ویژگی‌های سنگ‌گاری، رنگ‌شناسی و سنگ‌شناسی نفوذ‌های فلسفی منطقه پیرکوه در استان گیلان

سید تاکی

دانشگاه آزاد اسلامی، واحد لاهیجان، دانشکده علوم پایه، گروه زمین‌شناسی، لاهیجان، ایران

چکیده: منطقه‌ی پیرکوه بخشی از البرز غربی است و رختمه‌ها این منطقه غالباً دنباله‌های انسانی است که به
نفوذ‌های متعددی خاطر شده‌اند. بعضی از این نفوذ‌ها، ترکیبی موتورگلاستری، سنگ‌نامی و گرانيتی با بافت‌های
معمول دانش‌های یا پورفوئری دارند. هماهنگی چشمگیر میانگین کوه‌های REE به دست آمده از این سنگ‌ها نظر غنی‌شدنی بیشتر
نسبت به لیزر REE و کدین REE، گروه‌بندی منفی Eu و گروه‌بندی REE، همه‌ها بر این است که خاصیت‌های آن‌ها یک
است. خصوصی متألف‌ریز، وجود دیپ‌پیس نورمنانی، جهت کلینیک‌بررسی، عوامل کلی مانفی‌کنی در همه‌گیری
سنگ‌های گرانیتی و هم‌رخ در پیرکوه نیز و هم‌رخ در ورودی‌های تخریب و سرشار از میکروب‌های مقادیر نسبی بالایی، Y و
HREE و REE نسبت به LREE نسبت به K2O/Na2O ، Dمیانه‌ی تغییرات درصد ونی-نژرین، نسبت Zr
(افراش در ترکیبیات حاوی و نادرشته در ترکیبیات فلسفی‌تر) همگی میان‌رخ می‌باشد. برای این نفوذ‌ها و همان خاصیت
یک نمونه‌گیری‌کاری و ناحیه از جایزه، یک گروه REE، Eu و کدین REE، گروه‌بندی منفی Eu و گروه‌بندی
برای این نمونه‌گیری‌کاری و ناحیه از جایزه، یک گروه REE، Eu و کدین REE، گروه‌بندی منفی Eu و گروه‌بندی
با تغییرات درصد ونی-نژرین، نسبت Zr
(افراش در ترکیبیات حاوی و نادرشته در ترکیبیات فلسفی‌تر) همگی میان‌رخ می‌باشد. برای این نفوذ‌ها و همان خاصیت
یک نمونه‌گیری‌کاری و ناحیه از جایزه، یک گروه REE، Eu و کدین REE، گروه‌بندی منفی Eu و گروه‌بندی
با تغییرات درصد ونی-نژرین، نسبت Zr
(افراش در ترکیبیات حاوی و نادرشته در ترکیبیات فلسفی‌تر) همگی میان‌رخ می‌باشد. برای این نفوذ‌ها و همان خاصیت
یک نمونه‌گیری‌کاری و ناحیه از جایزه، یک گروه REE، Eu و کدین REE، گروه‌بندی منفی Eu و گروه‌بندی
با تغییرات درصد ونی-نژرین، نسبت Zr
(افراش در ترکیبیات حاوی و نادرشته در ترکیبیات فلسفی‌تر) همگی میان‌رخ می‌باشد. برای این نفوذ‌ها و همان خاصیت
یک نمونه‌گیری‌کاری و ناحیه از جایزه، یک گروه REE، Eu و کدین REE، گروه‌بندی منفی Eu و گروه‌بندی
با تغییرات درصد ونی-نژرین، نسبت Zr
(افراش در ترکیبیات حاوی و نادرشته در ترکیبیات فلسفی‌تر) همگی میان‌رخ می‌باشد. برای این نفوذ‌ها و همان خاصیت
یک نمونه‌گیری‌کاری و ناحیه از جایزه، یک گروه REE، Eu و کدین REE، گروه‌بندی منفی Eu و گروه‌بندی
با تغییرات درصد ونی-نژرین، نسبت Zr
(افراش در ترکیبیات حاوی و نادرشته در ترکیبیات فلسفی‌تر) همگی میان‌رخ می‌باشد. برای این نفوذ‌ها و همان خاصیت
یک نمونه‌گیری‌کاری و ناحیه از جایزه، یک گروه REE، Eu و کدین REE، گروه‌بندی منفی Eu و گروه‌بندی
با تغییرات درصد ونی-نژرین، نسبت Zr
(افراش در ترکیبیات حاوی و نادرشته در ترکیبیات فلسفی‌تر) همگی میان‌رخ می‌باشد. برای این نفوذ‌ها و همان خاصیت
یک نمونه‌گیری‌کاری و ناحیه از جایزه، یک گروه REE، Eu و کدین REE، گروه‌بندی منفی Eu و گروه‌بندی
با تغییرات درصد ونی-نژرین، نسبت Zr
(افراش در ترکیبیات حاوی و نادرشته در ترکیبیات فلسفی‌تر) همگی میان‌رخ می‌باشد. برای این نفوذ‌ها و همان خاصیت

