اثر جانشانی سریوم بر ویژگی‌های ساختاری و مغناطیسی نانوذرات گارنت ایتریوم آهن

تهیه‌شه به روش سل-زل

الهام نیایی‌فر. ترکس خلیفه. احمد حسن‌پور

دانشگاه آزاد اسلامی، واحد علوم و تحقیقات خوزستان، گروه فیزیک

چکیده: در این پژوهش، نانوذرات گارنت ایتریوم آهن با جانشانی سریوم با فرمول Y3(Fe3 O12) و (Fe2+Ce3+ O12) رشد سل-زل نانوذرات با پیش‌سنج سیگنال بی‌پرو ایکس (XRD) میکروسکوپ الکترونی روبشی (SEM) و بین‌بندجی تبدیل فرآیند فروسرخ (FT-IR) بررسی گردید. تحلیل کوهای XRD نشان می‌دهد که بالاترین مقدار جانشانی سریوم در ساختار گارنت ایتریوم آهن را از 0.5x گرفته است. مغناطیس‌شاخه اشباع نمونه در دمای اندازه‌گیری شده با افزایش جانشانی مغناطیس‌شاخه اشباعی تا x = 0.3 تغییر می‌یابد.

واژه‌های کلیدی: گارنت/ ایتریوم/ آهن/ سل-زل/ سریوم/ بین‌بندجی

مقدمه

گارنت ایتریوم آهن (YIG) وابسته به گرون اکسیدهای مغناطیسی به علت داشتن مغناطش اشباع نسبتاً بالا در چندین مناسب و اتالله‌های دی‌کریستالی و مغناطیسی کم و یازده در چندین مناسب با کاربردهای فراوانی دارد. [1] توزیع کاتیون‌های نیکل به‌صورتی که در شبکه‌های سل-زل این گارنت، به ساختار پیچیده دو ساختاری برای گارنت‌های با کاربردهای دی‌کریستالی و فراوانی دارد. [2] این کاتیون‌های ساختار مغناطیسی مکانیک جسمی و گونه‌های (bcc) و گروه قضایی (O h 8) با همبستگی هفت و صدودوچه یا آتاف کم در میان عناصر دیگر، نام‌زد خود برای ساخت ایزئرها و هست

مده: Md.niyaifar@gmail.com

نویسندگان مسئول: تلفن: 42542481 2454122 46 (0411) 4454122. پست الکترونیکی:
بری ناواروین، بیکریندیهای انشایی ایتیکی، حسگرهای جریان الکتریکی و... است [15]. با پیشرفت روش‌های ساخت نانوذرات در سال‌های اخیر، گزارش‌هایی از ساخت این ماده با روش‌های گوناگون شیمیایی داده گرفته که از این جمله می‌توان به روش س–زل اصلاح شده [16] و هم‌سوزی [17] و س–زلمعمولی [18] اشاره کرد. این پژوهش‌ها باعث نتایج متفاوتی از پیشینه مقدار جوانان سربیوم در ساختار گرانتی است. در این پژوهش روش س–زل به دلیل دمای پایین لازم برای سنتز، ایجادگی کمتر در محصول نهایی و توزیع مناسب در اندازه خشک نشان داده است. این نتایج به عنوان پژوهش از افزایش سربیوم در Y2O3، CeO2 و گزینه‌های ساختاری و شناخت‌گری نانوذرات Fe2O3 (x) و با (x = 0.6) بررسی و با نمونه‌کیهای مقایسه‌ی شد.

روش البرزی

مواد اولیه به کار رفته در تهیه نانوذرات، شامل نیترات‌های Y(NO3)3.6H2O و سربیوم Fe(NO3)3.9H2O آهن (Mn) بوده که همیشه آنها از شرکت مرک آلمان 2 جسم خلیص 99 درصد تهیه شدند. با نظر گرفتن مقدار بهره‌یی ی = 0.3 (نسبت اسید ستریک به یون نیترات) مواد اولیه و اسید ستریک را با نسبت‌های استوکومتری ماسبس در pH 100 آب مغطر حل کردیم و برای دستیابی به قدرت یکی از روش‌های مقادیر جوانان سربیوم از روش س–زل نمونه‌که با مقدار C/N = 3 (نسبت اسید ستریک به یون نیترات) و بدون استفاده از مشابه جهت ایجاد محیط آبی 90 ml محیط آمونیاک خاکسازی شد. سل آب‌های داده در دمای 90و به مدت 3 ساعت به سطح زل علیحده تبدیل شد. زل به مدت آب‌های به مدت 48 ساعت در دمای 115وگه داده شد تا خشک شود و پس از ساخت روی دو، در کروه به آهگتی ساعت در دمای 20وگه داده شد. ساختار بلوی و فاز تشکیل نانوذرات هیدراده به سطح آمده با پراین پروپتی با انداده‌ی ذرات با اکسید (XRD–SIEFRET ID3003 و Perkin) FT–IR میکروسکوپ الکترونی (SEM) و (Philp’s XL30) مدل (Elmer BX II) بررسی قرار گرفت. متحید اضداد مغناطیسی نمونه‌های تکرار

\[
\rho = \frac{ZW_m}{N^2a^3}
\]

