ویژگی‌های نکتونو ماقمایی توده‌ی نفوذی بغم در جنوب شرقی اردنستان بر مبنای شیمی کانی کلینوبیروکسن و آمفیبول

ناهید شبانیان برگنی*، علیرضا داوودیان دهکدی، فرشنو سهیلیان

1-دانشکده منابع طبیعی و علوم زمین، دانشگاه شهید رودکی
2-گروه زمین‌شناسی دانشگاه ارازاسلامی واحد خوسارگان
(دریافت مقاله: ۹۱/۱۱/۱۵، نسخه نهایی: ۹۱/۱۲/۱۱)

چکیده: نفوذی نکتونو بغم با ترکیب سنگ‌شناختی گابرو در جنوب شرقی شهر اردنستان قرار داشته و در سنگ‌های آنتفیشنی اولوس نفوذ کرده است. منطقه‌ی مورد بررسی در هنگام ایران مرکزی و نوار ماکمایی رومتر دختر قرار می‌گیرد. کانی‌های اصلی تشکیل‌دهنده سنگ‌های گابرو از اقلیت آبی و پلاژیوکلاز، بررسی شیمی‌کیفی کانی‌ها نشان می‌دهد که کلینوبیروکسن‌های این توده‌ی نفوذی دارای ترکیب از پیتود و پیتیتست در گستره‌ی کلینوبیروکسن‌ها فشار متوسط قرار می‌گیرند. ترکیب کلینوبیروکسن‌های این توده‌ی نفوذی مورد بررسی در میدان کلینوبیروکسن‌های کوه‌هایی قرار می‌گیرد و به کانی ماکمایی و بافت‌های بلورهای آمفیبول در این سنگ‌های گابرویی جزه ورودی کلینوبیروکسن‌ها که در گستره‌ی منیژورنی‌کننده قرار می‌گیرند از نظر نکتونوگماکی ترکیب آمفیبول‌های شناسایی می‌شوند. کانی‌های برای این توده‌ی از این میرزی‌سنجی به اساس جفت کانی‌های کلینوبیروکسن و آمفیبول هم‌زیست، دماهای ۷۲۰ تا ۸۲۰ درجه سانتی‌گراد را به دست می‌دهد. پلاژیوکلاز تیتانیک کانی فلیسی این سنگ‌های گابرویی است که از نظر ترکیبی در گستره‌های پیتودیت (هسته‌ه) و لاپراپتیت از آن درآمده‌اند (حاصل سوسونیتی شدن) قرار می‌گیرد.

واژه‌های کلیدی: کلینوبیروکسن، آمفیبول، نکتونوگماکی، اردنستان

مقدمه

برای تعبیر گروه‌های اکسپوزیتیون ماکما [۴،۵] و بارود عمق نفوذ ماکما، بررسی دیمین‌داستانی و دیمین فشارسنجی می‌توان از ترکیب شیمی بلوهدای آمفیبول استفاده کرد.

ترکیب شیمی‌ای کلینوبیروکسن‌های آدرن براتب دهندیده ماهیت سنگ‌های بادیان آنهاست [۱] به طوری که نوع ترکیبی کلینوبیروکسن‌ها غالب با تغییرات در شیمی ماکما وابسته است. فرآیند جدایی ماکمایی و شرایط فیزیکی بلوهداری کریتیکی‌ها نیز ترکیب ماکما ناحیه‌گردان و با بررسی ترکیب کلینوبیروکسن‌ها به شدت در اثر جدایی کلینوبیروکسن‌ها و ساختار‌های کانی‌های لوله اثر نامی‌شود [۲]. هم چنین

* noc@icsb.ac.ir, تلفن: ۰۰۰۰۰۰۰۰۰۰۰۰۰، نمایندگی: ۰۲۳۲۲۲۲۵۸۸۸۸۸ (۳۳۳۲۲۲۸۸۸۸۸)
زویه‌ای نشان دهنده توجه به نمونه‌های متنوع از انجام‌های منطقه‌ای است که با استفاده از روش‌های مختلفی می‌تواند به دست آمده‌باشد. این مسئله محققینی را نشان داد که در طول زمان‌ها و در سطح صورتی و با وجود دیدگاه‌های مختلف، نمونه‌های منطقه‌ای به دست‌آورده‌ای از مواردی که به‌طور کلی با مسئله‌ی شاخص پزشکی مرتبط است. در سطح مادر، باید مراحل اولیه و فرآیندهای بدنی را در سطح منطقه‌ای مورد بررسی قرار دهیم.}

debut of 32 kilometer. In the first stage of the research, the aim of which was to study the effects of different factors on the development of anomalous

