زمین شیمی عناصر کمیاب خاکی و شیمی کانی گارنت در اسکارن‌های منطقه دریه زرکش (جنوب غرب یزد)

فرید مُر، صالح دیمیر، بول تیپ پور

بخش علوم زمین، دانشکده علوم، دانشگاه شیراز

(دریافت مقاله: 91/06/18، نسخه نهایی: 91/09/27)

چکیده: گزارشی از کلیسی‌های اسکارن‌های دریه زرکش در شرقی و غربی منطقه‌ی زرکش در جنوب غرب یزد. کانی‌ها را تشکیل می‌دهند و به شکل توده‌ای و یا در مواقعی توزیع‌های متفاوتی دیده می‌شوند. بر اساس مشاهدات کانی شناسی و روابط بازتربینی‌کننده‌ی این کانی در مرحله‌ی گسترشی‌های پیشروی‌های تکیه‌گذاری‌های شیمی‌کراتیک (EPMA) می‌باشد. از نظرpace، گسترشی‌های کانتیننتال گردوایی قرار می‌گیرند و از نظر ساختار-گسترشی، هستند. اینها دارای دسته‌گانی از اکسیداتورین، پپروپالم و از این نظر ترکیب مشابه با گزارش‌های اسکارن‌های مشابه با همان ساختار و آلاین پارک در جنوب غربی یزد/ایران.

واژه‌های کلیدی: گارنت/اسکارن‌های REE میکروکوک گردوایی/انواع REE در دریه زرکش/جنوب غربی یزد/ایران

مقدمه

عناصر نادر خاکی به میزان گسترش‌هایی در به عنوان روابط خاکی زمین شیمی‌پاتی در فرآیندهای زمین‌شناسی، به ویژه در سامانه‌های مالی شیمی‌پاتی، نسبت به گردوایی های مالی شیمی‌پاتی، کانی‌های گسترشی در این‌ها در دسته‌گاه آن‌ها در گروه‌های اصلی این‌ها در صنعت‌های شیمی‌پاتی. با توجه به این‌ها، که این‌ها در مورد اشیاء با لجستیک تکیه‌گذاری‌های کانتیننتال، از نظر روابط بازتربینی‌کننده‌ی این‌ها در گروه‌های اصلی این‌ها در جهت برآورد کیفیت‌شناسی کانی‌ها زیادی اسکارن‌های مشابه با همان ساختار و آلاین پارک در جنوب غربی یزد/ایران.

Daymar_eg@yahoo.com

نویسنده مسئول، تلفن: ۰۵۷۹۸۸۰۱۱۱، پست الکترونیکی:
استفاده از آنانلیز دقیق ریز کاوندهای الکترونی (EPMA) است، زیرا بر اساس بررسی‌های انجام شده، ترکیب‌های می‌تواند به عنوان نشانگر کانه‌ای دریایی اسکارن‌ها از موردهای استفاده قرار گیرد [2].

زمن شناسی منطقه

فعالیت‌های مایاگما به‌طور کلی در کریستال‌های اورومیه-دختر واقع شده است. که-تربیت واحد سنگ‌شناختی منطقه، سازند اولی سرماسیان به سفر اولین‌ست که در زیر سنگ‌های آلیکی سازند نفت به سن کرنسی می‌یابد با بالایی قرار داده (شکل 1).

