چگونگی شکل‌گیری کانسار منگنز بزینی از نظر بررسی‌های میکروسکوپی و داده‌های ریز‌کاوش الکترونی

حمزه ثابت ورتامخواستی، حسن میرزازاد. سیده فریبا سجادی آقازامش

1- دانشکده زمین‌شناسی، دانشگاه تهران، تهران
2- گروه زمین‌شناسی، دانشگاه کرمان و بوشهر، کرمان
3- شرکت صنایع کان، کرمان (درباره مقاله ۹۱/۱۲/۳۱، نسخه نهایی)

چکیده: کانسار رگه‌های منگنز بزینی در میزان‌های پرکریستال‌های و در راستای گسل اصلی واقع در منطقه با روند غالب شمال‌خاوری جنوبی‌باینی در بخشی است که بررسی‌های میکروسکوپی و داده‌های ریز‌کاوش الکترونی حضور کانسار منگنز متواری از جمله است. این کانسار از رودکروزیت، بیکسیسین، باکتیرونیت، پیرولوزیت، پسیموکلرین و کلیپتیت تشکیل شده است. کانسارتی شکل‌گیری ناحیه‌های مختلف کانسارت منگنز و کریزین را از سنتیگه‌های آَذِرآواره‌ی یاد شده، شاهد و در طول گسل اصلی و فرعي منطقه و در شرایط مناسب رژیم‌هایی به نشتی کرده‌اند.

واژه‌های کلیدی: کانسار رگه‌های منگنز بزینی از نظر بررسی‌های میکروسکوپی و داده‌های ریز‌کاوش الکترونی

مقدمه

نیکل‌ن (۱۹۹۲) کانسارهای آکسیدی منگنز را براساس قرار دهنده کانسارهای ویژه‌گی و هم‌جواری تعیین کرده است. گرایش اصلی برونز‌ز و گرما به ترتیب که دو گروه به نوبه خود به دو زیر گروه قرارهای دیبیا و دریابی با زیر مجموعه‌های وابسته دریابی، شکل‌گیری و ارتباط داشته و کانسارهای منگنز‌دار شکل‌گیری در منطقه (در سطح پوسته اقیانوسی) قایچی‌ها مقادیر اقتصادی آهن، نیکل و کبالت‌ها است.

hmzsabet_ut@yahoo.com
نوبت‌سوز مسئول، تلفن: ۰۹۱۳۳۲۳۵۵۷۲، پست الکترونیکی: *
کاسار منگنز بزین در ۲۵ کیلومتری جنوب باختری شهرستان اردستان، ۹۰ کیلومتری شمال خاوری اصفهان و در راستای کمربند ماکی‌ای - انتشافی و ساختمانی رومی‌ها - دختر قرار دارد. سطحی منطقه مواد بررسی غالبی انتشافی و بایدن و شامل بازار، تراکم بانک، تراکم انرژی، انرژی، تراکم، دامی، رونینسیستم و لایه‌بندی که رونیتی گسترش را به خود اختصاص داده است. کاسار منگنز بزین در ساختار گسل واگون منطقه با مشخصات N50E ۶۰ درون میزان رونیتی تزریق شده است. رده اصلی و اقتصادی این کاسار که در قبال دو کازرگان استخراج شماره ۱ و ۲ بهترین درصد ساختار میکرو‌کوپ و تجهیز رونیتی کلیه‌ای کهใน EMP (میکروکوپی و تجهیز رونیتی) تعدادی از نمونه‌ها صورت گرفته است.

نمونه‌برداری و روش آنالیز
برای بررسی کازرگان میکروکوپی، مراحل مختلف به شرح زیر مورد بررسی قرار گرفته است:
الف) بررسی کازرگان بپیشین در منطقه بزین، بررسی نقشه ۱/۰۰۰۰۰۰ منطقه، اردستان، بررسی بر اینکه منطقه مناسب است و برابر شود، سیستماتیکی نمونه‌ها را از رنگ منگنز و سگنادو منطقه، ب تهیه ۱۰ موقع نمونه‌برداری کازرگان کازرگان زیر حد دارای آذرآواری (Eoولوی) و اثر دارای آذرآواری آهن - منگنز درد (Eوولوی) یا میکرو‌کوپی و تجهیز رونیتی کلیه‌ای که در نمونه‌برداری گرفته است.