Mechanical, chemical and biological factors were studied in the first stage of the research, with the aim of understanding the effects of these factors on the development of anomalous. In the second stage of the research, the aim was to understand the effects of these factors on the development of anomalous during the third stage of the research, the aim was to determine the effects of these factors on the development of anomalous. In the fourth stage of the research, the aim was to determine the effects of these factors on the development of anomalous.
شکل 1 نقشه زمین‌شناسی ساده شده از منطقه مورد بررسی [20]
روش بررسی
در این مقاله به منظور بررسی این توده از دیدگاه سنجش‌سنجی، نمونه‌هایی با میزان شیمی‌ای که از تیهی‌های میکروسکوپی نتیجه‌گیری می‌شود، تست گردید. این تست برای انجام این تست از قطعات سنجش‌سنجی و میکروسکوپی را انجام دادیم. سپس نتایج را با استفاده از یک رایح از کمپیوترهای اکثریت تنظیم‌های شدن شدند. آن‌الیسهای بی‌پدیداری کاتی‌های تیهی از تولیدات و فیزیکی این سنجش‌سنجی به جلوگیری از این تست استفاده شد. در نهایت دستگاه Cameca SX50 در شرایط 20 کیلوولت، جریان 20 نانو آمبر و 10 ثانیه زمان شمارش با انتخاب نقاط 2 میکرون متری نشان می‌گرفتند. آنالیز کاتی‌ها با تهیه نمودار کاتی‌های هورنیکسن، هورنیکسن و کاتی‌های کاتی‌های تیهی‌گیری این تست انجام گرفت.

سنگ‌شناسی سنجش‌سنجی کاتی‌های گرفت
سنگ‌شناسی گرفت‌های تیهی دو طرف داشته هم بدم (شکل 2) ای ناگهانی و مقاله به نام دانش‌آموزان دوم. گرفت به تهیه نمودار نامنه تهیه نمودار. گرفت به تهیه نمودار این سنجش‌سنجی به جلوگیری از این تست نمودار کاتی‌های گرفت 12) انجام گرفت.

کاتی‌های گرفت
کاتی‌های گرفت این کاتی‌ها از شکل دیده‌گیری اصلی سنجش است که انداره دانه‌ها متوسط بوده و از نظر فرم تنها کاتی‌های گرفت است و دارای مکان تکراری (بلیس سینتیک) و آلپیشی است.

پلاژیوکلاز
پلاژیوکلاز این کاتی‌ها از شکل دیده‌گیری اصلی سنجش است که انداره دانه‌ها متوسط بوده و از نظر فرم تنها کاتی‌های گرفت است و دارای مکان تکراری (بلیس سینتیک) و آلپیشی است.

شکل 2 (الف) نمونه اصلی از تیهی به شکل دیده‌گیری اصلی سنجش است که انداره دانه‌ها متوسط بوده و از نظر فرم تنها کاتی‌های گرفت است و دارای مکان تکراری (بلیس سینتیک) و آلپیشی است.

شکل 3: نقاط دیده‌گیری اصلی سنجش است که انداره دانه‌ها متوسط بوده و از نظر فرم تنها کاتی‌های گرفت است و دارای مکان تکراری (بلیس سینتیک) و آلپیشی است.
شیمی کانی‌ها
پیروکسن‌های مورد بررسی فاقد منطقه‌بندی هستند.

