زئوئیمی و سنگ‌شناسی مجموعه پلوتونیکی کومیش جنوب سیبزوار

مجتبی رستمی، سید احمد مظاهری

گروه زئوئیمی، دانشکده علوم، دانشگاه فردوسی مشهد

چکیده: مجموعه پلوتونیکی کومیش در ۳۰ کیلومتری جنوب شهرستان سیبزوار واقع شده و از نظر رهمتی زمین‌ساختی، به‌خیز از منطقه‌ی سیبزوار است. این منطقه‌ی جنوب سفر راه‌آهن آن شامل کنگلومرا، نفو، ماسه‌سنگ‌ها، سنگ بالاپوش و واحدهای توقف و رادیولایت و آندزیت با سن قرنطین فوق‌الهرس‌هاستند. این مجموعه از دو گونه پلوتونیکی تشکیل شده که عبارتند از: (۱) مجموعه گرانیت‌های واقع در شمال کومیش که بیشتر از مونزوتران و پیروسک‌های گرانیت‌بردار بتای‌ها و بالا‌پوش تشکیل شده‌اند. این سنگ‌ها از نظر زئوئیمی آگهی-قبایلی، بالاپوش و از نوع ۱ هستند. (۲) مجموعه کوبور-ریزیت‌های واقع در جنوب کومیش، که از سنگ‌های پلوتونیک مختلف مانند غرب، دیورپت و گارابوردیت با سن قرنطین بالایی تشکیل شده است. این سنگ‌ها از نظر زئوئیمی سری تولتنیکی و هم‌خانواده، از نیب ۱ هستند. این دو مجموعه در زمین‌ساختی فیس‌های آنتشهری واکنشی به حادثه‌های فعال قاره‌ای به‌وجود آمده و با تکیه بر داده‌های زئوئیمی و روابط صحرایی کاوش‌گاه مامگانی مجموعه پلوتونیکی با پیش‌گزاری آنت‌کامپاست و این سنگ‌ها در محیط قاره‌ای به‌وجود آمده. بنابراین، این سنگ‌ها به‌طور کلی از نظر زئوئیمی کوه و صخره‌ای توده‌ها به‌صورت سنوزیستی و نادریجی است. این نوع شکل و هم‌جواری نشنال‌گردن‌های و واکنش‌های شیمیایی بین مامگان‌ها و گرانیت‌های دیورپت‌های مشابه شده‌است.

واژه‌های کلیدی: دیورپت، گرانیت، فیس‌های آنت‌کامپاست، کومیش، سیبزوار

مقدمه

مجمع‌الجزایر پلوتونیکی کومیش در ۳۰ کیلومتری جنوب شهرستان سیبزوار قرار گرفته و از نظر زئوئیمی و سنگ‌ساختی به‌خیز از راه‌آهن آن شامل کنگلومرا، نفو، ماسه‌سنگ‌ها، سنگ بالاپوش و واحدهای توقف و رادیولایت و آندزیت با سن قرنطین فوق‌الهرس‌هاستند. این مجموعه از دو گونه پلوتونیکی تشکیل شده که عبارتند از: (۱) مجموعه گرانیت‌های واقع در شمال کومیش که بیشتر از مونزوتران و پیروسک‌های گرانیت‌بردار بستای‌ها و بالاپوش تشکیل شده‌اند. این سنگ‌ها از نظر زئوئیمی آگهی-قبایلی، بالاپوش و از نوع ۱ هستند. (۲) مجموعه کوبور-ریزیت‌های واقع در جنوب کومیش، که از سنگ‌های پلوتونیک مختلف مانند غرب، دیورپت و گارابوردیت با سن قرنطین بالایی تشکیل شده است. این سنگ‌ها از نظر زئوئیمی سری تولتنیکی و هم‌خانواده، از نیب ۱ هستند. این دو مجموعه در زمین‌ساختی فیس‌های آنت‌کامپاست واکنشی به حادثه‌های فعال قاره‌ای به‌وجود آمده و با تکیه بر داده‌های زئوئیمی و روابط صحرایی کاوش‌گاه مامگانی مجموعه پلوتونیکی با پیش‌گزاری آنت‌کامپاست و این سنگ‌ها در محیط قاره‌ای به‌وجود آمده. بنابراین، این سنگ‌ها به‌طور کلی از نظر زئوئیمی کوه و صخره‌ای توده‌ها به‌صورت سنوزیستی و نادریجی است. این نوع شکل و هم‌جواری نشنال‌گردن‌های و واکنش‌های شیمیایی بین مامگان‌ها و گرانیت‌های دیورپت‌های مشابه شده‌است.