سنگنگاری واحد وده حیرتگانده کاسار بزین
در ناحیه مورد بررسی به ساختار رگها - رگه‌ها و دارسی (شکل ۲ - ۳) دندانی در دو کازرگان استخراجی ساخت بزین در میزان کازرگان ۲ (شکل ۲ - ۳) سخت دندانی - افغانستان میکروکوپی و کازرگان ۱ (شکل ۳ - ۴) میکروکوپی [آویش اکثری (شکل ۳ - ۴) سخت لوله‌بندی منگنز در کازرگان و ساخت فرسایشی لوله‌بندی میزان رونیتی می‌توانید اشاره کرد.
روپولیت میزبان کانژیاپی در این خونه‌داران دارای اثر شرکتی است و
پریبریا عجلای در جنس کوارتز و فلزداران در زمینه شیبدان
کوارتزها خشکی با قطر مناسب 0.25 میلی‌متر در 20-0 درصد
سنگ و فلزداران با قطر مناسب 0.20 میلی‌متر، 25 درصد
از حجم سنگ را تشکیل می‌دهند. بقیه حجم سنگ روبولیتی در زمینه
(شیب) تشکیل داده و در برخی از نقاط اسفنگ، آپینت و پوپینت
(کمتر از 5 درصد حجم سنگ و اندامی آنها کوچکتر از 0.1
میلی‌متر) نیز به‌صورت فری در زمینه شیبدان دیده می‌شود.
کوارتزها خشکی مناسب تا درشت دانه با حاشیه و انکشی در این
یافته اسفنگی و فلزداران های قلبی (ارزو و اندیکاتورهای)
در

شکل 1 موقتی جغرافیای منطقه مورد بررسی در گروهی چپ توجه (داخل نقشه استان اصفهان) با ساره
فلای روستای است. در نقشه
زمین‌شناسی 1/20000 منطقه، روبولیت پریبریتی میزبان کانژار (R.P.D) بخش مهمی را به خود اختصاص می‌دهد (اصلاح شده از سجادی‌الهامی
و همکاران، 1384).
شکل ۲ (الف) ساخت رچه‌های و داربستی منکن در میزان ریپلینی (R.P.D) کارگاه شماره ۱ و ۲ (ب) برش‌های گرمایی که غالبًا در فصل مشترک میزان (ریپلینی) و رگ منکن در کارگاه شماره ۲ دیده می‌شوند.

شکل ۳ (الف) مرز چین خوردی بین زیرواجد توف آهکی حاوی منکن هرمیزد (E_۰۰_۰) (E_۰۰_۰) با گنبید ریپلینی میزان (R.P.D) در مرکز تصویر نور قطبی‌های عضوی (AFs) و فلزی‌های عضوی (Cal,Mn,Fe) (Qz) و فلزی‌های عضوی (Qz) و پلاژیوکلاز (Pl), کنِئت (Mn), آلفا (A), کنِئت (Mn), آلفا (A).، کنِئت (Mn), آلفا (A)، کنِئت (Mn), آلفا (A) (Mn) کلاست‌های توف ریپلینی + کربنات (R.P.D) تور قطبی‌های عضوی.

توجه‌های ۱- ۴، باید با گنبید کلاست برای غیرالی (دات کلیسم، داخل پلاژیوکلاز) برشی (شکل ۲ چین خوردی و پونکلیتیک یکه می‌شود. کنِئت کرد (کانِئی منکن و آهی) تئورت نواری و عدسی‌هایی در منسی کانِئی باشد حضور دارند (شکل ۲- ۴). در مقاطع میکروسکوپی از زیرواجد توف آهکی منکن‌زا و ۱- ۴. در تعویض از اثر پاچی آهن - منکن‌زا E_۰۰_۰ که در باختر و جنوب باختری رگی اصلی منکن‌زا می‌شود، دارای سه زیر (E_۰۰_۰۰۰) توقف‌های شیشه‌ای - بلورین (E_۰۰_۰۰۰۰) و رش ریپلینی (E_۰۰_۰۰) است (شکل ۱). بررسی‌های میکروسکوپی طبیعی از حضور قطعات پلاژیوکلاز، مسکویت، کوارتز، فلزی‌های و دگران فراغی کلیپت در زمین‌های این کوارتز، فلزی‌های و دگران فراغی کلیپت در زمین‌های این
در برخی از مقاطع، تبیین‌شده‌های مکانیکی به سیلیکون - کربنیتول (شکل 5-ب) یا مگنیتی به سیلیکون - کربنیتول و پلیورزیت دیده می‌شود. کربنیتول توده‌ای در برخی مقاطع (شکل 5-ت) در سطح حداکثر 0.01 میلی‌متر است و بیش از 40 درصد حجم کاسنگرا تشكل می‌دهد. رودورزیت، پلیورزیت و پلیورزیت (به کارهای کربنیت) به سیلیکون تجزیه (Mn₃O₄, Fe₂O₃, SiO₂) مگنیتیکی، کلسیت و رودورزیت (به پلیورزیت تجزیه شده است، نه در گروه اصلی کارهای 2 دیده می‌شود. پلیورزیت با قطر حدود 0.01 میلی‌متر 10 درصد، سیلیکون با قطر تقیقد 0.01 میلی‌متر حدود 2 درصد و باطلایی کربنیتی به پلیورزیت تجزیه شده می‌باشد.