(1)

محاسبه شد که در این رابطه Z تعداد فرول در هر باطنی ایتیکی واحد گرانت Wm وزن فرولی مانند آووگادرو و Na عدد آووگادرو و a ثابت شکلی گرانت است. محاسبات افزایش گنگی از بهبود (x) به بهبود (y) به (x = 4.5 گرمی) گر در سربیوم (140 گرمی) راشنی مکه مده
نمی‌بینیم، تصنیف (شکل ۲) نشان‌دهنده نانوذرات با شکل قروری، همگن و بهم‌چسبیده با اندازه‌ای ۳۰-۵۰ نانومتر است.
این بهم چسبیدگی زیادی ناشی از انرژی سطحی بالا در نانوذرات است [۱۰].

tگیبرات میانگین اندازه بلوک‌ها با رابطه‌ی شرر در
گستره ۲۰ تا ۷۰ نانومتر تعیین شد. از آنجا که دما اصلی ترین
فاکتور برای افزایش اندازه بلوک‌های هسته‌ای در دمای یکت
پکس (۲۰۰۰) تغییرات زیادی در اندازه بلوک‌ها

شکل ۱: الگوهای پرتوهای ایکس نانوذرات Y۳۵Ce۲Fe2O۱۲.

شکل ۲: تغییرات ناحیه شیبک بر حسب مقدار جذب‌شانی سربیوم.
شکل 3 تصویر میکروسکوپ الکترونی ریشه نانوذرات را نشان می‌دهد. گوارنت‌ها در گروه‌های فضایی از IR LA3d و بناب آن‌ها 14 آید 17 می‌توهند سه‌گانه را نشان دهد که تنها برخی از آن‌ها را در ناحیه مورد بررسی (400-600 cm\(^{-1}\)) می‌شود. 31 دید [11]. یک‌گانه در شکل دیده می‌توانید پیوند در هر موج Fe-O-H وجود پیوند Fe-O-H نیز کاهش می‌یابد.

شکل 4 بین‌های نبات دایره‌‌ی فروسرخ ناتونزات را نشان می‌دهد. گوارنت‌ها در گروه‌های فضایی از IR LA3d و بناب آن‌ها 14 آید 17 می‌توهند سه‌گانه را نشان دهد که تنها برخی از آن‌ها را در ناحیه مورد بررسی (400-600 cm\(^{-1}\)) می‌شود.

شکل 5 و 6 مشاهده شده‌ای هم مشابه ناتونزات بر حسب x را نشان می‌دهند. این تغییرات ناتونزات اشباعی ناتونزات بر حسب x را نشان می‌دهند. این تغییرات ناتونزات اشباعی N = 8 تغییرات گروه‌های Fe-O-H نیز کاهش می‌یابد، C-H نیز کاهش می‌یابد. 2345 cm\(^{-1}\) و 1977 cm\(^{-1}\) C-H نیز کاهش می‌یابد.

شکل 6 مشاهده شده‌ای هم مشابه ناتونزات بر حسب x را نشان می‌دهند. این تغییرات ناتونزات اشباعی N = 8 تغییرات گروه‌های Fe-O-H نیز کاهش می‌یابد، C-H نیز کاهش می‌یابد. 2345 cm\(^{-1}\) و 1977 cm\(^{-1}\) C-H نیز کاهش می‌یابد.
در گیاهان Ce مولیع به همراه پیامدهای آهن قرار می‌گیرد. بنابراین بر پایهٔ رابطهٔ زیر، انظار دارای مغناطیس کل ساختار با افزایش مقادیر چاششی افزایش یافته:

\[M = |xM_c + M_d - M_a| = |xM_c + 3M_{Fe}^{3+} - 2M_{Fe}^{3+}| (3) \]

\[= 5\mu_B + xM_c (M_c \neq 0) \]

\[M = |M_d - M_a| - M_c = 3M_{Fe}^{3+} - 2M_{Fe}^{3+} \]

\[= 5\mu_B (M_c = 0) \]