شکل 1 نقشه زمین‌شناسی منطقه دریایی زرشک و موضع‌های اسکارن‌ها و نمونه‌ها روی آن.
فدمی تین و ادی آذرین در منطقه داسیت های اوتسن [4] (Subvolcanic) هستند که به شکل گنجینهای زیر آتشیسیانی در واحدهای رسوبی منطقه نفوذ کردهاند. نفوذ استوک پورفیری در هر چهاری، که خود میزان کاهش برای پورفیری است، با ترکیب گراتین- کوارتزپوریت در ساردن آهکی تبدیل شده است. این سکه‌های سپایشی در محورهای مجاورتی با سکه‌های سکیمی - سیلبیکاکاسی و اسکارن در زمان لیگو- میوس (2) درده است. در اثر نفوذ این سکه‌های آذرین انواع دگرسانی در سنگ‌های رسوبی و آذرین منطقه دیده می‌شود. در مجموعه سنگ‌های آذرین منطقه در هر چهاری به سه دسته به دست می‌آید: دسته‌ی یکسانی به‌صورت خیلی محدود، دسته دوم از که سکه‌های همسان و سکه‌های همسان از آدمی می‌کنند، و در سومی سکه‌های اسکارن که در بافت‌های گسترش نسبی و با سیلبیکاسی و سیلبیکاسی یا دارای ساخت توده‌های داسیت (شکل 2-الف، ب) بر اساس شواده

！صحراوی و بررسی‌های میکروسکوپی اسکارن در هر چهاری شامل دو زون درون اسکارن به صورت محدود و با اسکارن به سرارت گستره است. برون اسکارن، زون اصلی اسکارن و کانسرکسی اسکارن در هر چهاری است. معمولاً همبيري بر هر اسکارن با مرمر تیز و ناگهانی (Sharp) (شکل 2-الف) ولی با توده‌ی نفوذی مشخص تا تدریجی است، ضمن اینکه در هر چهاری از توده‌ی نفوذی درون جبه اسکارنی مشاهده می‌شود (شکل 2-ب). منطقه‌بندی سنگشناسی و کانسانشناسی مشخصی در جهت دور از توده‌ی نفوذی مشاهده می‌شود که به ترکیب شامل توده‌ی نفوذی، اسکارنی اسکارن، اسکارنی اسکارنی (بعصور خیلی محدود)، مرمر و سنگ آهک است (شکل 2-پ). کانسانشناسی آهن به‌صورت نواری (گره‌های) در راستای شکستگی‌های بزرگ درون مرمرهای میزان (شکل 2-ت) دیده می‌شود.

(الف) اسکارن
(ب) اسکارن
(ب) مرمر
(الف) توده نفوذی
(ب) توده نفوذی
(ا) اسکارن
(ب) مرمر
(الف) توده نفوذی
(ب) توده نفوذی
(ا) اسکارن
(ب) مرمر
(الف) توده نفوذی
(ب) توده نفوذی
(ا) اسکارن
(ب) مرمر
(الف) توده نفوذی
(ب) توده نفوذی
(ا) اسکارن
(ب) مرمر

شکل 2-الف توده نفوذی با اسکارن، (ب) همبیر درون اسکارن و مرمر، (ب) همجواره توده نفوذی، اسکارن و مرمر، (ت) رگه اکسید آهن (مگنتیت + هماگنتیت) در مرمر.
روش بررسی

در این پژوهش بررسی‌های سنگ‌شناسی و کانی شنایی با استفاده از روش‌های نوین بررسی مقاطع نازک در نور گذرا (WDS) و تحقیقات کیفی (EDS) صورت گرفته است. تحقیقات کیفی (EDS) و/or (WDS) (جدول 1) عنصرهای والانز و/نورد استفاده در این آنالیز به ثبت و برای تعیین غلظت آنان به مشابه ICP-MS (وجود مورد نیاز) قرار گرفته است و به روش تجزیه‌ای ICP-MS و/or (WDS) شش به روش تعیین غلظت عنصر کمیاب خاکی به آزمایشگاه SGS متوجه نمی‌باشد.

انجام شده است. نتایج و جزئیات مورد استفاده در این آنالیز به آزمایشگاه SGS متوجه نمی‌باشد. برابر به استعداد از میکروسکوپ دوچشمی (روش Handpick) (جدول 1) داده‌های RREE توپودی REE را در نظر می‌گیرد و به روش تعیین غلظت عنصر کمیاب خاکی به آزمایشگاه SGS متوجه نمی‌باشد.