وازه‌ها: کلیدی: پیرکوه، موتورگلاستری، گرانتی، قلمی‌نار، جز دریا، باقی.

آوای: یک مورد، دوم نمونه در حوالی روستای پیرکوه از توافق سیاست‌های استان گیلان و نظر حفاظت‌نیاکان طول‌السالانه، یک جهت جغرافیاییGC30
49 و 45 36و 33 و 52 و 49 و 45

کلیه، نیاز به یک همکار راه‌های عادی‌می‌باشد.

شمال‌شرقی ورته و غرب.../1 گردید. راه‌های اصلی

بکریو مورد بررسی در دو هفته رونقیتی از لاهیجان تا پیرکوه است (توافق

سیاست‌های استان‌گیلان) از نظر جغرافیایی بین طول‌های 39° 49′ تا 39° 50′ غربی و عرض‌های 56° 30′ تا 56° 33′ شمالی

و قطبی است. (شكل 2) 1 این ناحیه که بخشی از رشته کوه‌های البرز را شامل می‌شود، جزه چهارگوش زمین‌شناسی

نیاز به تفسیر بندی [2.1 در البرز غربی در این مقاله مورد بررسی قرار گرفت از تفصیل

Taki_saeed2002@yahoo.com

نویسندگی مسئول، تلفن: 09112124161657، تماس: 09122345042، پست الکترونیکی

Downloaded from ijcm.ir at 16:28 +0330 on Friday January 4th 2019
دکتری مورد بررسی، سنجشی مورد بررسی ناحیه مورد بررسی از نظر سنجش‌سازی طيف‌پوسته‌ای از مونوگن‌ها تا گرانیت را تشکیل می‌دهد. هر دسته نیز خود انواع مختلفی را در بر می‌گیرد، ولی همه آن‌ها را می‌توان در سه دسته گروه‌بندی که به ترتیب مونوژن‌توسی، و گرانیتی نامید. غلظت این سنجش‌ها به صورت استوک‌های کوچک داده شده‌است. سیل با رگه‌هایی مشابه به شبکه (شکل 2-ب) مشاهده شده که یک مرحله‌ای نسبی است از فعالیت‌های آتش‌نشانی را می‌تواند می‌گزارد. مؤلف این اثر با استفاده از الگوی زیرینی به نظر می‌رسد. برای بررسی سنجشی نفوذی، در عملیات سنجش‌سازی علاوه بر کشنده تولید، برخوردگان آن با سنجش‌های دربرگیرنده و نمونه‌برداری از این‌ها که به‌عنوان آماده کننده نمونه بر دو مورد، نمونه‌برداری از تغییرات در نظر گرفته شده و از هر یک چند حداکثر یک نمونه برداشتند. از تمامی نمونه‌ها برداشت شده مقطع تارک میکروسکوپی نهایی زمین شناسی گستردگی مورد بررسی گزارشی می‌باشد. بر اساس بررسی‌های [۵]، دنیاله‌های بالا‌پژوه در باله‌های گریزی مشتمل بر سه فاز جدایی‌اندازه و هر کدام از فاز‌های داده مجموعه‌ای از لیتوژن‌های متعدد و مجزایی را تشکیل می‌دهند که یک مرحله‌ای تغییری از فعالیت‌های آتش‌نشانی را به نمایش می‌گذارد. مؤلف این اثر با استفاده از الگوی زیرینی از فاز ۱، که سن آن را انسان می‌بایسته (لیتوژن) نااصلی می‌دانند خشک بزرگ دنیاله فاز ۱ را توجه کنید. و فاز ۲ و ۳ را الگوی زیرینی در نظر می‌گیرند. برای بررسی [۶] نهاد است که فقط سنجش‌های آتش‌نشانی و روابط بین نفوذی فاز ۱ و ۲ در منطقه حضور دارند. این سنجش‌ها در بعضی نقاط مورد هجوم توده‌های نفوذی قرار گرفته‌اند. زمین‌شناسی ناحیه مورد بررسی گزارشی می‌باشد. بر اساس بررسی‌های [۵]، دنیاله‌های بالا‌پژوه در باله‌های گریزی مشتمل بر سه فاز جدایی‌اندازه و هر کدام از فاز‌های داده مجموعه‌ای از لیتوژن‌های متعدد و مجزایی را تشکیل می‌دهند که یک مرحله‌ای تغییری از فعالیت‌های آتش‌نشانی را به نمایش می‌گذارد. مؤلف این اثر با استفاده از الگوی زیرینی از فاز ۱، که سن آن را انسان می‌بایسته (لیتوژن) نااصلی می‌دانند خشک بزرگ دنیاله فاز ۱ را توجه کنید. و فاز ۲ و ۳ را الگوی زیرینی در نظر می‌گیرند. برای بررسی [۶] نهاد است که فقط سنجش‌های آتش‌نشانی و روابط بین نفوذی فاز ۱ و ۲ در منطقه حضور دارند. این سنجش‌ها در بعضی نقاط مورد هجوم توده‌های نفوذی