است. پوست هارمونیک Ce با گشتاور مغناطیسی است. جایگزینی پیامدهای دیگر مغناطیسی در جایگاه دوار در جهت می‌شود. از سوی دیگر گشتاور مغناطیسی

\[Y_{3.5}Ce_{5}Fe_{5}O_{12} \]

\[\text{شکل 4: تبدیل فوریه فروسرخ نانوذرات} \]

\[\text{شکل 5: منحنی‌های پسماند مغناطیسی نانوذرات با} \]

\[Y_{3.5}Ce_{5}Fe_{5}O_{12} \]

با هر گونه‌ای.
بنا بر فرضیه از عکس نمودار:

1- Least squares fitting
2- Sextet Zeeman
3- Quadrupole Splittings

4- Isomer Shift
5- Shielding Effect
6- Lataifeh

شکل ۴

این نمودار به‌عنوان یک سایه‌نگاری برای Ce-YIG نشان می‌دهد که ۷ نمونه به‌دست آمده از پنجه‌های مولکولار در ۱ ام از افزایش‌های جابجایی سربوم با آزمایش مقادیر سربوم.

اخبار مرتبط

1. ** Least squares fitting**
2. ** Sextet Zeeman**
3. ** Quadrupole Splittings**

منابع:

1. همکلاهی، Ce-YIG
2. همکلاهی، Ce-YIG
3. همکلاهی، Ce-YIG

آمار:

1. دانشجویی
2. دانشجویی
3. دانشجویی
\[M = |xM_c| + |M_1 + M_2| \]

بنابراین با افزایش Ce\(^{3+}\) آشفته زیرشیکه‌های \(d_2\) و \(a_2\) افزایش و زاویه‌ی بین بردارهای \(d_2\) و \(M_2\) (در جهت کاهش مغناطیس کل) تغییر می‌کند. به علاوه کاهش بیشتر مقادیر مغناطیس در نمونه ی \(x = 0.1 \) نسبت به نمونه‌های دیگر را می‌توان به وجود فاز نامغناطیسی CeO\(_2\) نسبت داد.

\[M_1 = |M_{d_1} - M_{a_1}| \]
\[M_2 = |M_{d_2} - M_{a_2}| \]

در نتیجه می‌توان بردار مغناطیس کل را با رابطه (6) بیان نمود.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>IS(mm/s)</th>
<th>QS(mm/s)</th>
<th>Heff(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YIG</td>
<td>a</td>
<td>0.26</td>
<td>0.18</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.15</td>
<td>0</td>
<td>320</td>
</tr>
<tr>
<td>(Y_{2.6}Ce_{0.4}Fe_5O_{12})</td>
<td>a1</td>
<td>0.191</td>
<td>0.115</td>
<td>3764</td>
</tr>
<tr>
<td></td>
<td>d1</td>
<td>0.190</td>
<td>0.115</td>
<td>3762</td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>0.193</td>
<td>0.183</td>
<td>3582</td>
</tr>
<tr>
<td></td>
<td>d2</td>
<td>0.191</td>
<td>0.277</td>
<td>4874</td>
</tr>
<tr>
<td>(Y_{2.6}Ce_{0.4}Fe_5O_{12})</td>
<td>a1</td>
<td>0.174</td>
<td>0.128</td>
<td>3854</td>
</tr>
<tr>
<td></td>
<td>d1</td>
<td>0.171</td>
<td>0.119</td>
<td>3852</td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>0.165</td>
<td>0.225</td>
<td>3675</td>
</tr>
<tr>
<td></td>
<td>d2</td>
<td>0.151</td>
<td>0.105</td>
<td>4894</td>
</tr>
</tbody>
</table>

شکل 7: نتایج تحلیل نمودارهای موسیار.
برداشت
نانوناناد کارتن ایتربیوم آهن جاشاتانی‌شده با سرمو به روش سل–زل نهی شد و ویژگی‌های ساختار و مغناطیسی آن‌ها مورد بررسی قرار گرفتند. بررسی ویژگی مغناطیسی نمونه‌ها نشان داد مغناطیس اشباع نمونه در برابر تا x = 0.1 افزایش و سپس کاهش می‌یابد. با بررسی بیناباهای مواد مغناطیسی منشأ تشکیل شد که زبرشی‌های d و a و d1 جانشینی به دو جفت زبرشی‌های a2 و d2 آشفته تبدیل می‌شوند و بین دنبال ترپی مشترک مغناطیس باری 0.45 تا x = 0.3 برای بردگی بین a2 و a1 توجه شد.

قدرتان از مسئولین آزمایشگاه نانومواد مغناطیسی سیاستگزایی می‌شود.

مراجع

[2] یار محمد سلطانی، م. محمد، عویقیان. ج، "ناتئونانات کارتن ایتربیوم آهن (YIG) به روش سل–زل و بردگی ویژگی‌های مغناطیسی آن", مجله بلوش‌شناسی و کاوش شناسی ایران، شماره 2 (1387) ص 281-282.