در آزمایشگاه کانادا اندوزگی شدن (جدول 1) داده‌های RREE نفوذی برای مقایسه با گاوندهای خاص با استفاده از میکروسکوپ دوچشمی (روش Handpick) (جدول 1) داده‌های RREE را در نظر می‌گیرد و به روش تعیین غلظت عنصر کمیاب خاکی به آزمایشگاه SGS متوجه نمی‌باشد.

<table>
<thead>
<tr>
<th>Sample type:</th>
<th>Garnet</th>
<th>Igneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample no.:</td>
<td>DG02</td>
<td>DG15</td>
</tr>
<tr>
<td>La (ppm)</td>
<td>21.3</td>
<td>20.8</td>
</tr>
<tr>
<td>Ce</td>
<td>3.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Pr</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nd</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Sm</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Eu</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Gd</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Tb</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Dy</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ho</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Er</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Tm</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Yb</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Lu</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>
شکل ۲ رخداد گزارن در اسکارن دریه زرشک; (الف) منطقه بندي نوسانی و مولض پروانه ای در گزارن (XPL)، (ب) پتولیا گزارن ناهماهنگ خوش و با منظور بندي نوسانی و پروانه ای در زمینه کلیسی (XPL) (پ) (ت) درهم رشد گزارن اندردیتی با گزارن گراسولاری (PPL)، علاوه اعتمادی: Gr، گزارن، Cal، گزارن گراسولاری، Gr(gs) غارن اندادیتی.

(۳) مرحلهی دگرسانی مخرب پسوردنه در این مرحله در اثر برهمکنش گرما با مجموعه‌های کلیسی- سیلیکاتی مرحله‌ی پیشونه حجم زیادی فازهای سیلیکاتی (کوارتز) و کلیسی- سیلیکاتی آبدار (ایپیدو، تومولیت- اکتینویلیت) همراه با سولفیدها (پیریت، کالکوپیریت پروریت) اکسیدها مگنتیت و هماتیت و گرانیت‌ها پدید آمدند. در اثر این دگرسانی مخرب، بافت اسکارن پیشونه به شکل عوضی باه یا دکترین قبلاً این طور کامل محو شده و بافت آراپی رچیدی از کانی‌ها شکل گرفته‌اند که عرف اسکارن پسوردنه مستند از جمله‌ای این بافت‌ها می‌توان به بافت‌های جانشینی مانند جانشینی گازون به وسیله‌ی پروریت و پروریت، کالکوپیریت و پروریت گازون (۶ بر) کاناهای سولفیدی شناسایی شده در اسکارن دریه زرشک هستند که به شکل گرما در حفره‌ها و شکستگی‌های اسکارن یا مغناطیسی در اینن (۶ بر) این ناشان دهنده یا نشته‌ای کاناهای سولفیدی در مرحله‌ی دگرسانی پسوردنه و نقش عوامل ساختاری در به‌نیخت آنها است. پس از اسکارن زایی و کانی گازی همزمان با آن، کانی‌های اسکلرولیتی (همان‌تیت- کوارتز)، سولفیدی (کالکوپیریت و دیزیت) و کاناهای مس (مالائکتیت- آزوریت) نیز طی فراگردنه‌های بروتزاگی در اسکارن دریه زرشک صورت گرفته این است.
شکل ۳ (الف) تشکیل مگنتیت و اپیدوت از راه جانشینی گارنت (PPL) (ب) خریدشده و سیمانی شدن گارنت به وسیلهی کوارتز و کلریت در مرحله‌ی دگرسانی فیترایی (PPL) (ت) تشکیل کلریت از راه جانشینی Qz، Gr، Cal، Am: اپیدوت، مگنتیت، گارنت، کوارتز، کلریت، Am: ایمپیسول

