دما- فشارسنجی توده‌ی گراینثوتیدی چشمه بید زاهدان در جنوب خاوری ایران، براساس شیمی کاتی‌های سازنده آن

آمنه خوئی، حبیب الله بیابانگرد، علی احمدی، محمد بومری، کازیو ناکا‌شیما

1- گروه زمین‌شناسی، دانشگاه علوم دانشگاهی سیستان و بلوچستان
2- گروه زمین‌شناسی دانشگاه پایتخت، اسلام‌آباد، تهران

(دریافت مقاله: 1391/07/07، نسخه نهایی: 1391/08/14)

چکیده: توده‌ی گراینثوتیدی چشمه بید در جنوب شرق زاهدان و در استان سیستان و بلوچستان قرار دارد. این توده گراینثوتیدی از نظر ساختاری در مجموعه‌ی فلیتی دگرگون شده، نه به سن انویه واقعی دیده می‌شود از نظر کالوریا این گراینثوتیدی اغلب درای آکستروت، پلاژوکلاژ و بیونتی که در زیر پوشش طبیعی آن می‌باشد. براساس داده‌های حاصل از آنالیز ریزپردازشی، ترکیب امپیبولها از نظر کلیکم بوده و در رده‌ی اکسنجکتیون‌های دمایی و مکانیکی گراینثوتید قرار می‌گیرند. بر اساس روش‌های شیمیایی می‌باشد، این گراینثوتیدی در حداقل بین دو نقطه سیتروفیتیون و بیونتی قرار دارد و با توجه به مقدار 0.33 > Fe(Fe + Mg) فلوتابیترها جدی می‌باشند. ترکیب پلاژوکلاژ‌ها در گستره‌ای از آنچه‌ها بین 19.51 تا 27.84 درصد است. با استفاده از روش فشارسنجی آی‌آ در هوشیار، فشاری که برای تشکیل توده گراینثوتیدی چشمه بید درآورده شد، به حداکثر 3.81 کیلوبار است. در ضمن دمای به‌دست آمده برای تشكیل کانی امپیبول نسبتاً پایین و در حدود 171 درجه سانتی‌گراد در گراینثوتیدی به‌وجود می‌آید.

واژه‌های کلیدی: زاهدان، گراینثوتید چشمه بید، زمین دماسنجی، زمین فشارسنجی، هوشیار.

مقدمه

توده‌ی گراینثوتیدی چشمه بید در گستره‌ی طول‌های جغرافیایی بین ۴۰°۳۰ تا ۴۰°۳۳ و عرض‌های جغرافیایی بین ۲۲°۱۸ تا ۲۲°۲۵ در ۲۵ کیلومتری جنوب شرقی زاهدان در استان سیستان و بلوچستان قرار دارد (شکل 1). این توده بخشی از کمربند گراینثوتیدی زاهدان- سراوان است. این کمربند گراینثوتیدی طیف فلکی متون و گستردگی با روند شمال- جنوب به‌کلی یکی از مهم‌ترین مراکز توده‌های نفوذی زن فلیتی شرق ایران می‌باشد. توده‌های نفوذی در این منطقه بسیار بوده و به مناطق جنوبی و شرقی ایران و نوردان در نزدیکی عبور گرفته (شکل 2 و 3).

امنه‌آخوت آمینه‌چاپی

amene_okhovat@yahoo.com

* نویسنده مسئول، تلفن: ۰۵۱۲۷۶۲۷۴۴ (۲۷۴۴)، پست الکترونیکی:
پیرامون شده است. با توجه به برسی‌های صحرایی و سنگ، نگاره‌ای انجام شده در پیش خشک از مجموعه پلوتوکسی جشنه‌بار در می‌باشد که گراندیم‌برداری به برگ‌داری واحدهای سازندگی نونده و نام‌ور بوده و در زمین‌شناسی استفاده نمی‌کند. در نوار گراندیم‌برداری، تاریک بوده و به دانشگاه‌های اسکن‌برداری، به‌ویژه امینه‌می‌وباید تا به‌کار کردن زمان‌های و این‌ها در نوار گراندیم‌برداری داشته شود. در زمان‌های جداکننده، از کلی‌ها طیف‌گیرنده‌های اساسی این گراندیم‌برداری‌ها بین سنگ‌های فلزی‌های اسکن‌برداری می‌باشد.

شکل 1 نشان‌دهنده راه‌های ارتباطی گسترش مورد بررسی.

