dem - فشارسنجی توده‌ی گرانیتیودی چشم‌های زاهدان در جنوب خاوری ایران، براساس شیمی‌کاتی‌های سازنده آن

آمنه آخوند، حیب الله بیابان‌گرد، علی احمدی، محمد بومری، کازیو ناکاشیما

1- گروه زمین‌شناسی، دانشگاه علوم، دانشگاه سیستان و بلوچستان
2- گروه زمین‌شناسی، دانشگاه پایتخت، بابلکه، تاکستان

چکیده: توده‌ی گرانیتیودی چشم‌های زاهدان در جنوب شرق ایران در استان سیستان و بلوچستان قرار دارد. این توده‌ی گرانیتیودی از نظر ساختاری در مجموعه‌ی فيلیتی دگرگون شده‌نیز است. این توده‌ی گرانیتیودی بر روی استاده‌های حاصل از عوامل زیرتربشکی، ترمیم‌کننده‌ای و نیز امیفیسول‌ها زیادی است. در این مقاله، از روش‌های فشارسنجی آی سازندگی توده‌ی گرانیتیودی چشم‌های زاهدان در جنوب شرق ایران استفاده می‌شود. در این مقاله، این توده‌ی گرانیتیودی چشم‌های زاهدان در جنوب شرق ایران، از توده‌های «سیستم نفوذی زن» خلاصه می‌شود.

واژه‌های کلیدی: زاهدان، گرانیتیودی، چشم‌های زاهدان، شیمی‌کاتی‌های سازنده، شیمی‌کاتی‌های سازنده، سیستان و بلوچستان

مقدمه

توده‌ی گرانیتیودی چشم‌های زاهدان در جنوب شرقی ایران در استان سیستان و بلوچستان قرار دارد. این توده‌ی گرانیتیودی از نظر ساختاری در مجموعه‌ی فيلیتی دگرگون شده‌نیز است. این توده‌ی گرانیتیودی بر روی استاده‌های حاصل از عوامل زیرتربشکی، ترمیم‌کننده‌ای و نیز امیفیسول‌ها زیادی است. در این مقاله، از روش‌های فشارسنجی آی سازندگی توده‌ی گرانیتیودی چشم‌های زاهدان در جنوب شرق ایران استفاده می‌شود. در این مقاله، این توده‌ی گرانیتیودی چشم‌های زاهدان در جنوب شرق ایران، از توده‌های «سیستم نفوذی زن» خلاصه می‌شود.

امنه‌امد

amene_okhovat@yahoo.com
روش‌های پروسه‌بندی

به منظور پروسه‌بندی سنجش‌سایی از واحدهای سنج و مناسب سنجش‌سایی، با استفاده از یک ابزار پاتوقی‌گیر یا ابزار پاتوقی‌گیر (Electron Microprobe) مدل JXA-8600، با ولتاژ شتاب دهنده 15 KV، شدت جریان‌های آنترام و زمان شمارش 40 ثانیه انجام گرفت.

زمین‌شناسی منطقه

تودهٔ گرانیتونیه‌ی جنوبی به سمت انتقالی 32 میلیون سال (نواز، ایجی) [24] بخشی از توده‌های گرانیتونیه‌ی جنوبی خاوری در نوار سیلیکون شرق ایران واقع شده است (شکل 2). اندازه‌بندی فلیش‌های طیف‌گردهای از سانگ‌های سیلیکون و سجلس با استفاده از روش‌های فلیش‌شناسی شامل می‌شود که گزارش‌های این گرانیتونیه‌ها بین سنجش‌سایی‌های فلیش‌شناسی انجام شده و با استفاده از دیگرگونی‌های جغرافیایی در سنجش‌سایی
درصد حجمی، ارتوژ ححدود 12-17 درصد حجمی، هورنیلد سبز در حدود 9-12 درصد حجمی، بیوتیت در حدود 10 درصد حجمی و اسفن در حدود 2 درصد حجمی کانی‌های سنگ را تشکیل می‌دهند.