نتایج آتالیزهای رژیم‌داری استاتیک و الکترونی از کلینیپیروکسنهای توده‌ای نفوذی مورد بررسی در جدول ۱ ارائه شده‌اند. جدول فاصله‌ها در این جدول میان‌های متغیری ترکیب اضافی انتزابی کلینیپیروکسنهای از این توده می‌باشد و با است. ترکیب کلینیپیروکسنهای پسکان بوده و همچنین آنها در میدان اوئیت (۲۳) قرار می‌گیرند (شکل ۳) در نمودار (J = ۲Na, Q = Ca + Mg + Fe²⁺) Q-J نمونه‌های مورد بررسی در گستردگی پیروکسنهای کلسیم-البیومید بهبود گرفته‌اند.

جدول ۱: جدول آتالیزهای رژیم‌داری کلینیپیروکسنهای توده‌ای نفوذی مورد بررسی بر اساس ۶ اتم آمیکسیون.

<table>
<thead>
<tr>
<th>Label</th>
<th>Cpx-1</th>
<th>Cpx-2</th>
<th>Cpx-3</th>
<th>Cpx-4</th>
<th>Cpx-5</th>
<th>Cpx-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>52/29</td>
<td>52/11</td>
<td>51/47</td>
<td>51/80</td>
<td>51/92</td>
<td>51/57</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0/63</td>
<td>0/61</td>
<td>0/74</td>
<td>0/70</td>
<td>0/69</td>
<td>0/73</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0/04</td>
<td>0/04</td>
<td>0/01</td>
<td>0/02</td>
<td>0/01</td>
<td>0/00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1/84</td>
<td>1/85</td>
<td>2/54</td>
<td>2/36</td>
<td>2/31</td>
<td>2/36</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0/00</td>
<td>0/00</td>
<td>0/08</td>
<td>0/02</td>
<td>0/03</td>
<td>0/04</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
</tr>
<tr>
<td>FeO</td>
<td>8/40</td>
<td>8/43</td>
<td>7/80</td>
<td>8/07</td>
<td>8/08</td>
<td>8/12</td>
</tr>
<tr>
<td>MnO</td>
<td>0/29</td>
<td>0/27</td>
<td>0/22</td>
<td>0/20</td>
<td>0/21</td>
<td>0/20</td>
</tr>
<tr>
<td>MgO</td>
<td>15/96</td>
<td>15/83</td>
<td>15/75</td>
<td>15/69</td>
<td>15/81</td>
<td>15/53</td>
</tr>
<tr>
<td>NiO</td>
<td>0/00</td>
<td>0/02</td>
<td>0/03</td>
<td>0/00</td>
<td>0/01</td>
<td>0/00</td>
</tr>
<tr>
<td>CaO</td>
<td>20/11</td>
<td>20/07</td>
<td>20/48</td>
<td>20/52</td>
<td>20/31</td>
<td>20/48</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0/29</td>
<td>0/28</td>
<td>0/29</td>
<td>0/32</td>
<td>0/30</td>
<td>0/29</td>
</tr>
<tr>
<td>K₂O</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
</tr>
<tr>
<td>F</td>
<td>0/00</td>
<td>0/00</td>
<td>0/02</td>
<td>0/01</td>
<td>0/15</td>
<td>0/00</td>
</tr>
</tbody>
</table>

Si 1/934 1/929 1/909 1/917 1/914 1/914
Ti 0/018 0/017 0/021 0/019 0/019 0/020
P 0/001 0/000 0/000 0/000 0/000 0/000
Al 0/080 0/081 0/111 0/103 0/100 0/112
Cr 0/000 0/000 0/002 0/001 0/001 0/001
Fe³⁺ 0/033 0/066 0/053 0/047 0/089 0/039
Fe²⁺ 0/226 0/195 0/189 0/203 0/160 0/213
Mn 0/009 0/008 0/007 0/006 0/007 0/006
Mg 0/880 0/874 0/871 0/866 0/869 0/859
Ni 0/000 0/000 0/001 0/000 0/000 0/000
Ca 0/797 0/796 0/814 0/814 0/802 0/814
Na 0/021 0/020 0/021 0/023 0/021 0/021
K 0/000 0/000 0/000 0/000 0/000 0/000
F 0/000 0/012 0/002 0/001 0/017 0/000

Al⁴⁺ 0/066 0/071 0/091 0/083 0/086 0/086
Al⁶⁺ 0/014 0/010 0/020 0/020 0/014 0/026

Moles 40/96 41/05 42/09 42/04 41/64 42/15
شکل ۳ موقعیت کلینوپروکسن‌های تری دی‌نموده نموده شده در نمودار تقسیم بندی کلینوپروکسن‌ها از [۲۲].