روش‌های بررسی

به منظور برسی‌های سنگ‌شناسی از واحدهای سنگی و متناسب با ماهیت مونولوگی برداشت شده از آنها، مقاطع نازک و نازک ضعیف تهی شده و برای بررسی‌های سنگ‌نگاره مورد استفاده قرار گرفتند. پس از هر برسی‌های سنگ‌نگاره 59 تجربه نقطه‌ای از کلی‌ها پلاژیکال، فلدسپار، قلبی‌ها، امینه‌می‌وند. به‌وسیله امینه‌می‌وباید تا به‌کار کردن زمان‌های و این‌ها در نوار گراندیم‌برداری داشته شود. در زمان‌های جداکننده، از کلی‌ها طیف‌گیرنده‌های اساسی این گراندیم‌برداری‌ها بین سنگ‌های فلزی‌های اسکن‌برداری می‌باشد.

زمین‌شناسی منطقه

توده‌ی گراندیم‌برداری جنوبی به سمت احتمال 32 میلیون سال (واحل الیگون) [4] خشکی از نوار گراندیم‌برداری - سرانا است که بر روی کلی شال‌بندی - جنوب خاری در رونه در شب شرق ایران واقع شده است (شکل 3). این واحد فلزی‌های طیف‌گیرنده‌های اساسی این گراندیم‌برداری‌ها بین سنگ‌های فلزی‌های اسکن‌برداری می‌باشد.
درصد حجمی، ارزش حدود 12-17 درصد حجمی، هورنیتند
سیز در حدود 5-10 درصد حجمی، بیوتیت در حدود 10 درصد
حجمی و اسفن در حدود 2 درصد حجمی کانی‌های سنگ را
تشکیل می‌دهند.
فرعی و کریت، سرپیت، کلژیت، کانی‌های دگرسانی واحد
گرانتودیوریت را شامل می‌شوند. از مهم‌ترین ویژگی‌های آن‌ها
فراینی هورنیتند، بیوتیت، نیکود مسکوتی، بافت دانه‌ای و
میرمکیتی (شکل 4) است. میانگین کوارتز در حدود
25 درصد حجمی، پلاژیوکلاز با میانگین در حدود
40 تا 50
بحث و بررسی

به منظور بررسی دقیق رفتار زئوشیمیایی عنصر اصلی در ساختار کاتیون ها و تکمیل بررسی های کاتیون شناسی، پس از بررسی سنجشگر آنالیز نانو نانو، تعداد 5 نقطه از کاتیون های آمفیبول، پلاژیوکلاز، بیوتیت، اسفین مورد بررسی نورد گرافی و الکترونی قرار گرفتند که نتایج آن در مورد کاتیون های آمفیبول، بیوتیت، پلاژیوکلاز در جدول های 13 و 14 مشاهده می شوند.

آمفیبول

در مجموعه های نفوذی چشم بید خصوصاً در سنگ‌های گراندیوریت، آمفیبول یکی از مهم‌ترین و فراوان‌ترین کاتیون
جدول 1 نتایج رز پردازش کانی‌های آمفیبول بر باعث 30 اکستر در گرانولوریت شیمی بید-گرانولوریت است.

<table>
<thead>
<tr>
<th>جمجمه</th>
<th>گرد</th>
<th>گردن/گردن</th>
<th>گردن</th>
<th>گردن</th>
<th>گردن</th>
<th>گردن</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>0.0000</td>
<td>0.0140</td>
<td>0.0306</td>
<td>0.0090</td>
<td>0.0118</td>
<td>0.0174</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.0176</td>
<td>0.0391</td>
<td>0.0419</td>
<td>0.0366</td>
<td>0.0359</td>
<td>0.0355</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.0020</td>
<td>0.0040</td>
<td>0.0040</td>
<td>0.0040</td>
<td>0.0040</td>
<td>0.0040</td>
</tr>
<tr>
<td>Total</td>
<td>0.0176</td>
<td>0.0250</td>
<td>0.0250</td>
<td>0.0250</td>
<td>0.0250</td>
<td>0.0250</td>
</tr>
</tbody>
</table>

جدول 5 نمودار تام Gramaty کانی‌های جمجمه در نمودار تام Gramaty کانی‌های آمفیبول‌ها (7) آمفیبول‌ها بیشتر در زیر رده‌ی مگنتیپور هورتند قرار می‌گیرند.