فرعی و گریت، سرپیت، کلیسیت، کانی‌های دگرسانی و یک گریت‌وریتی را شامل می‌شود. از مهم‌ترین ویژگی‌های آنها فراوانی هورنیلد، بیوتیت، نبود سنگ‌کویت، باقر دانیای و مرمکیتی (شکل 4) است. میانگین کوارتز در حدود 25-30 درصد حجمی، پلاژیوکلاز با میزانی در حدود 40 تا 50 درصد حجمی، می‌باشد.

شکل 2 نشان‌دهنده زمین‌شناسی ساده شده توده‌ی آدرین چشمه بید، اقتباسی از نقشه‌ی 1:10000000 زاهدان [6].

دانشگاه آزاد اسلامی واحد شکریه
بحث و بررسی

به منظور بررسی دقیق رفتار زئوئیمیایی عناصر اصلی در ساختر کاتی‌ها و تکمیل بررسی‌ها کاتی‌شناسی، سپاس از بررسی‌های سکم‌گزاری و تهیه‌ی مقاطع نازک صقلی، تعداد ۵۹ نقطه از کاتی‌های آمپیبوی، پلازیوکلاز، بیوتیت، اسفین مورد بررسی رژیداریالی الکترونی قرار گرفتند که نتایج آن در مورد کاتی‌های آمپیبوی، بیوتیت، پلازیوکلاز در جدول‌های ۱.۲ و ۳ دیده می‌شوند.

آمپیبوی

در مجموعه‌ی نمونه‌ی چشم به بیش از ۱۰ نوع از سنگ‌های گرانتودبقری، آمپیبوی بیکی از مهم‌ترین و فراوان‌ترین کاتی

شکل ۳: توده‌ی گرانتودبقری چشم‌های تیتانیومی موجود در توده (دید به سمت جنوب غربی).

شکل ۴: الاف حضور بلوهای کوارتز، پلازیوکلاز، اروز، بیوتیت، هورنلبند در گرانتودبقری منطقه چشم‌های بید به تاشت. فلش یافته می‌شود. مجله بلورشناستی و کمی شناسی ایران

آخوند، بیابانگرد، احمدی، بوری، ناکاشیما

۷۰۶
جایگزینی بیشتر Si در ساختار آمفیبول‌هاست. بر اساس آمفیبول‌های موجود در روماتی و تکنولوژی [9] آمفیبول‌های محلولی بیشتر در گستره آمفیبول‌های وابسته به مناطق فروناش قرار می‌گیرند (شکل 7).

جدول 1 نتایج رژ پردازش کانی‌های آمفیبول بر پایه ۲۳ اکسنسن در گروندورونیت چشم بید گرانتوروبیت است:

<table>
<thead>
<tr>
<th></th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>TiO2</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>Al2O3</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>MnO</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>MgO</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>CaO</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>Na2O</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>K2O</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>P2O5</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
<tr>
<td>Total</td>
<td>۹۷۱۹۰</td>
<td>۹۷۳۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
<td>۹۷۴۹۰</td>
</tr>
</tbody>
</table>

شکل ۵ نمودار نام‌گذاری آمفیبول‌ها [7]. آمفیبول‌ها بیشتر در زیر رده‌های بیسیم‌های هورتیلند قرار می‌گیرند.
شکل 7 تغییرات Ti نسبت به AlIV در آمپیول‌های همی‌امفیپول‌های کمتر از 5% آلیاژ Ti در فرمول ساختاری دانید.

(۱) منطقه شیمیایی آمپیول‌های همی‌امفی‌پول‌های ۶۰٪ در فرمول ساختاری دانت منطقه شیمیایی آمپیول‌های همی‌امفی‌پول‌های ۶۰٪ در فرمول ساختاری دانید.

(B-Amph) رده بندی تکتونوماگماتیکی آمپیول‌های همی‌امفی‌پول‌های وابسته به مناطق فرورسان (S-Amph) قرار می‌گیرند.

برد.

\[P = (0.6 \text{ kbar}) = -3.01 + 4.76 \text{ Alt} \]

\[\{[\text{Ti}]^3 - 675/85 \} \times \{ \text{Al} 0.53 + 0.005294 \times (\text{Ti})^3 - 675/85 \} \]

در نمونه‌های گرانیتونتیدی فشار برای تبلور هورنیسنت 77/20/کیلو بار این فشار شده است.