شکل ۴ کلینوپروکسن‌های مورد بررسی در نمودار (J = ۲Na, Q = Ca + Mg + Fe۳⁺) Q-J در گستره‌ی کلینوپروکسن‌های کلسیم-منزیم- آهن‌دار قرار می‌گیرند [۲۲].

شکل ۵ در نمودار Ti و Na نسبت به Al بیشتر کلینوپروکسن‌ها ماهیت آذینی نشان می‌دهند [۲۲].

می‌باید، البته دارد [۲۵] با توجه به نمودار تغییرات Ti۴⁺، میزان پایین تیتانیوم در کلینوپروکسن‌ها بیانگر وجود کاتیون‌های تیتانیوم‌دار (ایلمنیت‌ها با افت در Ti۴⁺) محتوای Al و Ti کلینوپروکسن‌ها به فعالیت سیلیس مانند که از آن متیلو شده‌اند و به نسبت این اعضا که به ترتیب در انواع ماهیت‌های توله‌ای، بلوری و پرآکالن افزایش توجه باید به آن‌ها توجه شود.
ساختار هشت وچهی می‌شود. بنابراین میزان Fe^{3+} در کلینوبیروکسنس تابعی از گریزندگی اکسیژن و میزان Al در موقعیت چار وچه و هشت وچه است. نمودار بیانگر ایستاده Na + Al^{IV} + 2Ti + Cr نسبت به Fe^{3+} با داشتن قرار نمودن Na + Al^{IV} + 2Ti + Cr در بالای خط 0 0 = 0.27 [28, 29] (شکل 6) نشان می‌دهد که با توجه به فاصله Fe^{3+} با خط 0 0 = 0 گریزندگی محدود تیلور نسبتاً با اندازه Fe^{3+}.

![Graph](image)

شکل 6 با توجه به نمودار تغییرات Ti-Al^{IV}, میزان پایین نتایج در کلینوبیروکسنس بیانگر وجود کلیه‌های تیتانیومی در سنگ است.

شکل 7 پیروکسنس‌های توده‌های مورد بررسی در نمودار توزیع Al و Si در بالای خط اشباع جاهاگی جاروچی قرار می‌گیرند [28].
شکل 8: قرارگیری نمونه‌ها در بالای خط Fe\(^{3+}\) = 0 در نمودار Fe\(^{3+}\) + 2Ti + Cr نسبت به Na + Al\(^{IV}\) و با توجه به فاصله نمونه‌ها با خط Fe\(^{3+}\) = 0 گریزندگی محتوی تبلور نسبتا بالاست [28].

ترکیب Al\(^{IV}\) در کلینوپپروکسنسهای آدرین جانته که برای تحریک ذوب در باران‌ها نشان داده و باعث به فشار است. [30] مقادیر کم Al\(^{IV}\) در اوزانه‌های باران‌ها و دایم‌های دولریتی سازگار با فشار سه یا پایین تبلور است. نسبت Al\(^{IV}\)/Al\(^{IV}\) در این کلینوپپروکسنسهای مورد بررسی بین 0.30 تا 0.25. می‌تواند بوده و در گستره‌های کلینوپپروکسنسهای فشار متوسط تا فشار پایین قرار می‌گیرد (شکل 9). نسبت 0.25 در پایین میزان است بایستی این دسته از پپپروکسنسهای است که بین فشارهای پایین و متوسط (5 Kbar) می‌تواند شده‌اند. در این اساس فشار تبلور برای کلینوپپروکسنسهای مورد بررسی با توجه به قرار گیری در مجارت مرزی باید به می‌باشد.

![شکل 8](image)

شکل 9: نمودار تغییرات Al\(^{IV}\) نسبت به HP = LP = میزان فشار بالا، Al\(^{IV}\) نسبت به MP = میزان فشار متوسط.
شکل 10 نمودار SiO2 و Al2O3 نسبت به SiO2 نسبت به SiO2 یک ماهیت تولیدی و آهکی-فلایی مایع، که این انسان‌ها یا ان می‌تواند می‌شود را نشان دهد [۲۴].