شکل 5: نمودار تام گراماتی کانی‌های آمفیبول‌ها (7) آمفیبول‌ها بیشتر در زیر رده‌ی مگنتیپور هورتند قرار می‌گیرند.
شکل ۷ تغییرات Ti نسبت به AlIV در آمپیول‌ها. همچنین آمپیول‌ها کمتر از ۵ آتیم Ti در فرمول ساختاری دارند.

(۸) آمپیول‌های منطقه بیشتر در کست‌های آمپیول‌های وابسته به مناطق فورانش (S-Amph) رده بندی تکتونوماکمیکی آمپیول‌های [۸] آمپیول‌هایی که در رده‌بندی این آمپیول‌ها کمتر از ۵ آتیم Ti در فرمول ساختاری دارند.

شکل ۸ رده بندی تکتونوماکمیکی آمپیول‌های [۸] آمپیول‌های وابسته به مناطق فورانش (S-Amph) رده بندی تکتونوماکمیکی آمپیول‌های [۸] آمپیول‌های منطقه بیشتر در کست‌های آمپیول‌های وابسته به مناطق فورانش (S-Amph) رده بندی تکتونوماکمیکی آمپیول‌های [۸]

تعداد ساختاری در پتریکی آمپیول سبب شده تا در دامنه‌گیسترهایی از شرایط دما و فشار ظاهر شوند. اغلب آمپیول برای برآورده های گرانیت‌نوبنی استفاده می‌شود. [۱۰۰] معادله‌ای در رابطه با مقدار Al در هورنینگ برای دستیابی به فشار تولیور آن در سنسه‌گی گرانیت‌نوبنی ارائه گردیده است که فشار، فقط از روی میزان آلمینوم موجود در هورنینگ و بدون نظر گرفتن پارامترهای دیگری چون دما محاسبه می‌شود. این معادله عبارت است از:

\[P = (0.6\text{kbar}) = -3.01 + 4.76\text{Alt} \pm \frac{(T[C^\circ])}{675}/85 \times \{ (\text{Al}) 0.53 + 0.005294 \times (T[C^\circ]) - 675 \} \]

در نمونه‌گیری گرانیت‌نوبنی، فشار برای تولیور هورنینگ ۷۲ کیلو بالای برآورد شده است.

ویبلدر و همکاران [۱۹۴] معادله‌ای زیر را در فشار عادی ۲۰۰۰ کیلو بالای تیمین دمای تولیور هورنینگ همیست با پلاژیولاز ارائه کردند:

\[T = 25.3\text{P(kbar)} + 654.9 \]

بر اساس این روش دمای تولیور کلیه [۲۵۱] درجه‌ای سانتی گراد برآورد شد. در آمپیول‌ها مقدار [۱۱۱] با دما رابطه‌ای مستقیم دارد هر چند این رابطه متغیر از مقدار آب ممکن است [۱۵۱]. فشار بر مقدار آلمینوم هست وجهی [۱۱۱] تاثیر می‌گذارد. ترکیب شیمیایی سنج تاثیر چندانی بر مقدار آلمینوم هست وجهی در شکل بلوری آمپیول ندارد [۱۶۱]. شیلات یادآوری است که حضور هم‌زمان مگنتیت، اسفن و کوارتز همراه آمپیول در گرانیت‌نوبنی نشان دهنده‌گرایزگی بالای اکسیژن در ماکمی سازندی این سنگ‌هایست [۱۸۱].
نتایج حاصل از بررسی بیوتیت‌های موجود در گرانودوریت در جدول ۲. ارائه شده‌اند. این کانی به‌طور معمول توسط بلورهای بی‌شکل و شکلی که در میان دانه‌ها یا یک دسته رخ نیمه مشخص می‌شود و در حدود ۱۵ درصد کانی‌های موجود در سنگ‌ها تشکیل می‌دهد. ترکیب بیوتیت‌های مورد بررسی (شکل ۷) بر پایه رده بندی [۱۸۱۸] از سمت چپ به سمت سپیدرفلیت کشیده شده و با توجه به مقدار جزء بیوتیت‌ها محصول شده و از فلوروبیت‌ها جدای می‌شوند. بیوتیت‌های منطقه پیشرفت در گستره‌های بیوتیت‌های آنلاین قرار گرفته‌اند. از اینجا که ترکیب بیوتیت در سنگ‌های آدرین پس ترکیب ماکاپی است که از آن می‌توان به عنوان یک موارد مشابه برای شیمیایی محیط زمینی ساخته‌شود. ترکیب بیوتیت‌ها به کار رود [۲۶۱۴].