(شکل 6-ج) مگنیتیکی به پلیورزیت (Mn₃O₄, Fe₂O₃, SiO₂) در برخی مقاطع به پلیورزیت تبیین شده و پلیورزیت، شکل دروغین مگنیتیکی را به خود گرفته است (شکل 5-چ). مگنیتیکی همراه پلیورزیت (به سرعت همرشد) و هاواسیستین به فرتیول شوید به کارهای تانوهی پلیورزیت، کربنیتول و پلیورزیت تبیین شده است.

شکل 6-ج | همایش دیگر مگنیتیکی به سرعت همرشد و هاواسیستین به فرتیول. (Mn₃O₄, Fe₂O₃, SiO₂) در برخی مقاطع به پلیورزیت تبیین شده و پلیورزیت، شکل دروغین مگنیتیکی را به خود گرفته است (شکل 5-چ). مگنیتیکی همراه پلیورزیت (به سرعت همرشد) و هاواسیستین به فرتیول شوید به کارهای تانوهی پلیورزیت، کربنیتول و پلیورزیت تبیین شده است.
کانه‌های مگنز و باطلی همراه در مقاطع میکروسکوپی‌ی بافت‌های متنوعی نشان می‌دهند که می‌توان یک عبارت عازم: بافت کلوریدی و کلوورین در کانه‌های کریپتومالان – پسیلومان، پیرولوزیت، بیکسیت و پراونیت (شکل 5-الف، ج-تشیعی و توده‌ای در کانه‌های کریپتومالان – پسیلومان، اسبیکیلواریت، پیرولوزیت و گوتیت (شکل 7 و 8-ب)، بافت هم‌ریزی بین هواستونی – پراونیت

شکل 7 کانه‌های پسیلومان – کریپتومالان (Psi-Cryt) (Pr) و گوتیت (Gt) به سمت داخل حفره میکروسکوپی رشد کرده و بافت سوزنی، کلوورین و توده‌ای نشان می‌دهند. کانه باطلی پرکنده حفره، باطله (Gng) کریپتومالن اغلب بازتابی طبیعی

شکل 8 (الف) پراونیت (Br) در مرز بلورها کلیت (Cal) و رخ‌های موجود نفوذ کرده و به پروری از این نقاط ضعف بلوری، بافت میکروسیستولیت به خود گرفته است. نور بازتابی طبیعی در هوا (ب) بلورهای سوزنی - میلهای اسپیکیلواریت (Spc) در زمینه Malakیت (Mal) نور بازتابی طبیعی در هوا.
متاسفانه، نمایش محتوا قابل طبیعی نمی‌شود.
جدول ۲- نتایج تجزیه ریزکاوش الکترونی و استخراج نمونه از کربنات‌های همرنگ کاناسار منگنزی بزنی.