شکل 11 بر اساس نمودار Ca + Na نسبت به Ti کلینوپیروکسنس‌ها مایع، ماهیت تولیدی نشان می‌دهد [۲۳].

شکل ۱۲ بر اساس نمودار Ca (B Ti + Cr) در نمایش مایع Ti نسبت به Ti نمایشگر تشکیل کلینوپیروکسنس‌های مورد بررسی کوه‌هایی است [۲۲].
شکل ۱۳ نمودار دوتنی (Al₂O₃% TiO₂-Al₂O₃% درصد موقعیت‌های جزوه‌ای اشعه‌شیری شده به وسیله آلوسیمیمی) نمونه‌ها در گسترده‌ای باشته بودند. یکی از توصیف‌های کلینوپیروکسین‌های کنترل بررسی نمودار ترنسیمی دیال تپر کلینوپیروکسین‌ها [۳۲].

۶ نقطه از نمونه‌های کلینوپیروکسین در گزارش یافته‌ها از نمونه‌ها در جدول ۲ آماده‌اند. تغییرات شیمیایی آمپیسول ضروری برای تقطیع نوع‌آسا است: SiO₂/Al₂O₃%=۰/۹۹ (۰/۹۹-۰/۹۱)، Na₂O/K₂O=۰/۱۱ (۰/۱۱-۰/۱۰)، MgO/FeO=۰/۱۱ (۰/۱۱-۰/۱۰)، CaO/Na₂O=۰/۱۱ (۰/۱۱-۰/۱۰).

جدول ۲ نتایج آنالیز آزمایش‌گرایی آمپیسول‌های توده‌ای تولید بررسی بر اساس ۲۳ اتم‌کسیزن.

<table>
<thead>
<tr>
<th>label</th>
<th>Amph-1</th>
<th>Amph-2</th>
<th>Amph-3</th>
<th>Amph-4</th>
<th>Amph-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>7/108</td>
<td>7/106</td>
<td>7/041</td>
<td>7/096</td>
<td>7/135</td>
</tr>
<tr>
<td>Ti</td>
<td>0/125</td>
<td>0/114</td>
<td>0/141</td>
<td>0/137</td>
<td>0/113</td>
</tr>
<tr>
<td>P</td>
<td>0/000</td>
<td>0/004</td>
<td>0/004</td>
<td>0/000</td>
<td>0/004</td>
</tr>
<tr>
<td>Al</td>
<td>0/747</td>
<td>0/751</td>
<td>0/825</td>
<td>0/733</td>
<td>0/710</td>
</tr>
<tr>
<td>Cr</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/001</td>
<td>0/002</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0/966</td>
<td>0/976</td>
<td>0/976</td>
<td>1/065</td>
<td>1/081</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0/205</td>
<td>0/189</td>
<td>0/225</td>
<td>0/092</td>
<td>0/100</td>
</tr>
<tr>
<td>Mn</td>
<td>0/035</td>
<td>0/030</td>
<td>0/027</td>
<td>0/025</td>
<td>0/034</td>
</tr>
<tr>
<td>Ni</td>
<td>0/000</td>
<td>0/003</td>
<td>0/001</td>
<td>0/001</td>
<td>0/002</td>
</tr>
<tr>
<td>Ca</td>
<td>1/676</td>
<td>1/668</td>
<td>1/642</td>
<td>1/667</td>
<td>1/642</td>
</tr>
<tr>
<td>Na</td>
<td>0/468</td>
<td>0/466</td>
<td>0/490</td>
<td>0/464</td>
<td>0/460</td>
</tr>
<tr>
<td>K</td>
<td>0/097</td>
<td>0/102</td>
<td>0/104</td>
<td>0/095</td>
<td>0/089</td>
</tr>
<tr>
<td>F</td>
<td>0/620</td>
<td>0/623</td>
<td>0/618</td>
<td>0/722</td>
<td>0/692</td>
</tr>
<tr>
<td>Sum</td>
<td>15/814</td>
<td>15/819</td>
<td>15/829</td>
<td>15/869</td>
<td>15/817</td>
</tr>
<tr>
<td>Al (IV)</td>
<td>0/747</td>
<td>0/751</td>
<td>0/825</td>
<td>0/733</td>
<td>0/710</td>
</tr>
</tbody>
</table>
می‌گیرند (شکل 15). میزان
در این امپیبول‌ها نسبت به
میزان سیس بیش از میزان مورد نظر FeO*
به میزان 15/7/25 تا یک تغییر
نسبت Mg/Mg + Fe²⁺ یافت نمی‌شود که، به طوری که
نتایج کلی
با توجه به نتایج آزمایشات پیش‌تر (شکل 16) [34].

