بررسی برخی از ویژگی‌های الکتریکی و ایوتیکی منگناپت کلسیم تهیه شده به روش واکنش

حالت جامد و سل‌ژ

سمیه کفاسی، ظاهره قربانی مقدم، احمد کمبانی، سیدمحمد حسینی

گروه فیزیک دانشگاه علوم نانوکه افتخاری، مشهد
(دریافت مقاله ۹/۱۹۱۹ات، نسخه نهایی ۰/۲۸۱۹)

چکیده: در این پژوهش، نمونه‌های CaMnO$_x$ به دو روش واکنش حالت جامد و سل‌ژ (زلسوزی) با دمای برشتی ۸۰۰ درجه سانتی‌گراد و مکروسکوپ الکترونی ترکمیکی (SEM) شناخته و میانگین اندازه ذرات پودری‌های به دست آمده به ترتیب با پارتون X و مکروسکوپ الکترونی ترکمیکی (TEM) بررسی شدند. نتایج نشان می‌دهند که میانگین اندازه ذرات به دست آمده از روی سل‌ژ در حدود ۸۵ nm محاسبه شده است. این نتایج نشان می‌دهد که میانگین اندازه ذرات به دست آمده از روی سل‌ژ در حدود ۸۵ nm محاسبه شده است.

ایوتیکی نمونه‌ها با ترکیب ناحیه انتشار میانگین اندازه ذرات و برای نمونه‌های تهیه شده به روش واکنش حالت جامد برای eV و برای روش سل‌ژ برای eV به دست آمده ولی میانگین اندازه ذرات به دست آمده از روش تکاملی نشان داد که با افزایش دما مقاومت الکتریکی کاهش می‌یابد و مواد نیوترونیک نمونه‌های تهیه شده به روش سل‌ژ مکمل از نمونه‌های تهیه شده به روش واکنش حالت جامد است.

واژه‌های کلیدی: واکنش حالت جامد، روش سل‌ژ، ساختار پروسیکت، منگناپت کلسیم.
کشش، قربانی مقید، کمباین، حسینی
مجله بلوارشناسی و کلیه شناسی ایران

650

عاده‌های تعیین ساکرتولی و محاسبه ثابت‌های شیشه در دمای آتاق، از انویه پرتو برای X استفاده شد. تکیه‌گاهی برای پرتو X نمونه‌ها با استفاده از هدف مسی و قدرت تفکیک عمیق‌تر ساخته شد. دستگاه XRD با طول موج 1.54 Å انرژی‌گذاری آزمایشگاه تحقیقاتی دانشگاه دانشگاه تکنیکال کالیفرنیا گروه فیزیک، آنالیز بلورک‌ها با استفاده از رابطه شر

محاسبه شد:

\[
D = \frac{k \lambda}{\omega \cos \theta}
\]

(1)

در این رابطه \(\lambda \) طول موج تابشی (1.54056 Å) Cu-Kα، \(D \) به ترتیب اندازه بلورک‌ها، طول موج تابشی (\(\lambda \)), قله‌ای برای و بهای در آزمایشگاه‌ها، هستند. این رابطه برای به چگونگی رخت بلورک‌ها و ابسته است و از این‌رو با این‌نکت که رادیان‌های متنوع، در این جدید تغییر می‌کند. این رابطه با استفاده از این رابطه در سه‌گانه‌های اصلی (shimadzu 3000) و بعد در دست دستگاه ایستگاه‌های کالیفرنیا در گستره عدیده مولی LEO912AB به مجیت IR و بینایی‌های FTIR در گسترده‌ای عمده 340 تا 4400 cm

ضخامت ویده‌ها \(\rho \) در سطح پوششی‌ها از استند کلمیسیم

\[\text{Mn(Ca(COO)}_2\text{)XH}_2\text{O} \]

به وسیله \(\text{CaMnO}_2\text{XH}_2\text{O} \)

در روش و واکنش حالت جامد سول و سر در دمای 233°C به وسیله \(\text{NaOH} \)

در روش و واکنش حالت جامد مواد با نسبت مولی یکسان ورود (\(\text{C}_2\text{H}_3\text{O}_2 \)) مخلوط

سیستم درون طرف دیا به‌یک‌دیفان آنتو (\(\text{CaMnO}_2\text{XH}_2\text{O} \)) در شکل‌هایی از خشک کردن محلول، پنیر حاصل در دمای

233°C ساختار

بروکسیت مورد نظر شکل گرفت [5]. در روش سیل-زم برای تهیه نانو پودر میکروشیمی کلمیسیم مصالح زیر رابطه انجام

شده. تهیه محلول از فراد و گراماده ملامت، تشکیل کامل پودرها و هیدروکسی‌ها به دست آمده یک سل

مناسب و یابادار، تبخیر همیشه حل‌الام از و در اثر آمرنگ

در شکل گرفت، فراد گراماده مستقیم در دماهای با نتایج خشک کردن، قاردن نانو پودر میکروشیمی کلمیسیم