جدول ۲ ترکیب برداشت کانی‌های بیوتیت بر پایه ۲۲ اکسیژن در گرانودوریت چشم‌های بید

<table>
<thead>
<tr>
<th>Bio</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO<sub>2</sub></td>
<td>27,920</td>
<td>28,220</td>
<td>27,920</td>
<td>27,920</td>
<td>28,220</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>22,240</td>
<td>22,240</td>
<td>17,620</td>
<td>17,620</td>
<td>17,620</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>18,890</td>
<td>18,890</td>
<td>15,910</td>
<td>15,910</td>
<td>15,910</td>
</tr>
<tr>
<td>FeO</td>
<td>16,240</td>
<td>16,240</td>
<td>15,520</td>
<td>15,520</td>
<td>15,520</td>
</tr>
<tr>
<td>Fe<sub>2</sub>O<sub>3</sub></td>
<td>22,240</td>
<td>22,240</td>
<td>21,930</td>
<td>21,930</td>
<td>21,930</td>
</tr>
<tr>
<td>MnO</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>MgO</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>CaO</td>
<td>10,800</td>
<td>10,800</td>
<td>10,800</td>
<td>10,800</td>
<td>10,800</td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>1,230</td>
<td>1,230</td>
<td>1,230</td>
<td>1,230</td>
<td>1,230</td>
</tr>
<tr>
<td>P<sub>2</sub>O<sub>5</sub></td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>Total</td>
<td>67,950</td>
<td>67,950</td>
<td>67,950</td>
<td>67,950</td>
<td>67,950</td>
</tr>
<tr>
<td>Si</td>
<td>17,840</td>
<td>17,840</td>
<td>17,840</td>
<td>17,840</td>
<td>17,840</td>
</tr>
<tr>
<td>Ti</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>Al</td>
<td>22,240</td>
<td>22,240</td>
<td>22,240</td>
<td>22,240</td>
<td>22,240</td>
</tr>
<tr>
<td>Fe<sup>2+</sup></td>
<td>22,240</td>
<td>22,240</td>
<td>22,240</td>
<td>22,240</td>
<td>22,240</td>
</tr>
<tr>
<td>Fe<sup>3+</sup></td>
<td>22,240</td>
<td>22,240</td>
<td>22,240</td>
<td>22,240</td>
<td>22,240</td>
</tr>
<tr>
<td>Mn</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>Mg</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>Ca</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>Na</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>K</td>
<td>1,230</td>
<td>1,230</td>
<td>1,230</td>
<td>1,230</td>
<td>1,230</td>
</tr>
<tr>
<td>P</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>SumCat.</td>
<td>148,700</td>
<td>148,700</td>
<td>148,700</td>
<td>148,700</td>
<td>148,700</td>
</tr>
<tr>
<td>AllV</td>
<td>1,849</td>
<td>1,849</td>
<td>1,849</td>
<td>1,849</td>
<td>1,849</td>
</tr>
<tr>
<td>AlIV</td>
<td>1,050</td>
<td>1,050</td>
<td>1,050</td>
<td>1,050</td>
<td>1,050</td>
</tr>
<tr>
<td>Bio</td>
<td>grd</td>
<td>grd</td>
<td>grd</td>
<td>grd</td>
<td>grd</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>SiO₂</td>
<td>17.940</td>
<td>17.940</td>
<td>17.940</td>
<td>17.940</td>
<td>17.940</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.380</td>
<td>1.380</td>
<td>1.380</td>
<td>1.380</td>
<td>1.380</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.040</td>
<td>15.040</td>
<td>15.040</td>
<td>15.040</td>
<td>15.040</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.380</td>
<td>2.380</td>
<td>2.380</td>
<td>2.380</td>
<td>2.380</td>
</tr>
<tr>
<td>MnO</td>
<td>0.430</td>
<td>0.430</td>
<td>0.430</td>
<td>0.430</td>
<td>0.430</td>
</tr>
<tr>
<td>MgO</td>
<td>1.040</td>
<td>1.040</td>
<td>1.040</td>
<td>1.040</td>
<td>1.040</td>
</tr>
<tr>
<td>CaO</td>
<td>0.760</td>
<td>0.760</td>
<td>0.760</td>
<td>0.760</td>
<td>0.760</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.370</td>
<td>0.370</td>
<td>0.370</td>
<td>0.370</td>
<td>0.370</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>Si</td>
<td>3.1280</td>
<td>3.1280</td>
<td>3.1280</td>
<td>3.1280</td>
<td>3.1280</td>
</tr>
<tr>
<td>Ti</td>
<td>0.240</td>
<td>0.240</td>
<td>0.240</td>
<td>0.240</td>
<td>0.240</td>
</tr>
<tr>
<td>Al</td>
<td>2.9740</td>
<td>2.9740</td>
<td>2.9740</td>
<td>2.9740</td>
<td>2.9740</td>
</tr>
<tr>
<td>Fe2+</td>
<td>2.240</td>
<td>2.240</td>
<td>2.240</td>
<td>2.240</td>
<td>2.240</td>
</tr>
<tr>
<td>Fe3+</td>
<td>0.260</td>
<td>0.260</td>
<td>0.260</td>
<td>0.260</td>
<td>0.260</td>
</tr>
<tr>
<td>Mn</td>
<td>0.049</td>
<td>0.049</td>
<td>0.049</td>
<td>0.049</td>
<td>0.049</td>
</tr>
<tr>
<td>Mg</td>
<td>2.518</td>
<td>2.518</td>
<td>2.518</td>
<td>2.518</td>
<td>2.518</td>
</tr>
<tr>
<td>Ca</td>
<td>0.130</td>
<td>0.130</td>
<td>0.130</td>
<td>0.130</td>
<td>0.130</td>
</tr>
<tr>
<td>Na</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>K</td>
<td>0.516</td>
<td>0.516</td>
<td>0.516</td>
<td>0.516</td>
<td>0.516</td>
</tr>
<tr>
<td>P</td>
<td>0.053</td>
<td>0.053</td>
<td>0.053</td>
<td>0.053</td>
<td>0.053</td>
</tr>
<tr>
<td>AlIV</td>
<td>1.1642</td>
<td>1.1642</td>
<td>1.1642</td>
<td>1.1642</td>
<td>1.1642</td>
</tr>
<tr>
<td>AlVI</td>
<td>1.1639</td>
<td>1.1639</td>
<td>1.1639</td>
<td>1.1639</td>
<td>1.1639</td>
</tr>
</tbody>
</table>
پلاژیکارز