<table>
<thead>
<tr>
<th>کاتیو</th>
<th>مرحله دگره‌پذیری و کاته زایی</th>
<th>مرحله پیشونده</th>
<th>مرحله پیشونده</th>
<th>مرحله پیشونده</th>
<th>مرحله پیشونده</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>گارنت (گرانائیت)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>دیوبید-هدنتریت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ترمولیت-اکتیولیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>اپیدوت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>کلریت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>کوارتز</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>پیریت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>کالکوسیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>کالکوسیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>دیوزیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>مگنتیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>مغنتیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>گونثیت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>کلریت</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>مالائیت-آرویت</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۵ نمودار دنباله‌ی پارانژی کاتیویی که موجود در اسکارن دره زرشک.
گزارش نزدیک‌ترین منطقه‌نامی کانایی (توضیح بی‌قطاعی)
که یکی از ویژگی‌های روش‌گردان‌های در ذخایر اسکارن است و استفاده زیادی در ارزیابی شرایط فیزیک‌شیمیایی تکامل اسکارن‌ها دارد، در گزارش‌های دره زرشک به فراوانی دیده می‌شود (شکل ۳، الف، ب).
بحث و بررسی
زمین شیمی انعکاس کمیاب خاکی بررسی الگوی انعکاس کمیاب خاکی در گزارش‌ها کمک زیادی به شنایت فرآیندهای شکل‌گیری و تکامل شاره‌های دگرگونی است که [۱، ۲] جانشینی REE را استفاده از Saxon و شیمی‌بندی برنامه‌ای آن انتخاب می‌شود. گزارش‌ها دارای فرمول X۲Y۳Z۲O۱۲ هستند. در این فرمول شیمیایی عمومی، کاتیون‌ها دو متغیر (Fe۲+، Mn، Mg، Ca) با همراهی کاتیون‌های سه‌ورشته (Fe۳+ و Al) هستند. تابی Y شامل کاتیون‌های سه‌ورشته (Fe۳+) و
بر اساس بررسی‌های صوت گرفته روز گذشته، گزارش‌های هیتروپیلوس پلیمری (Al2O3، SiO2 و MgO) به‌دست آمده که نشان می‌دهد که در pH سیستمی از ۵ تا ۷، برکلیت‌های Fe به‌طور گسترده‌تر در پلیمرها نینه‌زده می‌شوند و به روش نسبت‌دهیتی در پلیمرها، به‌طور مداوم در این پیشرفت به‌وجود می‌آید و مثابث با آلومینیوم یک‌تایی (۱) و مثابث با آلومینیوم یک‌تایی (۲) REE

اگر همیشه گزارش‌های این پیشرفت به‌طور مداوم در این پیشرفت به‌وجود می‌آید و مثابث با آلومینیوم یک‌تایی (۱) و مثابث با آلومینیوم یک‌تایی (۲) REE

لیتراتورهای این پیشرفت به‌طور مداوم در این پیشرفت به‌وجود می‌آید و مثابث با آلومینیوم یک‌تایی (۱) و مثابث با آلومینیوم یک‌تایی (۲) REE

۱. Chemocystallography
۲. Fractionation
۳. Diffusive
۴. Adveective
بوجود آمدن و همین امر سبب شده است تا سامانه با شیمی REE سنگ میزبان (که شاردار میانگر) باشد. تشاد روند این نوع گازنتها با توده نفوذی نیز می‌تواند نقش بررسی سنگ‌دیواره و اهمیت‌های بارای کامل با سنگ‌دیواره است. در کلاهی Fe و چنین شرایطی دریگ نسبت شارد به سنگ بایا نیواده و در سنتمنع نخواهد بود در نتیجه گازنتها رشد آرامی داشته و ترکیبی گراسولاری ذخیره‌شده داشته (11). گاسپار و همکارانشان (Infiltration metasomatism) اندرادیتی دارن. مقايسه الگوی عناصر کمیاب خاکی در این نوع گازنتها با الگوی ایسی عناصر در توده‌های نفوذی در روی زرشف نیز گویایی شیاه الگوی رفتاری این عناصر در هر دو نمونه است. بهطوری که مجموع REE ها در هر دو بالا و غنی شدگی عناصر کمیاب خاکی (LREEs) نسبت به عنصر کمیاب‌سینگ (HREEs) مشاهده می‌شود (شکل 8). کمیاب خاکی سنگین مشاهده می‌شود (HREEs) با درب‌بینی‌ی سپرده از گازنتها الگوی‌شبیه با کمیاب‌سینگ به عناصر با شیمی‌های کمیاب‌سینگ با اندراپیپی گازنتها (12) از توده‌های نفوذی پایین‌تر با وجود آب در حالی که گازنتهای اندراپیپی که الگوی‌شبیه با کمیاب‌سینگ در با شیمی‌های کمیاب‌سینگ با شکل‌گرفتن بر اثر فرآیند سنگ‌گیسی (Fracturing) پایین‌تر از شاردهای با خاستگاه‌ها شکل‌گرفتن شکل 7 الگوی رفتاری عناصر کمیاب خاکی در گازنتهای اسکاردن در رشته‌های شیمی‌کی. تعداد انتخابی: DG02 و DG15 و 21DG18 و 19DG15 و 21DG02 و
شیمی گارنت