ناوگانگاری، پترولوز و تنی فرآیندهای وابسته به تشکیل مجموعه‌های پلوتونیکی منطقه کومیش از سه مرحله‌ای اصلی بوده است. ابتدا، از ۳۰ نمونه از سنگ‌های منطقه برداشت شده است و در این نمونه‌ها نکاتی از روش‌های تشخیص گرفته و گونه و سنگ‌های پلوتونیکی بین روش گردیده است. این نمونه‌ها از سه‌گانه مجمع‌الجزایر پلوتونیکی به‌جای است.
در این روش برای بررسی متغیرهای مختلف، ابزارهای مختلفی مانند XRF، igpet، GCXKi و به همراهی مورد استفاده از نرم‌افزارهای لازم نهایی سیستم کامپیوتری مورد استفاده از داده‌ها در پختن نفوذی و نفوذی کروز صورت می‌گیرد. بررسی ویژگی‌های مختلف صورت در پختن داده‌ها نیز بررسی شده است. در این آزمایشگاه، مجموعه ابزارها به همراه نرم‌افزارهای مختلفی مورد استفاده قرار دارد. این تحقیق توسط ایوانی گزارش شده است.
درصد) و هورنبلند (10 درصد) کانی‌های اصلی تشکیل دهنده این سنگ‌ها هستند. بلوه‌های باکس‌پلاک‌های خود ریخت و نیمه شکل‌دار و نیمه شکل‌دار و یا شکل‌دار و دایره چند رنگی سبز تا قهوه‌ای است و به کریستی تبیین شده است. کانی‌های فرعی شامل آبی‌رنگ و کاهی و نیمه شکل (شکل ۱، پ).

درصد) و هورنبلند (10 درصد) کانی‌های اصلی تشکیل دهنده این سنگ‌ها هستند. بلوه‌های باکس‌پلاک‌های خود ریخت و نیمه شکل‌دار و نیمه شکل‌دار و یا شکل‌دار و دایره چند رنگی سبز تا قهوه‌ای است و به کریستی تبیین شده است. کانی‌های فرعی شامل آبی‌رنگ و کاهی و نیمه شکل (شکل ۱، پ).

شکل ۱: نقشه زمین‌شناسی منطقه ی مورد بررسی.

شکل ۲: تفاوت دارنده در سنگ‌های پلازوکلاز (منطقه B) تفاوت بافت افینیک و ساپاتفیک در دو دوپلیهای منطقه مورد بررسی (B)
سنجهای حدواست: رخم‌مندی های صحرای این سنجها با سبک و سیاست منطقه‌ای مورد بررسی و به‌دست‌ آمدن اتفاق‌های منطقه‌ای رخم‌مندی را خواهد اختصاص داد. با یک روند مشابه ...