پلاژیکارز یکی از برخسته‌ترین کانی‌های گراندوپورت است. این کانی بهصورت نیمه شکل در ابعاد ریز تا متوسط با ماکل پلی سنتنیک در این سنگها حضور دارد. این کانی بهطور میانگین در حدود ۳۷ درصد کانی‌های سنگ را تشکیل می‌دهد. تعدادی از پلاژیکارزهای گراندوپورت با ریز پردازش انتقال شده و نتیجه ریزپردازش آنها در جدول ۳ آورده شده‌اند. مقدار انتقال آنها از ۱۹ تا ۲۸ تغییر می‌کند و میانگین آن ۳۷ درصد است. بدی‌های پلاژیکارز مانند

جدول ۲ نتیجه ریز پردازش کانی‌های فلدسپار بر پایه ۳۲ آکسیون گراندوپورت چشم‌بین

<table>
<thead>
<tr>
<th>Fld.Plg</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>64.6</td>
<td>64.6</td>
<td>64.6</td>
<td>64.6</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>MnO</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>MgO</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>CaO</td>
<td>4.47</td>
<td>4.47</td>
<td>4.47</td>
<td>4.47</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.315</td>
<td>0.315</td>
<td>0.315</td>
<td>0.315</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Si</td>
<td>11.45</td>
<td>11.45</td>
<td>11.45</td>
<td>11.45</td>
</tr>
<tr>
<td>Ti</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Al</td>
<td>2.51</td>
<td>2.51</td>
<td>2.51</td>
<td>2.51</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mg</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ca</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>Na</td>
<td>3.07</td>
<td>3.07</td>
<td>3.07</td>
<td>3.07</td>
</tr>
<tr>
<td>K</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>P</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Sum Cat.</td>
<td>19.90</td>
<td>19.90</td>
<td>19.90</td>
<td>19.90</td>
</tr>
<tr>
<td>Xor</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
</tr>
<tr>
<td>Xab</td>
<td>78.83</td>
<td>78.83</td>
<td>78.83</td>
<td>78.83</td>
</tr>
<tr>
<td>Xan</td>
<td>19.56</td>
<td>19.56</td>
<td>19.56</td>
<td>19.56</td>
</tr>
</tbody>
</table>
Sistan suture zone, eastern Iran. Lithose, 15/3, 221-239.