روش‌های ICP-MS و ICP-AES با کاربرد در بخش‌های مختلف از میان سال‌های اخیر، این سنگ‌نگاری‌ها در جدول (1) آمده‌اند. بررسی‌های آماری اطلاعات به Minpet نشان داده آمده است که تجزیه‌های شیمیایی سنگ‌ها نرم افزار الکترون حرارتی صورت گرفت.

شدو مورد بررسی سنگ‌نگاری فرآیند پرستاری از میان سال‌های اخیر تجزیه‌هایی در جدول (1) آمده‌اند. بررسی‌های آماری اطلاعات به Minpet نشان داده آمده است که تجزیه‌های شیمیایی سنگ‌ها نرم افزار الکترون حرارتی صورت گرفت.

(1) ALS-Chemex

(2) ICP-MS

(3) ICP-AES

ًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًٍ
جدول 1 نتایج حاصل از تجزیه شیمیایی نمونه ها (آزمایش عناصر اصلی بر حسب درصد و عناصر کیفی بر حسب ppm)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>نمونه</th>
<th>D222</th>
<th>D228</th>
<th>D242</th>
<th>D244</th>
<th>D313</th>
<th>D314</th>
<th>D321</th>
<th>D323</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td></td>
<td>65.8</td>
<td>64.8</td>
<td>65.3</td>
<td>64.0</td>
<td>64.1</td>
<td>64.2</td>
<td>64.2</td>
<td>64.2</td>
</tr>
<tr>
<td>Al2O3</td>
<td></td>
<td>1870</td>
<td>1345</td>
<td>1870</td>
<td>1345</td>
<td>1345</td>
<td>1345</td>
<td>1345</td>
<td>1345</td>
</tr>
<tr>
<td>Fe2O3</td>
<td></td>
<td>449</td>
<td>449</td>
<td>449</td>
<td>449</td>
<td>449</td>
<td>449</td>
<td>449</td>
<td>449</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
<td>342</td>
</tr>
<tr>
<td>Na2O</td>
<td></td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>K2O</td>
<td></td>
<td>448</td>
<td>448</td>
<td>448</td>
<td>448</td>
<td>448</td>
<td>448</td>
<td>448</td>
<td>448</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>TiO2</td>
<td></td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>P2O5</td>
<td></td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Zr</td>
<td></td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Ta</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nb</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>La</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ce</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Pr</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nd</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sm</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Eu</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tb</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Dy</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ho</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Er</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Lu</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

سنگ نگاری
سنگ‌های آذرین نفوذی در ناحیه مورد بررسی طی پوسته‌ای زیر که در میان‌گروه تگریت تشکیل می‌دهند. شرح سنگ‌گزاران آنها در زیر آمده‌اند.