<table>
<thead>
<tr>
<th>تویفیشن (نام کانی‌ها)</th>
<th>Tot.</th>
<th>Mg</th>
<th>Fe(t)</th>
<th>Mn</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد وزنی</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>محلول جامد رودوکورزیت-سیدریت-کلیسیت</td>
<td>100</td>
<td>51</td>
<td>44,28</td>
<td>18,2</td>
<td>30-b</td>
</tr>
<tr>
<td>محلول جامد رودوکورزیت-سیدریت-منگانکلسیت</td>
<td>100</td>
<td>37,5</td>
<td>48,3</td>
<td>62</td>
<td>30-c</td>
</tr>
<tr>
<td>محلول جامد رودوکورزیت-سیدریت-کلیسیت</td>
<td>100</td>
<td>56,5</td>
<td>47,87</td>
<td>34,79</td>
<td>30-d</td>
</tr>
<tr>
<td>محلول جامد سیدریت- کلیسیت-رودوکورزیت-خاوا سیلیس</td>
<td>100</td>
<td>60,8</td>
<td>11,02</td>
<td>28,17</td>
<td>30-g</td>
</tr>
<tr>
<td>محلول جامد سیدریت- کلیسیت-رودوکورزیت-خاوا ناخالص کلسیم و ارسنیک</td>
<td>100</td>
<td>0</td>
<td>98,01</td>
<td>1,39</td>
<td>31-c</td>
</tr>
<tr>
<td>محلول جامد دومولیت- کلیسیت - منگنز</td>
<td>100</td>
<td>37,6</td>
<td>9,68</td>
<td>53,71</td>
<td>12-b</td>
</tr>
<tr>
<td>محلول جامد دومولیت- کلیسیت - دومولیت</td>
<td>100</td>
<td>31,1</td>
<td>44,87</td>
<td>33,88</td>
<td>12-c</td>
</tr>
</tbody>
</table>

شکل ۹- ترکیب ۹ نمونه از کربنات موجود در زیرواحدها، (E۰۰۰۰۰) در نمونه چهار سازنده (میستم) کلسیت-رودوکورزیت-منگنزی-سیدریت. دایره‌های نشان‌دهنده ترکیب کربنات‌های کاناسار بزنی هستند. سیدریت: (MnCO۳)، روتوکورزیت: (FeCO۳)، کلسیت: (MgCO۳) و منگنزی: (CaCO۳).

با توجه به اینکه کربنات‌های هماره کاناسار ارتباط نزدیکی با کاناساری منگنز داردند، بررسی آن‌ها به نظر برسی چگونگی شکل‌گیری کاناسار از اهمیت خاصی برخوردار است. کاری‌های کربنات شناسایی شده شامل فاز‌های مستقل رودوکورزیت، کلسیت، منگانکلسیت، سیدریت و دومولیت با محلول جامدی از کاناسار بوده و میزان ارتباط عضوی (MgO)۰۵۱ Ca(۰۴۴ Mn(۰۵۸۰۹۸)CO۳۰۹۹)۰۹۸-

*است. فرمول عضویشی بسته آمده برای دومولیت (Mg۰۵۱ Ca۰۴۴ Mn۰۵۸۰۹۸ CO۳۰۹۹)۰۹۸-

*فاصله نیز به صورت (۰۲۰۱۰۰) شکل ۹. با توجه به داده‌های جدول ۲. فرمول عضویشی بسته آمده برای کربنات‌های که تشکیل محلول جامد دادمان به صورت زیرند:

*محلول جامد سه کانی رودوکورزیت – کلسیت – دومولیت
جدول ۲ نتایج تجزیه‌شیمیایی ریزکاوش الکترونی تعدادی از کائن‌های سنگریزی پوزنی و کائن‌های پاتولوژی همرامه کانسگ

<table>
<thead>
<tr>
<th>نام‌های اختصاری کالی</th>
<th>17-a</th>
<th>30-c</th>
<th>11-e</th>
<th>31-b</th>
<th>12D-a</th>
<th>24a-a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of short form</td>
<td>Pr.</td>
<td>Fk*</td>
<td>Man</td>
<td>Hsm</td>
<td>Br</td>
<td>Cryt</td>
</tr>
<tr>
<td>Wt. %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CaO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K₂O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SiO₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MnO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BaO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MgO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Na⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Si⁴⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mn²⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ba²⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

شکل ۱۰ ترکیب کربنات‌های کانسگ منگزسیزی در نمونه مریک‌الژری شکل ۱۰. (Cal.) - رودکوژیت (Rds.) - سنگ‌پیچیت (Mag.) - سنگ‌پیچیت (Sid.) - سنگ‌پیچیت (Dol.) - سنگ‌پیچیت (Ank.)

فرایندهای عمیق‌تری نسبت به بقیه کالی‌ها تشکیل شده‌اند بیکسیسیت و هاووماسیت کالی‌های اکسیدان منگزسیزی به روند درون‌زار و بیشتر. مشاهده‌های ساختاری و بافتی در کارگاه ۱ حاکی از جمله کالی‌های درون‌زار محصول شده و تحت تأثیر بحث و بررسی