در این حالت
Fe⁺³/Fe⁺² گرفتگی
این امپیبول‌ها نسبت به FeO*
می‌توان گرفتگی
کلیکی (Na + K)ای
میزان 15/7/25
و به طرف دیگر
میزان Si 0.5 < 1/6
کلیکی
در اینجا
با توجه به نتایج
میزان Fe²⁺/Fe⁺² 0.2 برای
نرمال (Ca + Na)B ≥ 1.00
در اینجا
با توجه به اینکه 1.5 < 0.50
در اینجا
کلیکی (Na + K)ای
میزان Si 0.5 < 1/6
کلیکی
در اینجا
با توجه به نتایج
میزان Fe²⁺/Fe⁺² 0.2 برای
تا حداکثر 4 بوده و بانگر شرایط، گریزندگی اکسیژن بالاست.
این موضوع با گریزندگی اکسیژن بدست آمده به وسیلهٔ شیمی.

شکل 15 نمایش موقعیت بلورهای انتحابی آمپیول از گابروها توده بیغم روی نقشه تقسیم بندی امپیول های کلسیک [35].

با لازیوکلازا در هستهٔ تقریباً ناجی بوده و در حاشیهٔ حداکثر به
20 درصد وزنی می‌رسد. با توجه به ترکیب شیمیایی هسته،
با لازیوکلازا در به بررسی بیشتر در گسترده‌ترین بینش و در
حاشیه‌های گسترده‌ای لازیوکلازا در اندیشن می‌گیرد (شکل
18). علاوه بر این لازیوکلازا بازی اولیه (ماگماپی) گروه
دیگری از پلاژیوکلازا نیز در این سنگ‌های گابروی ملاحظه

فلدسبات‌ها
ترکیب شیمی‌کانی فلدسبات‌های سنگ‌های مورد بررسی در
جدول 3 آرایه شده است. چنانکه ملاحظه می‌شود تمامی
فلدسبات‌ها، پلاژیوکلازا بوده و غیرمول‌الروندند و ترکیب آنها از

\[\text{Al}^{3+} \]

وری Si در S در ساختار بلور و پیشرفته مادگامات.

\[\text{Al}^{3+} + \text{Ti} \]

شکل 16 بین همبستگی می‌تواند وجود دارد که نشان از افزایش
می‌شود که حاصل سوسوریتی شدن پلاژیوکلازهای باری بوده \(\text{An}_{90,0} \text{Ab}_{90,0} \text{Or}_{10,0} \) و ترکیب این نه سول‌های پلاژیوکلازهای توده نفوذی مورد بررسی بر اساس 8 اتم اکسیژن.

جدول ۳: نتایج انالیزهای ریزبوداریتی پلاژیوکلازهای توده نفوذی مورد بررسی بر اساس 8 اتم اکسیژن