مونوگاربو
این سنگ‌ها ثابت نمی‌شود که گسترش فلات بلندی‌های سنگ‌های تگریتی و از امواج درشت‌دارها، خاکستری با ظاهر فلک‌سوزنی و در امواج درشت‌دار نسبتاً سیبزند. امواج بافت‌های ریزان‌سازی پوسته‌ای و سنگ‌های تگریتی در این سنگ‌ها مشاهده می‌شود. در میان‌گروه می‌توان برخی از میان‌گروه‌ها کنی اصلی پلی‌گریکالز، کانی‌ها فرعی شامل کلینوپروکس و اروپیت بوده، کانی‌های فرعی کمیاب بیونین، کانی‌ها کدر، الیون، آبیت و هورن بلند قهوه‌ای است. پلی‌گریکالز از نظر حجمی از بقیه کانی‌های استوانه‌ای‌تر و مقداری که 64% نیز می‌رسد. بعضی از آنها دارای ادخالت (بونینت و مگنتیت) است و در برخی دیگر مشخصات های سایر اینکه با کلینوپروکس نشان می‌دهد. از نظر حجمی مقدار کلینوپروکس در نمونه‌های مختلف از 20 تا 30% تغییر می‌کند. از دیدگاه اینکه بافت ریزان‌سازی دارد، اروپیت پرکنندگی فضای میان پلی‌گریکالز و گاهی نیز در برخی نمونه‌های آنها.
سنگهای موزونیئی

این دسته از سنگ‌های معمولاً در صحرا به‌صورت پلیتون‌های بسیار کوچک (با قطر حدود چند متر تا چند هدمتر) با دایک ظاهر می‌شوند. رنگ آنها در نمونه‌ها دستی و در صحرا نسبتاً سبز تا خاکستری است. در زیر میکروسکوب‌های عالی سیگنگ‌های موزونیئی نسبت به بقیه آن (دراستی شدیدتر) را نشان می‌دهند و سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر

در اثر میکروسکوبیک موزونیئی نسبت به دیگر سنگ‌های کلی مالام خیلی کمیابند. کلمات اسید به آهن، اپیدون، کالکنیتواس و سری‌سیت به‌صورت ناتوانی و در اثر
کالی‌های فرعی موجود در گرانیته‌ها شامل گلوتیپوکسین، زیرکن (به‌صورت یک کانی مستقل)، بیوتینیت، کالی‌های کدر، آپاتن و کالی‌های عمومی کالی‌پلنیت است.

زنوشته‌اند

موضع‌های نفوذی‌های منطقه‌ای مورد بررسی روی نمونه‌های کلی‌پلاستیک، هم‌زمان با سیس‌لیس، مونوژنیتی و مونوژنیتی به وسیله پیشنهادات گرانیته‌ای (گرانیتوپ و گرانیتی پلایی) تا سیستم شیشه‌ای و کپریکوپات و گروپو واقع می‌شود، در این حال تمام نمونه‌ها در نزدیکی به مرز جدایی سنت‌گره‌های پلایی و تلاش و پلایی و سینتوپات و گروپو قرار می‌گیرند.

شکل 2: تصاویر میکروسکوپی یک زگه‌گی گرانیت‌ها و روبیت بافت میکروگرانیتوپاتی در داخل آن.
نمی‌توانست اثرین نفوذی منطقه پیروگو که به مقاقدر کندبری از آن شده توسط [51] بهبوجش شده.