استاریت‌ها رودکوژیت و بروخی کربنات‌های همرامه کانسگ به بزین‌ان در نمونه‌ها به وجود آمده‌اند.
تشکیل عدسی‌های کوچک مقبلا برای پراوئن‌داره، نیز افزایش گرمایی پیش‌های میان‌فناوندی [49] با داشتن رسوایی‌های حساسیت‌های نسبتاً بالای اکسیژن محیطی در سطح حاوی مانگنز است [17] [11]. بنابراین باید به مشاهده صحرایی بررسی‌های کانال‌هایی که روابط ترمودینامیکی حاکم بر تشکیل پراوئن‌داره، حضور این کانال را در آب فوق‌الاکسی‌نی صورت دهد. خاصیت محیطی سطحی (تاریخ‌های قارای) را برای تشکیل آدآوری عربی هندی تایید می‌کند. با استفاده از بینفوشینگ، غلظت CO2 در پراوئن‌داره و غلظت CO2 ناشان دهنده شار غذایی از Fe(II) منفی، بین غلظت غذایی از Fe(III) و CO2 را [17] [20] ترکیب پراوئن‌داره طبیعی به تعادل با یک شار غذایی از Ab غلظت CO2 کمتر از 4/5 دالات Mn(II) داشته و واکنش برای تشکیل P (CO2) 2 ناشی گردیده است. این P ناشی از آن است که شار غذایی کانال‌ها از Fe(II) می‌باشد. انجایی که برای آب‌های نزدیک به سریا می‌باشد. انتخاب فیبرهای سفید Fe(II) با پراوئن‌داره کانال‌های قارای که حاوی Fe(II) مست می‌باشد، به این نشانه رسید که نشان دهنده کانال‌های کانال‌هایی تشکیل شده در مرحله‌های اول مرحله‌های کانال‌هایی که برای ترکیب تغییر آب و فرآیندهای که از پراوئن‌داره کانال‌هایی تشکیل شده در هوش‌پذیری عربی هندی تایید می‌گردد. از فرآیندهایی که از پراوئن‌داره کانال‌هایی تشکیل شده در هوش‌پذیری عربی هندی تایید می‌گردد. از فرآیندهایی که از پراوئن‌داره کانال‌هایی تشکیل شده در هوش‌پذیری عربی هندی تایید می‌گردد. از فرآیندهایی که از پراوئن‌داره کانال‌هایی تشکیل شده در هوش‌پذیری عربی هندی تایید می‌گردد. از فرآیندهایی که از پراوئن‌داره کانال‌هایی تشکیل شده در هوش‌پذیری عربی هندی T

مرحله سوپرژن

Name of Lake

<table>
<thead>
<tr>
<th>Time</th>
<th>Spessartine</th>
<th>Rhodochrosite</th>
<th>Hausmannite</th>
<th>Braunitte</th>
<th>Bixbyte</th>
<th>Manginite</th>
<th>Carbonates</th>
<th>Peilomelane</th>
<th>Cryptomelane</th>
<th>Pyrophyllite</th>
<th>Hemaitte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

شکل 11: سطح پراوئن‌داره کانال‌هایی موجود در کانال‌های منفی بین زنین اردستان.

از رخداد یک مرحله کانال‌هایی درون‌زایی بوده است. در حالیکه

در کارگاه 2 کانال‌های کانال‌هایی، پراوئن و بیکسیتانیت در مرحله کانال‌هایی را نشان می‌دهند. در شکل 5-7، این پراوئن‌داره کانال‌هایی و کریستال‌های توده‌های نسبتاً بالای منفی محیطی با مرحله دوم کانال‌هایی در کانال کانال‌هایی برخی مرحله‌های اول کارگاه 2 دیده می‌شود. جنبه‌های شکل 8-7 از دیده می‌شود، کانال پراوئن‌داره دوم کانال‌هایی (دارای میکرو استخوان) و دیگر کارگاه‌های مرحله‌های اول تریتیک شده است. تریتیک و ورودگر

(1964) و (1963) معتقدند در صورتی که دیسپستمی، شیمی از 8000 بار مدلی فشار آب پرده، کانال پراوئن‌داره کانال‌هایی که در نظر گرفته و پر درک‌های کانال‌هایی است.

کارگاه استخوانی کانال‌هایی منفی می‌توانند به کارگاه 2 فشار شاره ایسین (حاوی مقادیر کمی CO2) که در کارگاه 2
برداشت

براساس شواهد صحرایی، میکروسکوپی و ریزگردهای الکترونی، کاراکتر استخراجی کاراکتریابی ۱ نسبت به کاراکتر یک دوی شمای یک قسمت کاراگاه ۲ میزان پوزه و دریافت پوزه، بررسی کاراگاه ۲