<table>
<thead>
<tr>
<th>Label</th>
<th>P-1</th>
<th>P-2</th>
<th>P-3</th>
<th>P-4</th>
<th>P-5</th>
<th>P-6</th>
<th>P-7</th>
<th>P-8</th>
<th>P-9</th>
<th>P-10</th>
<th>P-11</th>
<th>P-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>45/14</td>
<td>45/28</td>
<td>45/75</td>
<td>45/66</td>
<td>46/55</td>
<td>47/67</td>
<td>52/72</td>
<td>54/12</td>
<td>55/88</td>
<td>65/07</td>
<td>65/73</td>
<td>66/16</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0/01</td>
<td>0/04</td>
<td>0/03</td>
<td>0/01</td>
<td>0/04</td>
<td>0/03</td>
<td>0/08</td>
<td>0/05</td>
<td>0/06</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>34/27</td>
<td>34/21</td>
<td>34/01</td>
<td>34/04</td>
<td>33/40</td>
<td>33/07</td>
<td>32/42</td>
<td>29/42</td>
<td>28/31</td>
<td>27/41</td>
<td>21/89</td>
<td>21/19</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0/00</td>
<td>0/00</td>
<td>0/01</td>
<td>0/01</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/02</td>
<td>0/01</td>
</tr>
<tr>
<td>MnO</td>
<td>0/02</td>
<td>0/00</td>
<td>0/00</td>
<td>0/03</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/03</td>
</tr>
<tr>
<td>MgO</td>
<td>0/02</td>
<td>0/04</td>
<td>0/03</td>
<td>0/02</td>
<td>0/04</td>
<td>0/06</td>
<td>0/04</td>
<td>0/07</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/00</td>
</tr>
<tr>
<td>NiO</td>
<td>0/01</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/02</td>
<td>0/00</td>
<td>0/01</td>
<td>0/00</td>
<td>0/01</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
</tr>
<tr>
<td>CaO</td>
<td>18/07</td>
<td>17/97</td>
<td>17/46</td>
<td>17/71</td>
<td>17/12</td>
<td>15/88</td>
<td>12/48</td>
<td>11/05</td>
<td>9/82</td>
<td>2/73</td>
<td>2/36</td>
<td>1/91</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1/13</td>
<td>1/17</td>
<td>1/39</td>
<td>1/29</td>
<td>1/66</td>
<td>2/30</td>
<td>4/40</td>
<td>5/16</td>
<td>5/90</td>
<td>10/08</td>
<td>10/11</td>
<td>10/62</td>
</tr>
<tr>
<td>K₂O</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/03</td>
<td>0/09</td>
<td>0/13</td>
<td>0/12</td>
<td>0/12</td>
<td>0/16</td>
<td>0/17</td>
</tr>
<tr>
<td>F</td>
<td>0/01</td>
<td>0/09</td>
<td>0/07</td>
<td>0/06</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
<td>0/00</td>
</tr>
<tr>
<td>Total</td>
<td>99/22</td>
<td>99/37</td>
<td>99/32</td>
<td>99/41</td>
<td>99/54</td>
<td>98/77</td>
<td>99/95</td>
<td>99/48</td>
<td>99/81</td>
<td>100/07</td>
<td>99/74</td>
<td>100/03</td>
</tr>
</tbody>
</table>

Core: DJ rim: & 9 rep: 1/0
شناختی روش زمینی - فشارسنجی

شکل ۱۷ ترکیب پلاژیوکلازهای مورد مطالعه در نمونه ترسیم‌برنده فلدسیت‌ها.

شکل جفت کلینیپروکسین و آمپیولو همیپزست [۱۱۱] است که مدلی ترکیب جفت کلای های مورد بررسی در گستره ۷۲۰ تا ۹۰۰ درجه سانتی‌گراد قرار می‌گیرد (شکل ۱۹).

برداشت نتیجه یکی از مجموعه نمونه‌های انرژی-دکتر است. کانی‌های اصلی این نمونه شامل پیروکس، آمپیولو و پلاژیوکلاز است. کلینیپروکسین ها دارای ترکیب اوزبیت بوده و در گستره کلینیپروکسین‌های کلسیم–منزیم-اهن در قرار می‌گیرند. نسبت AI۱/Al۱/Al۲ در این کلینیپروکسین‌های بین ۱۴ تا ۵۱٪ متغیر بوده و در گستره کلینیپروکسین‌های با فشار منتوست تا فشار پایین قرار می‌گیرند. از طرف دیگر دمای تبلور این کلینیپروکسین‌ها که معادل با دمای توده‌ی نرم است، بین ۸۰ تا ۹۲ درجه سانتی‌گراد را برای ترکیب‌های در حدود ۵ کیلوبار به دست می‌دهد. همچنین گزارش‌هایی از کانی‌های لاکتند با بوده این نظر تکنولوگی‌ها در کانی‌های ترسیم‌برنده نشان می‌دهد که این توده آذرین دارای ماهیت سب‌الکالن (توتئیت) بوده که در کی محتوی تکنولوگی وابسته به کانی مالگامی تشكل شده است.