در سیل-زم برای مراحل انجام شده در شکل 1 آورده شده. از پودر میکروشیمی به دوشر بیان می‌شود، مقدار خشک کردن و قاردن نانو پودر میکروشیمی کلمیسیم

در سیل-زم برای مراحل انجام شده در شکل 1 آورده شده. از پودر میکروشیمی به دوشر بیان می‌شود، مقدار

 Ceseref / C3/min-

رگیدش و سرمایش برای همیشه نمونه‌ها

\[\text{الگوی پرتو، برای ملایمی به دست آمد از نرم‌افزار}

همه‌آن‌دارد و چکیده نتایج آن در جدول 1 آورده شده‌اند

[12-14]
شکل 1 گردش نانو پدیده CaMnO$_3$ نانو پدیده

شکل 2 اگوش برخی پروتو X نموده‌ی توهین شده به روش سل زل برکتی در دمای $\theta = 200^\circ C$.

شکل 3 اگوهای برخی پروتو X نموده‌ی توهین شده به روش سل زل پس از برکتی در دمای $\theta = 200^\circ C$.
جدول 1: نتایج بدست آمده از آنالیز پرتو ایکس.

<table>
<thead>
<tr>
<th>d_{hkl}</th>
<th>hkl</th>
<th>فاز</th>
<th>پارامتر شبکه (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>a = 5.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b = 2.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c = 5.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>دمای پرتاب (°C)</th>
<th>زاویه 2θ (درجه)</th>
<th>برای پارامتر</th>
<th>درصد گمیش</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>34</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>80.88</td>
<td>185</td>
<td>122</td>
<td>100</td>
</tr>
<tr>
<td>80.99</td>
<td>153</td>
<td>4.25</td>
<td>100</td>
</tr>
</tbody>
</table>

مریخ滩 به نمونه‌های متکایت کلسیم اورده شده‌اند. تایم 650 cm^{-1} C=O 400 cm^{-1} C-N دیده می‌شود که می‌تواند به نوسان‌های کششی پیوندهای فلز – آکسیزن (M-O) و نوسان‌های پیوندهای آکسیزن-فلز-آکسیزن (CaMnO4) در ساختار پروسکوپی (O-M-O) باشد. CaMnO4 تا درجه 85 nm می‌تواند نمونه‌های تهیه شده به روش واکنش جامد در گستردگی 550 cm^{-1} C=O نمایش داده شود. معمولاً این نوسان به گونه‌ای همبسته به واکنش جامد به پنومهای تهیه شده به روش سیل زول می‌گردد. M=O نوسان به گونه‌ای همبسته به واکنش جامد به پنومهای تهیه شده به روش سیل زول می‌گردد.

به‌طور کلی این نتایج با نتایج جمع‌آوری‌شده از نمونه‌های تهیه شده به روش سیل زول مطابقت دارند.

شکل 2: تصویر میکروسکوپ الکترونی عبوری (EDS) از نمونه‌های تهیه شده به روش سیل زول.

بررسی این پدیده‌ها در مودالیت‌ها و مقایسه بین نمونه‌های تهیه شده به روش سیل زول و پدیده‌ها مطرح می‌شود. قلم‌های رنگی به‌طور کلی در نمونه‌های تهیه شده به روش سیل زول در ناحیه‌های متقارن و نامتقارن کششی گروه

پایه‌های گروه:

FTIR در شکل‌های 6 و 7 به‌طور کلی مطرح می‌شود.

پایه‌های گروه:

FTIR در شکل‌های 6 و 7 به‌طور کلی مطرح می‌شود.
شکل ۵ بیناب‌های نمودن‌های تهیه‌شده به روش EDS (wafer) و اکتش حالت جامد و ب) سل-زل.

(نماد: *) در انرژی فوتون فرودی به این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. α در این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. $\alpha = \frac{A}{D(\text{nm})}$

(2)

که در آن A مقادیر جذب اینترکتیکی بودرها و D میانگین اندازه ی بلورکه‌های به دست آمده از رابطه‌ی تشریح است. همچنین از فرمول معروف ناول که در زیر آورده شده است می‌توان گاف انرژی (E_g) را به دست آورد [14] $a\nu = \alpha (E_g - h\nu)^n$ (3)

در این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. $\alpha = \frac{A}{D(\text{nm})}$

(2)

که در آن A مقادیر جذب اینترکتیکی بودرها و D میانگین اندازه ی بلورکه‌های به دست آمده از رابطه‌ی تشریح است. همچنین از فرمول معروف ناول که در زیر آورده شده است می‌توان گاف انرژی (E_g) را به دست آورد [14] $a\nu = \alpha (E_g - h\nu)^n$ (3)

در این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. $\alpha = \frac{A}{D(\text{nm})}$

(2)

که در آن A مقادیر جذب اینترکتیکی بودرها و D میانگین اندازه ی بلورکه‌های به دست آمده از رابطه‌ی تشریح است. همچنین از فرمول معروف ناول که در زیر آورده شده است می‌توان گاف انرژی (E_g) را به دست آورد [14] $a\nu = \alpha (E_g - h\nu)^n$ (3)