شیمی گارنت‌ها در مجموعه‌ای است که از میکروسکوپی برای این منظور یک‌بار در‌بررسی‌های مکرو‌سوسکوپی و شناسایی پلورهای مناسب گارنت‌ها (هر دو نوع گارنت آندرادیتی و گارسولاری) تعیین و مقطع تازه‌ی دیدی داده‌ها به جدول 1 آمده‌اند.

مواد منبعی ایرانی فرسنگه، شده و مورد آزمایش قرار گرفتن. نمونه‌های برخی شده تا حد امکان از آن‌ها نتایج‌های اشاره‌دار از شرایط که تحت‌النظیر سه‌گانه‌ی اسکان شده‌اند. نمونه‌های أی که گونه‌ی اصلی گارنت وجود دارد که تحت‌النواد، اجرای‌هایشان همگی می‌توانند بررسی شوند. پروپر (Mg,Mn)۲Al۲SiO۴(OH)۴(PO۴)۲، اسپسیت‌تین (Fe۲+۳Al۲Si۳O۱۲)، گروسور (Mn۲)۲Al۲Si۳O۱۲، فیلیت (Ca۳Al۲Si۳O۱۲) و (Ca۳(Fe۳+۳Al۲)۲Si۳O۱۲) و (Ca۳Cr۲Si۳O۱۲) اواوروتیت.[2] گونه‌ای آبی‌نیز وجود دارد که (Ca۳Al۲Si۲O۸(OH)۴)m+ (SiO۴)۲m به نام‌یه‌ی هیدروگروسور (H۲O۴)۲m. می‌شود. در واقع بیشتر گارنت‌ها سری‌های محلول کاملاً از یک با چند جزء یابایی هستند. براساس نمونه‌سازی نمایی گروسور-آندرادیت-اسپسیت‌تین-الماندین) که است قطعیت هم‌افراشی‌های است که در دریاچه زرشک به‌دست آمده‌اند. گارنت‌های اسکان در دریاچه زرشک دریاچه نشته 5. End member
همرفتی نیز در اثر گردش آب‌های جوی در مراکز توده‌های نفوذی و مشکلاتی این آب‌ها در سامانه‌های گرمایی می‌تواند سبب تغییراتی در ویژگی‌های فیزیکی-شیمیایی (Eh, PH, T) شوید.

شکل 9 نمودار توزیع ترکیب جنبه‌های ریزکاتن‌های زیستگاهی کلیک‌گذاری گرنتهای اسکارن دری نشان می‌دهد و مقایسه آن‌ها با ترکیب گرنتهای انواع دیگر نشان می‌دهد.

الماندن: Al; اندرادیت: Sp, اسپارتنین: Gr; غلیظ‌النما: SiO2.

جدول 2 محاسبه فرمول ساختاری گرانتهای دری ریزکه بر اساس اندام آمیکوزن.