ویتال و همکاران [۱۵] مقدارهای زیر را در فشار عادی ۲۰/کیلو بار برای تغییرات دانی تبلور هورنیسنت همزیست با پلاژوکلاز ارائه کرده‌اند:

\[T = 25.3 \text{P(kbar)} + 654.9 \]

بر اساس این روش دانی تبلور کلیه ۲۵۱ درجه سانتی گراد برآورد شد. در آمپیول‌های AlIV [۶۱] با دما رابطه‌ای مستقیم دارد. هر چند این رابطه بین این داده و مقدار آب مکا نیز هست [۱۵]. فشار بر مقدار آلمونیوم هست و چیزی [AlIV] نمی‌گذارد. ترکیب شیمیایی سنگ تاثیر چندانی بر مقدار آلمونیوم هست و چیزی در شکل بیلور آلمونیوم ندارد. [۶۱] شیبانی‌ها ارائه کرده‌اند که حضور همزمان مگنتیت، اسفن و کوارتز هر راه امپیول‌های گرانیتونتیدی در گرانیتونتیدی نشان دهندهٔ گرزندگی بالای اکسیژن در ماکمی سازندی این سنگهای سانتی گراد بر این روش به تأثیر گزار بودن دما و فشار بر میزان AlIV هورنیسنت بی خویی به تأثیر گزار بودن دما و فشار بر میان
جدول 2
تالیب‌های موجود در گرانودوریت در جدول ۲، ارائه شده است. این نقاشی به‌طور عادی، پایان‌هایی بی‌شبک تا نیمه، عکس‌هایش با یک دسته رخ‌های سری‌های موجود در سگ‌ها تشکیل می‌دهد. ترکیب بیوتی‌های مورد بررسی (شکل 2) بر پایه وقوع [19, 18] از سمت بیوتیت به سمت سیدروفیلت کشیده شده و با توجه به مقدار جزو بیوتیت‌ها محسوب شده و از فلگوپیت‌ها جدا می‌شوند. بیوتیت‌های منطقه به‌طور کلی رشته‌های این مقاله، بیوتیت‌های ماکبی‌آه، در قرار‌گرفتن گر نیک گری از به‌طور سپسی‌های ماکبی‌آه، دگرگونی و دگرگردهی به‌طور دما، فشار و فعالیت‌های سازدهای چیون، Fe2O3، Si2O5، H2O، SiO2 تا Zn و Cu کاملاً حساسیت [20] با فناوری‌های فیزیک‌شیمی‌ای یاد شده‌های با ۲۴ کاسیم‌های گرانودوریت چشم‌های به بی‌کاتیت ۲۵ آکسیزن در گرانودوریت چشم‌های به

| جدول 2 | نتایج بررسی کانی‌های بیوتیت بر پایه‌ای آکسیزن در گرانودوریت چشم‌های به |
جدول ۲