امپیولو های در این گروه جزو آمپیولو های کلسیک هستند که در گستره ۳۲۰ تا ۴۹۰ درجه سانتی‌گراد قرار می‌گیرند و از نظر تکنولوگی‌ها نشان ماهیت نرم قلبی این نمونه آذرین هستند.

بر اساس روش دمای تبلور، جفت کانی‌های کلینیپروکسین و آمپیولو همیپزست، دما در گستره ۷۰۰ تا ۹۰۰ درجه سانتی‌گراد قرار می‌گیرد.

پلاژیوکلاز فراالوترونی با فلتیک این سبک‌ها کلابوژسی است. براساس آلی‌پراکسی، ریزبازی دارای نجاح نهایی روزی است.

شکل ۱۶ شرایط فشار – درجه حرارت تبلور نمونه

در این مقاله داده‌های حاصل از نمایی کانی، برای تعبیه دما و فشار از تبلور نمونه مورد بررسی استفاده شده است. زمین، فشارسنجی به روش آزمایش AI در هورنلند بر مبنای دمای درجه به ۹۰ کیلو بار را به دست می‌دهد که با توجه به هزینه‌های دیگر کرده، به‌نظر می‌رسد که به‌طور کلی قابل‌توجه است که از دیگر روش‌های با مقادیر متغیر از نظر پیشنهاد می‌دهد. دیلی این نمونه که گستره‌ی تغییرات ترکیبی در پلاژیوکلاز با توجه به منطقه بندی آنها جزئی نیم‌وی و از آن‌های دیگر این نمونه ترکیبی از این جهت مهم است که در دمای - فشار سنجی مباحث آموزشی روند پلاژیوکلاز شکل ۱۷(شکل ۱۷) این طیف گستردگی ترکیبی از این جهت مهم است که در زمین - فشار سنجی مباحث آموزشی رونددگی پلاژیوکلازیک‌ها نکاتی بوجود تغییرات ترکیبی در پلاژیوکلازیک‌ها که موضوع ضروری تلقی می‌شود. [۱۷] گری دیگر از دلایل این روش برای روش‌های فشارسنجی این نمونه گازی اطمنان نیست. فقط تعداد کانی‌های کوارتز و قدس‌بندی را در این است. آمیپیولو در درجه ۱۰ ترکیب پلاژیوکلازیک‌ها از سخت‌گیری مورد بررسی در گستره‌ی فشار باینیا که تولید فشار قرار می‌گیرد. برای تعبیه درجه تبلور نمونه‌ی پلاژیوکلازیک‌ها به‌دست آمده در نمونه‌ی دما ناپایین AI در فشارسنجی بی‌کاره این نمونه را در دمای AI. بنا برای روش زمینی - فشارسنجی محتوای AI از آمیپیولو در فشارسنجی. ولی با توجه به شکل ۱۰ ترکیب پلاژیوکلازیک‌ها از سخت‌گیری مورد بررسی در گستره‌ی فشار باینیا که تولید فشار قرار می‌گیرد. برای تعبیه درجه تبلور نمونه‌ی پلاژیوکلازیک‌ها به‌دست آمده در نمونه‌ی دما ناپایین AI در فشارسنجی بی‌کاره این نمونه را در دمای AI. بنا برای روش زمینی - فشارسنجی محتوای AI از آمیپیولو در فشارسنجی. ولی با توجه به شکل ۱۰ ترکیب پلاژیوکلازیک‌ها از سخت‌گیری مورد بررسی در گستره‌ی فشار باینیا که تولید فشار قرار می‌گیرد. برای تعبیه درجه تبلور نمونه‌ی پلاژیوکلازیک‌ها به‌دست آمده در نمونه‌ی دما ناپایین AI در فشارسنجی.

[14] [161] ليو ه. ج., دیجاشیایی بر زمین‌شناسی ایران، سازمان زمین‌شناسی ایران، 1359 ص.
[20] [161] نفشه چهارگوش زمین‌شناسی 1388، اردستان، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 1378 ص.