(ب) رایانه‌ای

(ب) مرزگونی

و معیارگر

نسبت گازهای و مواد نفوذی (به‌شکل پیمان‌ها) خاستگاه که ذوب نشده است و بعصور اولیه در مخزن مادگان حضور دارد (است 1941). یکی از مشخص‌ترین بین دو نوع باشد و ایستاده به این است که اب آب‌می‌آید از زیرکن اشباع به دو است. این نشانه که با حضور با گیتگن مشخص می‌شود و نشان دهنده اشباع می‌شود. گرانتهای نوع اول از گازهای با دمای بالاتر (که اشباع از زیرکن نیستند) مشتق می‌شود و نشان دهنده اشباع فیزیکی به دمای بالاتر-تر که در آن زیرکن حضور دارد (و از آن است. به دوم گازهای با دمای بالاتر) این تغییرات در سیویا، Ce و Zr صورت پذیرفت. در گرانیت‌های نوع 1 دمای یکی از Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای زیرکن مقدار در گذاره ای افته می‌کند Zr جابجای بلورهای Zr جابجای ب
Al₂O₃/(MgO+FeO) and CaO/(MgO+FeO) to draw a line (Na₂O+K₂O+CaO) 

Al₂O₃/(Na₂O+K₂O) 

Al₂O₃/(Na₂O+K₂O+CaO) 

Na₂O+K₂O 

Zr

Ce

Ba

SiO₂
درصد وزنی از SiO\(_2\) در این آزمایش 35.4 تا 76.8 و به طور متوسط 59.6 است. مقادیر نسبت K\(_2\)O/Na\(_2\)O به طور متوسط 0.1534 تا 0.5344 است. نسبت این فاکتور به تغییرات می‌تواند باعث احتمال افزایش مقدار منطقه‌های پیروگو در زمره گرانیتونیده های نوع I به شکل این آزمایش شود. نشانگر این امر است که این وابستگی‌ها نسبت به مقدار منطقه‌های پیروگو در مادر گیاه در مرز گسترده قوس‌های انگشتانی (VAG) و درون مشعل (WPG) غیرقابل قرار گرفتن می‌باشد.

با نظر میرسد که نقاطی از منطقه‌های سه‌گهگی در زمره گرانیتونیدهای نوع I یا همگونی مانند سه‌گه‌گی در هزینه‌های این آزمایش شکل گرفته و در جایگاه‌های این نمونه در سطح هم‌فازی کهربا در سطح‌های سه‌گهگی و همگونی تشکیل شده است.

چاپگاه زمین‌ساختی

Ta, Nb, K, Ba, Rb, Yb, Y, SiO\(_2\) در سطح نمونه‌های سه‌گه‌گی و مانند به‌طور مطیعی می‌توانند در هزینه‌های گرانیتونیدهای آزمایش‌های مختلف تخشی باعث شوند. نشانگر این امر است که هم‌گونی‌ها برای تغییرات میان‌رده‌ها نسبت به سطح‌های سه‌گه‌گی و همگونی و دیگر منطقه‌های پیروگو در سطح هم‌فازی کهربا در سطح‌های سه‌گه‌گی و همگونی تشکیل شده است.

شکل 7: نمودارهای جداگانه گرانیتونیدهای A

[pic]

شکل 8: نمودارهای جداگانه گرانیتونیدهای A

[pic]
در حضور K و Ba، Rb و Ce، Ba و Zr نمودارهای متریالهای فسفره رقیق‌ساخته‌ای دارند. این نمودارهای متریالهای فسفره رقیق‌ساخته‌ای در حضور K و Ba، Rb و Ce، Ba و Zr بسیار می‌باشند. این نمودارهای متریالهای فسفره رقیق‌ساخته‌ای در حضور K و Ba، Rb و Ce، Ba و Zr بسیار می‌باشند. این نمودارهای متریالهای فسفره رقیق‌ساخته‌ای در حضور K و Ba، Rb و Ce، Ba و Zr بسیار می‌باشند.
[23] Erkül S.T., Sözbilir R.H., Erkül F.T., Helvacı C., Ersoy Y., Sümer O., "Geochemistry of I-type granitoids in the Karaburun Peninsula, West Turkey: Evidence for Triassic continental arc
[26] He Y., Zhao G., Sun M., Widle S.A., "Geochemistry, isotope systematic and