در این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. $\alpha = \frac{A}{D(\text{nm})}$

(2)

که در آن A مقادیر جذب اینترکتیکی بودرها و D میانگین اندازه ی بلورکه‌های به دست آمده از رابطه‌ی تشریح است. همچنین از فرمول معروف ناول که در زیر آورده شده است می‌توان گاف انرژی (E_g) را به دست آورد [14] $a\nu = \alpha (E_g - h\nu)^n$ (3)

در این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. $\alpha = \frac{A}{D(\text{nm})}$

(2)

که در آن A مقادیر جذب اینترکتیکی بودرها و D میانگین اندازه ی بلورکه‌های به دست آمده از رابطه‌ی تشریح است. همچنین از فرمول معروف ناول که در زیر آورده شده است می‌توان گاف انرژی (E_g) را به دست آورد [14] $a\nu = \alpha (E_g - h\nu)^n$ (3)

در این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. $\alpha = \frac{A}{D(\text{nm})}$

(2)

که در آن A مقادیر جذب اینترکتیکی بودرها و D میانگین اندازه ی بلورکه‌های به دست آمده از رابطه‌ی تشریح است. همچنین از فرمول معروف ناول که در زیر آورده شده است می‌توان گاف انرژی (E_g) را به دست آورد [14] $a\nu = \alpha (E_g - h\nu)^n$ (3)

در این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. $\alpha = \frac{A}{D(\text{nm})}$

(2)

که در آن A مقادیر جذب اینترکتیکی بودرها و D میانگین اندازه ی بلورکه‌های به دست آمده از رابطه‌ی تشریح است. همچنین از فرمول معروف ناول که در زیر آورده شده است می‌توان گاف انرژی (E_g) را به دست آورد [14] $a\nu = \alpha (E_g - h\nu)^n$ (3)

در این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. $\alpha = \frac{A}{D(\text{nm})}$

(2)

که در آن A مقادیر جذب اینترکتیکی بودرها و D میانگین اندازه ی بلورکه‌های به دست آمده از رابطه‌ی تشریح است. همچنین از فرمول معروف ناول که در زیر آورده شده است می‌توان گاف انرژی (E_g) را به دست آورد [14] $a\nu = \alpha (E_g - h\nu)^n$ (3)

در این رابطه α ضریب جذب $h\nu$ انرژی فوتون فرودی α, نماد A مقادیر جذب اینترکتیکی بودرها دارای گاپ اینترکتیکی را مشخص می‌کند. $\alpha = \frac{A}{D(\text{nm})}$

(2)
برای نمونه‌ی

\[\rho = R \frac{d}{L} \]

نتایج انداره‌گیری \(\rho(T) \) برای نمونه‌ی تهیه شده به عوض قریب تهیه شده از بوده‌های سنتز شده به روش واقبیت حالات جامد در شکل‌های 10 و 11 آورده شده‌اند. از مقایسه‌ی دور نمونه، با توجه به فیزیک گالری نیم‌پیمان، شکل‌های تعادلی در باره‌ی دمایی به گذار ساختار از حالات راه‌پذیری به لوزی رخ باشد. در نتیجه مقاومت دراین باره‌ی دمایی افزایش می‌یابد. کاهش مقاومت نیز در بادی‌های دمایی شکل را نکاه می‌تواند به کاهش شبکه (ساختار راستگوتشی اولیه) وابسته باشد. چون این تغییر در ساختار بلوری ووگ کهای اجرایی که‌گی شده، باعث می‌شود. رساندگی افراشته و مقاومت الکتریکی کاهش می‌یابد.

شکل 11 نمودار تغییرات مقاومت ویژه نسبت به دما برای قریب تهیه شده از بوده‌های سنتز شده به روش سل-زل.

\[(a_{11}) \]

CaMnO3

برای نمونه پودر \(h \nu \) بر حسب \((a_{11}) \)

تهیه شده به روش واقبیت حالات جامد.
برداشت

پودرهای CaMnO$_3$ به دو روش، واکنش حلال جامد و سل-زل، در دمای برضوی به سه تهیه شدند. تأثیر ویژگی‌های پودرهای بدست آمده از برخی سولز (XRD) و میکروسکوپ الکترونی عضوی (TEM) روی تجزیه و تحلیل نمونه‌ها از نمونه‌برداری جدید بررسی و مشخص شد که راه‌های مختلفی تهیه شده به روش سل-زل مقدار کامل $	ext{eV} = 4.2$ و برای نمونه‌های تهیه شده به روش واکنش حلال جامد $	ext{eV} = 4.0$ است. همچنین تشکیل ساختار پروسکبی نمونه‌ها به روش تجزیه فلزات کمتر تبدیل فوریه FTIR و آزمایش T اندازه‌گیری مقاومت ویژگی الکتریکی نمونه‌ها در هر دو نوع نمونه‌ها کاهش می‌یابد.

مراجع