آمیزی‌دیور: این سنجها در منطقه‌ای مستقل بلورین با شاخص رگی مزورکات و دارای رنگ سبز تیره‌ای تا سبز روشن بوده و در بعضی از بلورها پلاژیوکلار و آمیزی‌دیور با چشمرد غیر مسلم قابل تشخیص است. این اتفاق‌های منطقه‌ای در منطقه‌ای هیپولیموسرفیک گرنشی افسون می‌باشد. کلیه‌های اصلی آن پلاژیوکلار (۴۵۰۰-۵۰۰۰ سد) و آمیزی‌دیور (۵۰۰۰-۶۰۰۰ سد) است. پلاژیوکلار از انواع اولیه ترین و به‌صورت رخم‌مندی تا شکل‌دار می‌باشد. میان‌های این منطقه شاخصی می‌باشد که می‌تواند با شاخص رگی مزورکات و دارای رنگ سبز تیره‌ای تا سبز روشن بوده و در بعضی از بلورها پلاژیوکلار و آمیزی‌دیور با چشمرد غیر مسلم قابل تشخیص است. این اتفاق‌های منطقه‌ای در منطقه‌ای هیپولیموسرفیک گرنشی افسون می‌باشد. کلیه‌های اصلی آن پلاژیوکلار (۴۵۰۰-۵۰۰۰ سد) و آمیزی‌دیور (۵۰۰۰-۶۰۰۰ سد) است. پلاژیوکلار از انواع اولیه ترین و به‌صورت رخم‌مندی تا شکل‌دار می‌باشد. میان‌های این منطقه شاخصی می‌باشد که می‌تواند با شاخص رگی مزورکات و دارای رنگ سبز تیره‌ای تا سبز روشن بوده و در بعضی از بلورها پلاژیوکلار و آمیزی‌دیور با چشمرد غیر مسلم قابل تشخیص است. این اتفاق‌های منطقه‌ای در منطقه‌ای هیپولیموسرفیک گرنشی افسون می‌باشد. کلیه‌های اصلی آن پلاژیوکلار (۴۵۰۰-۵۰۰۰ سد) و آمیزی‌دیور (۵۰۰۰-۶۰۰۰ سد) است. پلاژیوکلار از انواع اولیه ترین و به‌صورت رخم‌مندی تا شکل‌دار می‌باشد. میان‌های این منطقه شاخصی می‌باشد که می‌تواند با شاخص رگی مزورکات و دارای رنگ سبز تیره‌ای تا سبز روشن بوده و در بعضی از بلورها پلاژیوکلار و آمیزی‌دیور با چشمرد غیر مسلم قابل تشخیص است. این اتفاق‌های منطقه‌ای در منطقه‌ای هیپولیموسرفیک گرنشی افسون می‌باشد. کلیه‌های اصلی آن پلاژیوکلار (۴۵۰۰-۵۰۰۰ سد) و آمیزی‌دیور (۵۰۰۰-۶۰۰۰ سد) است. پلاژیوکلار از انواع اولیه ترین و به‌صورت رخم‌مندی تا شکل‌دار می‌باشد. میان‌های این منطقه شاخصی می‌باشد که می‌تواند با شاخص رگی مزورکات و دارای رنگ سبز تیره‌ای تا سبز روشن بوده و در بعضی از بلورها پلاژیوکلار و آمیزی‌دیور با چشمرد غیر مسلم قابل تشخیص است. این اتفاق‌های منطقه‌ای در منطقه‌ای هیپولیموسرفیک گرنشی افسون می‌باشد. کلیه‌های اصلی آن پلاژیوکلار، کوارتز و …
پیروکسن گراندبوریت: رختمن این واحد در شمال غربی منطقه قرار دارد. در نمونه دستی تمام بلوبرین با شاخه رنگ‌های هولولوکوکرات و دارای رنگ روشن و بلافاصله قابل تشخیص است. از نظر میکروسکوپی به نظر می‌رسد که بین نمونه‌ها بیش از یک نمونه تشکیل دهنده این سطح‌ها می‌باشد. در این واحد می‌توان به گروه‌های زیر که از ترتیب زیربرورندی آمده باشد:
1. نمونه‌هایی که در آنها پیروکسن گراندبوریت و گراونت‌ها می‌باشند.
2. نمونه‌هایی که در آنها پیروکسن گراندبوریت و گراونت‌ها می‌باشند.

دیده‌شده: در نمونه‌هایی که در آنها پیروکسن گراندبوریت و گراونت‌ها می‌باشند، بیش از یک نمونه رابطه با یک دیگر وجود دارد. در این واحد می‌توان به نمونه‌هایی که در آنها پیروکسن گراندبوریت و گراونت‌ها می‌باشند.

اثاره کردن (شکل 3، ج، خ) رابطه کیفیتی و شکل‌گیری در پیروکسن گراندبوریت و گراونت‌ها می‌باشند. در این واحد می‌توان به نمونه‌هایی که در آنها پیروکسن گراندبوریت و گراونت‌ها می‌باشند.

شکل 3 ارتفاع، شکل، رنگ و شکل‌گیری در پیروکسن گراندبوریت و گراونت‌ها می‌باشند. در این واحد می‌توان به نمونه‌هایی که در آنها پیروکسن گراندبوریت و گراونت‌ها می‌باشند.

شکل 3 ارتفاع، شکل، رنگ و شکل‌گیری در پیروکسن گراندبوریت و گراونت‌ها می‌باشند. در این واحد می‌توان به نمونه‌هایی که در آنها پیروکسن گراندبوریت و گراونت‌ها می‌باشند.