<table>
<thead>
<tr>
<th>Bio</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
<th>grd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۳۷/۴۹۰</td>
<td>۳۸/۷۱۰</td>
<td>۳۸/۶۵۰</td>
<td>۳۸/۶۲۰</td>
<td>۳۸/۴۹۰</td>
<td>۳۸/۴۹۰</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۱/۵۸۰</td>
<td>۲/۷۶۰</td>
<td>۲/۸۰۰</td>
<td>۲/۷۲۰</td>
<td>۲/۷۲۰</td>
<td>۲/۷۲۰</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۱۵/۴۷۰</td>
<td>۱۵/۳۷۰</td>
<td>۱۵/۳۷۰</td>
<td>۱۵/۳۷۰</td>
<td>۱۵/۳۷۰</td>
<td>۱۵/۳۷۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۴/۴۹۰</td>
<td>۱۴/۴۹۰</td>
<td>۱۴/۴۹۰</td>
<td>۱۴/۴۹۰</td>
<td>۱۴/۴۹۰</td>
<td>۱۴/۴۹۰</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
</tr>
<tr>
<td>MnO</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
</tr>
<tr>
<td>MgO</td>
<td>۱/۱۰۰</td>
<td>۱/۱۰۰</td>
<td>۱/۱۰۰</td>
<td>۱/۱۰۰</td>
<td>۱/۱۰۰</td>
<td>۱/۱۰۰</td>
</tr>
<tr>
<td>CaO</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
</tr>
<tr>
<td>K₂O</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
</tr>
<tr>
<td>Total</td>
<td>۳۸/۴۹۰</td>
<td>۳۸/۴۹۰</td>
<td>۳۸/۴۹۰</td>
<td>۳۸/۴۹۰</td>
<td>۳۸/۴۹۰</td>
<td>۳۸/۴۹۰</td>
</tr>
<tr>
<td>Si</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
</tr>
<tr>
<td>Ti</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
</tr>
<tr>
<td>Al</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
</tr>
<tr>
<td>Fe2+</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
<td>۲/۳۸۰</td>
</tr>
<tr>
<td>Fe3+</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
</tr>
<tr>
<td>Mn</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
</tr>
<tr>
<td>Mg</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
<td>۰/۱۱۰</td>
</tr>
<tr>
<td>Ca</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
</tr>
<tr>
<td>Na</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
<td>۰/۱۸۰</td>
</tr>
<tr>
<td>K</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
<td>۵/۳۷۰</td>
</tr>
<tr>
<td>P</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
<td>۰/۳۷۰</td>
</tr>
<tr>
<td>Sumcat.</td>
<td>۱۹/۴۹۰</td>
<td>۱۹/۴۹۰</td>
<td>۱۹/۴۹۰</td>
<td>۱۹/۴۹۰</td>
<td>۱۹/۴۹۰</td>
<td>۱۹/۴۹۰</td>
</tr>
<tr>
<td>AlIV</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
</tr>
<tr>
<td>AlVI</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
<td>۱/۴۹۰</td>
</tr>
</tbody>
</table>

شکل ۸: ترکیب بیوتیتهای مورد بررسی در نمونه Al در مقایسه Fe/Fe + Mg.
از نوع الیوکلازند. به عقیده[2] روند خطی آنتوریت نسبت به K_2O بیانگر این است که پلاژیوکلاز سدیم و کلسیم‌دار نسبت به فلورائتریبهشتری که در فاصلهِ مکانیسم (شکل 9) نمودار تغییرات Fet به درصد An نشان می‌دهد که با کاهش درصد آنتوریت در پلاژیوکلاز میزان آهن نیز کاهش می‌یابد [شکل 29، 38]. در حقيقة، با جایگزینی پیش از ساختار پلاژیوکلاز عارضه با کاهش درصد آنتوریت جایگزین کنتری برای آهن باقی خواهد ماند.

پلاژیوکلاز یکی از برچسب‌های کناره‌گیری‌های گراندیوریت است. این کناره‌گیری به‌صورت نیمه شکلگیری با یک شکل در ابعاد زیادی متوسط با ماکل بیلی سنتنیک در این سنگها حضور دارد. این کناره‌گیری طور مانگ‌ها در حدود 37 درصد کالیای سنگ را تشکیل می‌دهد. نتایج از پلاژیوکلاز‌های گراندیوریت با ریز پدرازه‌انالیزش همانند نتایج آری و نرده‌انالیزش آن‌ها در جدول 3 آورده شده‌اند. مقدار آنتوریت آن‌ها از 19.81 تا 22.78 تغییر می‌کند و میانگین آن 23.98 درصد است. بنابراین پلاژیوکلاز‌های منطقه نتایج 3 نتایج ریز پدرازه کانه‌های فلسفی بر پایه‌ی 32 اکسیژن در گراندیوریت‌های جنوبی بید زاهدان در...

