tr>
<tr>
<td></td>
<td>d2</td>
<td>0.411</td>
<td>0.237</td>
<td>0.484</td>
</tr>
<tr>
<td>Y(2)Ce({0.4})Fe({5})O({12})</td>
<td>a1</td>
<td>0.184</td>
<td>0.038</td>
<td>0.288</td>
</tr>
<tr>
<td></td>
<td>d1</td>
<td>0.402</td>
<td>0.119</td>
<td>0.479</td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>0.085</td>
<td>0.114</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>d2</td>
<td>0.351</td>
<td>0.105</td>
<td>0.427</td>
</tr>
</tbody>
</table>