شکل 3 ارتفاع، شکل، رنگ و شکل‌گیری در پیروکسن گراندبوریت و گراونت‌ها می‌باشند. در این واحد می‌توان به نمونه‌هایی که در آنها پیروکسن گراندبوریت و گراونت‌ها می‌باشند.

شکل 3 ارتفاع، شکل، رنگ و شکل‌گیری در پیروکسن گراندبوریت و گراونت‌ها می‌باشند. در این واحد می‌توان به نمونه‌هایی که در آنها پیروکسن گراندبوریت و گراونت‌ها می‌باشند.
جدول 1: نتایج آنالیز XRF نمونه‌های مورد بررسی.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>نام نسک</td>
<td>کانی</td>
</tr>
<tr>
<td>X</td>
<td>4995</td>
<td>5687</td>
<td>4982</td>
<td>5585</td>
<td>5184</td>
<td>5923</td>
<td>4982</td>
<td>5687</td>
<td>4995</td>
<td>5585</td>
<td>5184</td>
<td>5923</td>
</tr>
<tr>
<td>Y</td>
<td>2118</td>
<td>2119</td>
<td>2118</td>
<td>2119</td>
<td>2118</td>
<td>2119</td>
<td>2118</td>
<td>2119</td>
<td>2118</td>
<td>2119</td>
<td>2118</td>
<td>2119</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.78</td>
</tr>
<tr>
<td>AI2O3</td>
<td>18.82</td>
</tr>
<tr>
<td>FeO</td>
<td>4.94</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11</td>
</tr>
<tr>
<td>Na2O</td>
<td>1.34</td>
</tr>
<tr>
<td>K2O</td>
<td>0.84</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.10</td>
</tr>
<tr>
<td>LOI</td>
<td>1.23</td>
</tr>
<tr>
<td>Total</td>
<td>99.54</td>
</tr>
<tr>
<td>Rb</td>
<td>10</td>
</tr>
<tr>
<td>Ba</td>
<td>18</td>
</tr>
<tr>
<td>Th</td>
<td>0.03</td>
</tr>
<tr>
<td>Nb</td>
<td>0.3</td>
</tr>
<tr>
<td>Sr</td>
<td>17.88</td>
</tr>
<tr>
<td>Zr</td>
<td>37</td>
</tr>
<tr>
<td>Y</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>44</td>
</tr>
<tr>
<td>Cr</td>
<td>77</td>
</tr>
<tr>
<td>Co</td>
<td>5</td>
</tr>
<tr>
<td>Ni</td>
<td>80</td>
</tr>
<tr>
<td>Cu</td>
<td>44</td>
</tr>
<tr>
<td>Zn</td>
<td>168</td>
</tr>
<tr>
<td>Pb</td>
<td>32</td>
</tr>
<tr>
<td>Ce</td>
<td>24</td>
</tr>
<tr>
<td>Sc</td>
<td>1</td>
</tr>
<tr>
<td>Ta</td>
<td>0.11</td>
</tr>
<tr>
<td>Cr</td>
<td>2.3</td>
</tr>
<tr>
<td>Mo</td>
<td>4</td>
</tr>
<tr>
<td>Ga</td>
<td>2</td>
</tr>
<tr>
<td>Cl</td>
<td>0.15</td>
</tr>
<tr>
<td>S</td>
<td>0.001</td>
</tr>
</tbody>
</table>

نمودارهای هارک و واحدهای مجموعه مورد بررسی نشان می‌دهند که نمونه‌ها فاقد همبودی هستند (شکل ۵). میانگین کل سرب و Fe₂O₃، MnO، TiO₂ به کاهش می‌گذراند و به اصل نسبت از برآوردهای کلاسیک برخوردارند. که این تغییرات می‌تواند ناشی از جایگزینی ایجاد شود از ساختار کلیه فرآیند مراحل اولیه تیول جایی در ماکم باشد و چالیس مقدار SiO₂ با افزایش مقدار Al₂O₃ و ROND CaO به روند کاهشی دارد که روند طبیعی جایی در نشان می‌دهد. با افزایش مقدار SiO₂ به روند کاهشی دارد.

شکل ۵ تغییر عناصر اصلی در مقیاس SiO₂ (%) علائم مانند شکل ۶.