جدول 3 نتایج ریز پدرازه کانه‌های فلسفی بر پایه‌ی 32 اکسیژن در گراندیوریت‌های جنوبی بید زاهدان

<table>
<thead>
<tr>
<th>Fld.Plg</th>
<th>gr</th>
<th>gr</th>
<th>gr</th>
<th>gr</th>
<th>gr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>64.66</td>
<td>64.399</td>
<td>64.846</td>
<td>64.774</td>
<td>64.239</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO$_3$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>9.051</td>
<td>4.466</td>
<td>5.311</td>
<td>2.961</td>
<td>3.396</td>
</tr>
<tr>
<td>K_2O</td>
<td>0.329</td>
<td>0.122</td>
<td>0.195</td>
<td>0.185</td>
<td>0.387</td>
</tr>
<tr>
<td>p_2O$_5$</td>
<td>272</td>
<td>248</td>
<td>272</td>
<td>272</td>
<td>272</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>25517</td>
<td>4.239</td>
<td>2.497</td>
<td>2.868</td>
<td>2.868</td>
</tr>
<tr>
<td>Fe3+</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>2.778</td>
<td>2.778</td>
<td>2.778</td>
<td>2.778</td>
<td>2.778</td>
</tr>
<tr>
<td>Na</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
<td>3.20</td>
</tr>
<tr>
<td>K</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
</tr>
<tr>
<td>P</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sum Cat.</td>
<td>19.962</td>
<td>19.962</td>
<td>19.962</td>
<td>19.962</td>
<td>19.962</td>
</tr>
<tr>
<td>Xor</td>
<td>0.847</td>
<td>0.847</td>
<td>0.847</td>
<td>0.847</td>
<td>0.847</td>
</tr>
<tr>
<td>Xab</td>
<td>4.683</td>
<td>4.683</td>
<td>4.683</td>
<td>4.683</td>
<td>4.683</td>
</tr>
<tr>
<td>Xan</td>
<td>19.5612</td>
<td>21.1168</td>
<td>34.5722</td>
<td>34.5722</td>
<td>34.5722</td>
</tr>
<tr>
<td></td>
<td>Fld. Plg</td>
<td>grd</td>
<td>grd</td>
<td>grd</td>
<td>grd</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>SiO₂</td>
<td>65.220</td>
<td></td>
<td></td>
<td>65.710</td>
<td>61.710</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.240</td>
<td></td>
<td></td>
<td>0.240</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>22.935</td>
<td>22.660</td>
<td></td>
<td>22.935</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.87</td>
<td>0.490</td>
<td>0.650</td>
<td>0.490</td>
<td>0.650</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>4.680</td>
<td>3.070</td>
<td>2.940</td>
<td>3.070</td>
<td>2.940</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td></td>
<td>0.370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.880</td>
<td>4.880</td>
<td>4.880</td>
<td>4.880</td>
<td></td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.113</td>
<td>0.113</td>
<td>0.113</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.848</td>
<td>1.267</td>
<td>1.267</td>
<td>1.267</td>
<td>1.267</td>
</tr>
<tr>
<td>Na</td>
<td>2.380</td>
<td>3.570</td>
<td>3.570</td>
<td>3.570</td>
<td>3.570</td>
</tr>
<tr>
<td>K</td>
<td>0.577</td>
<td>0.577</td>
<td>0.577</td>
<td>0.577</td>
<td>0.577</td>
</tr>
<tr>
<td>P</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
</tr>
<tr>
<td>Xab</td>
<td>75.7950</td>
<td>76.6787</td>
<td>76.6787</td>
<td>76.6787</td>
<td>76.6787</td>
</tr>
<tr>
<td>Xan</td>
<td>22.7317</td>
<td>22.8905</td>
<td>22.8905</td>
<td>22.8905</td>
<td>22.8905</td>
</tr>
</tbody>
</table>

شکل ۹. سبد مولیه مواد وری در نمودارهای (الف) MgO، FeO₄ و Al₂O₃ و (ب) MgO. (پیشینه)
Sistan suture zone, eastern Iran. Lithospe, 15/3, 221-239.

[22] Abbot R.N., Clarke D.B., “Hypothetical liquidus relationships in the subsytem $Al_{2}O_{3}$-FeO-MgO Projected from quartz, alkali feldspar and plagioclase for $(H_{2}O)<1$”, Canadian Mineralogist 17(1979) 549-560.