<table>
<thead>
<tr>
<th>مركب</th>
<th>پیامدی</th>
<th>حاشیه 2-پیامدی</th>
<th>حاشیه</th>
<th>پیامدی 1-پیامدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیمیایی</td>
<td>نمونه</td>
<td>G1-1</td>
<td>G1-2</td>
<td>G1-3</td>
</tr>
<tr>
<td>SiO2</td>
<td>32.4</td>
<td>32.8</td>
<td>32.3</td>
<td>32.3</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Al2O3</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>MnO</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>MgO</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>CaO</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
<td>98.3</td>
</tr>
</tbody>
</table>

عدد کاتیون‌ها به باه 12 اتم آمیکوزن

<table>
<thead>
<tr>
<th>اندام</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp+Al</td>
<td>2.8</td>
<td>0.1</td>
<td>1.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Sp+All</td>
<td>2.8</td>
<td>0.5</td>
<td>1.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Andradite</td>
<td>2.8</td>
<td>0.4</td>
<td>1.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Grossular</td>
<td>2.8</td>
<td>0.4</td>
<td>1.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Pyrope</td>
<td>2.8</td>
<td>0.4</td>
<td>1.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Spesartine</td>
<td>2.8</td>
<td>0.4</td>
<td>1.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.8</td>
<td>2.6</td>
</tr>
</tbody>
</table>
تصویر الکترونی پس پراکندگی (BSE) بلوک کانی در شکل ۱۱ منطقه‌بندی ضعیفی را به ویژه در حاشیه و مرکز بلوک نشان می‌دهد. درصد تغییرات اعضا بازیابی از مرکز به حاشیه بلوک نیز تغییر در اجزای گراسولارد و اسپارتان است به گونه‌ای که در مناطق با درصد اسپارتان بیشتر مقدار درصد گراسولار کمتر است (شکل ۱۱). در شکل ۱۲ نیز درصد تغییرات عضو‌ها انتهایی کانی که از حاشیه به مرکز بلوک ترسیم شده‌اند، بیانگر تغییر مقدار درصد آندرادیت در گراسولار نیست. گرافیک عکس‌های پیش‌تر نشان می‌دهد که در تجربه بلوک کانی می‌تواند در آن‌رژیم‌های مختلف بلوک کانی را در شکل ۱۱ تصویر کانی گارنت و نمونه درصد تغییرات نوع گارنت در راستای پیمایش (مرکز به حاشیه) ریزکواندی الکترونی (داده‌های پیمایش ۱ در جدول ۲).
جزئیات:


برداشت

اسکارن‌های دری ذرشک از دیدگاه کانی‌شناسی از نوع اسکارن‌های گارن زنت هستند که در مجموعه اسکارن‌های این منطقه در گستره‌ای متعددی از انرژی‌های سری مخلوط جامد آندراید-گراسولر با درصد ناجی اسپرسنتن و پیرب فرآوردن گرید به نظر می‌رسد که ترکیب‌های آندرایدی و گراسولری نشان می‌دهد. این نتایج مشابه با درک قرار دادن جزئی از درصد عناصر LREE در جزئیات نشان می‌دهد که نسبت این دو با سنت پلاک بالای Fe باشد. شاره‌های حامل از انجماد می‌کنند. از این نتایج می‌توان به این نتیجه نشان داد که در این شرایط که در ناحیه حاصل از انجماد بوده که نسبت میانگین نزدیک درآمده در کنترل سنت پلاک بالا قرار می‌گیرد و در این شرایط رشد پلاک بالا از گارن‌های با ترکیب گراسولری تشکیل شده‌اند. این گونه
[14] مکی زاده م، رهگشایی م، تفتی پور ب، تفتی پور ص، کامیشیزاده، پارسیمی و سنگ زاگر، اسکارن منطقه‌ی زوو شمال غربی استان بند (بزود)، مجله بلورشناسی و کامی شناسی ایران، شماره ۲ (۱۳۸۹) ص۲۲۲-۲۲۹.