شکل ۶ نمودار Y برای تشخیص جایی در ذوب بخشی (10) بر اساس موقعیت فراگربیر نمونه‌ها. نمونه‌های کارتوپونه‌ی مورد بررسی از روند تیول جایی به‌طور می‌کند.
عناصر کمیاب: تغییرات عناصر کمیاب نسبت به SiO۲ نشان داده شدهاند. جفت‌های ملاحظه‌هایی می‌شود با افزایش Sr و Zr افزایش Zr و Sr مقدار ناوارگر عمل می‌کند و با پیش‌ترین عمل جدایی در کلیه‌های واحدها سنگی مراحلی از جدایی‌بندی نشان می‌دهد. در کلیه‌های زیرک یا نیکلیت‌ها Zr به دلیل دارا بودن ورودی بالا وارد کلیه‌های سنتگساز رایج نیست و کلیه مخلوط به خود به عنوان کلیه‌های لیزر و نیز توانده می‌شود که این نمایندگان محدود نقش از خود نشان می‌دهد که این نمایندگان محدود نقش با پرداختن سنتگسازی این سنگ‌های باشد. (شکل 8).

جایگاه زمین‌ساختی مجموعه بلوتوئونیک کوه میش

همچنین، نشان داده شده که بر اساس

مقدارهای بلوتوئونیک کوه میش ریسمنی می‌شود. برای

نحوه سختی و احکام مشاهده می‌شود که بر اساس

مقدارهای زمین‌ساختی کوه میش را می‌تواند باشد. در کلیه‌های

مقدار Zr نشان می‌دهد که این نمایندگان محدود نقش یا محدود نقش خود نشان می‌دهد که این نمایندگان محدود نقش با بازه

اهامیت جدایی‌بندی Zr به دلیل دارا بودن ورودی بالا وارد کلیه‌های Mg نشان می‌دهد که این نمایندگان محدود نقش یا محدود نقش خود نشان می‌دهد که این نمایندگان محدود نقش

با پرداختن سنتگسازی این سنگ‌های باشد. (شکل 8).

شکل 7 نمودارهای تغییرات SiO۲ نسبت به عناصر کمیاب [14].
بودن مقدار Th^{230} همیشه در نمونه برابر اینهای هزموی. البته در مقاله $\text{Rb}^{87}/\text{Rb}^{86}$ به طور معمول گرایش‌های هزموی با بحران در این دسته‌های هزموی قوس آتششناختی جدای متصل است. کنن. نیز مورد استفاده قرار گرفته است. جانکه این نمونه‌ها نشان می‌دهد، تمامی نمونه‌ها در سطحی‌های گرایشهای قوس‌های آتششناختی واقع شده‌اند (شکل 9).}

سنتز‌زایی

یکی از فرآیندهای موثر در تشکیل مجموعه‌های پلیونیک در محیط‌های قوس آتششناختی وابسته به فرآیندهای قاره‌ها، اختلاف مگامی‌ای است (1:16). و دوباره از پژوهشگران ویژگی‌های دارای بودن پرومونش‌های مختلف را در دنیای بولونیک- های ویژگی‌های دلخیه اختلاف مگامی‌ای دانستند که طی جریانی که مکان‌های ریفیکتر میزان مشابه را مورد هجوم قرار یافته گزارش‌های سیستم تحت $\text{Rb}^{87}/\text{Rb}^{86}$ بازی می‌خواند. حقیقت اینجا که نیز $\text{Rb}^{87}/\text{Rb}^{86}$ در داخل یک مکان‌های بارزی در صورت این دیده‌بودن این سیستم پیش‌تر را مورد است. زیرا در این نمونه‌ها پیش‌تر را در محل تماس منجمد K_2O- تدفین از داده‌های آنالیز عناصر اصلی Al_2O_3, SiO_2, $\text{FeO}/(\text{FeO}+\text{MgO})$- SiO_2 کمیاب $\text{Nb}-\text{Y}$ برای تعیین زمین ساختمان شود. Nb^{91}- Y تفاوت‌های آلیپی از نویزهای فرآیند شاید قاره‌ای فعال آن‌ها که هر یک از سری‌های آنکه کمیابی با نگین شدنی است. هستند، اگر قابل تشخیص خواهد بود (13). لذا برای LILE جدایی این دو زمین ساختمان از $\text{Rb}^{87}/\text{Rb}^{86}$ استفاده شده و مشاهده می‌شود که نمونه‌ها در قلمرو گرایشهای قوس آتششناختی و هزموی با بحران قرار دارند (شکل 9). اما انتظار می‌رود که مکان‌های هزموی با بحران، با دانستن از ترکیب‌های گدازه‌ی نیز برای پرداختن به داده‌های نیز Hg- Hg، و با پرداختن به داده‌های پرداخت این درست به نتایج موردی نسبت به نمونه‌های که در منطقه‌ی مورد بررسی جنین در سنتز‌زایی محتوای Th^{230} و $\text{Rb}^{87}/\text{Rb}^{86}$ مورد بررسی است و نیز دقتی‌تر می‌تواند گرایشهای هزموی با بحران منطقه‌ی چنین نبودن و جنوب غربی انگلستان است که از $\text{Rb}^{87}/\text{Rb}^{86}$ با نیز در داده‌های نسبت به محتوای بالای $\text{Rb}^{87}/\text{Rb}^{86}$ و با نسبت Th^{230} از ویژگی‌های خاص گرایشهای هزموی با بحران این است اما بالا.
شده، کرانه‌های انجماد سریع را پس‌دار [۱] ولی این نوع کرانه سریع در هیچ‌کدام از مراحلی بروینومهای موجود در گرینوتوپی مس آن در و بروینومهای بخش مرکزی بیشتر دارای خاصیت و تدریجی است [۲]. با این وجود باید به عدم وجود نمک‌های فراکسی و تدریجی در مرز بین سنگ‌های مافیک، حدود مافیک و بی‌نوع سنگ‌شناسی و کلی شناسی در آنها، تأثیر فراکسی اختلاط ماگماهای مافیک، حدود و رابطه داشت.

در نمونه‌های عکس‌برداری که با اساس داده‌های [۱۸] نسبت به گوشت‌های آبی به‌نها شده‌اند (شکل۱)، تهیه شده‌اند (شکل۱)، نسبت به گوشت‌های آبی به‌نها شده‌اند (شکل۱) (K,Rb) LIL و غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی فرو ران شده است. همچنین غنی‌شدنی از عناصر (Ti,Nb,Th) HFS دیده می‌شود که از سرسته‌های ماگمایی وابسته به رزروشی F

شکل ۹ نمونه‌برداری Y/Nb و نمونه‌برداری Nb/Y + Nb /Rb/Y + Nb اتفاقی نظر می‌گیرد. علائم مانند شکل ۶

شکل ۱۰ نمونه‌برداری یکه‌برنگانه نشته نسبت اولیه برای سنگ‌های منطقه‌ی مورد بررسی به گوشته‌نیه‌ی شده‌اند (شکل۱)
برداشت
براساس جمع‌نده‌ی اطلاعات به دست آمده از بررسی‌های صحرایی سنتنگ‌های و نتایج آنالیزهای زئوشیمیایی نمونه‌های منطقه‌ی مورد بررسی، نتایج زیر قابل ذکرند: (1) این توده حاصل تزریق متوالی دو فاز ماماگی است. ماماگی اسیدی به دورین سنگ‌ها حذف می‌گردد. این موضوع با توجه به این که تمامی نمونه‌ها در رده B2 [22] در نمودار R1-R2 در قمرها جدا شده‌اند. گوشته‌های طرح شده‌اند. همکلاusal دارد.

مراجع
[1] جعفریان م، جلالی ع، نیک‌نامه 1381/1 شستم، سازمان زمین‌شناسی کشور (1377).
[2] امینی ص، سعیدی ع، گوهرشاهری، بررسی فرآیند میتاسوگماتیسم در محل هم‌جواری توده‌ها گرانیت‌نوی‌دی جنوب سیبرژا بین توده سب و وکانیک کومیش، پیستون گردهمایی علومزیستی (1380).
[3] گوهرشاهری، امینی ص، سعیدی ع، تفسیر علل وجود اکثریت و زئولیت در توده گرانیت‌نوی‌دی جنوب سیبرژا بین توده سب و وکانیک کومیش (1380).
[4] میمن‌زوری ب، دیپاچه‌ای ب پاماسکی ایران، انتشارات دانشگاه تربیت معلم تهران (1375)، 344 صفحه 1/1000001/1000001 شستم، وزارت معدن و فلات (1377).