سنگگنگاری و زئوتشیمی بخش شمال غربی توده‌های گرانتونی‌هدی زون، جنوب غربی خواف (جنوب شرق خراسان رضوی)

محمد بومری، محسن زنگنه قاسم آبادی، حبيب ا... بیانگرد

بخش زمین شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان

(دیروز مقاله: ۹۱/۱۱/۱۵، نسخه نهایی: ۹۱/۶/۲۷)

چکیده: توده‌های گرانتونی‌هدی زون، در شمال غربی خواف در شمال شرقی بلوک لوت و در جنوب غربی شهرستان خواف در استان خراسان رضوی قرار دارند. این اثر در نسبت به توده‌های گرانتونی‌هدی زون شده است. این گرانتونی‌هدیه‌ها دارای ترکیب گرانتون‌پورت، موزلندرینس، موزلندرینزورت، کوارتز دویورت هر از این مالفیک رپیدانه و سنگ‌های ماکینگیتی منطقه‌های نیتر از دیورتیت و گلوبری تشکیل شده‌اند. ماهیت این توده‌ها اهمیت قابل توجهی با پاسیفیک (کلیمی) مگنتیتی است. ویژگی‌های این توده‌های گرانتونی‌هدی شیبی به گراین‌های قوس آنتیشانسی (VAG) می‌باشد که احتمالاً در محیط زمین- ساختمان حاشیه‌ای قاره‌ای تشکیل شده‌اند. باورهای زیاد می‌باشد. این توده‌ها در ارتفاع‌های گرانتونی‌هدی زون، سنگ‌های مزبان آن‌ها در رشته کوه‌ها دیگر این توده‌ها و نیز در سنگ‌های کارنیسی کلیه‌های اسکاتیک و کلیه‌ای از آن دیده شده‌اند.

واژه‌های کلیدی: بلوک لوت، خواف گرانتونی‌هدی، زون، سنگ‌گنگاری، زئوتشیمی

مقدمه

توده‌های گرانتونی‌هدی زون، (بخش شمال غربی ثو) در گستره‌ای بین طول‌های جغرافیایی ۵۹°۳۴’ و ۵۹°۳۶’ و عرض‌های جغرافیایی ۴۶°۲۴’ و ۴۷°۰’ در جنوب غربی شهروی خواف در استان خراسان رضوی واقع شده است. این منطقه مورد بررسی از نظر زمین‌شناسی در شمال شرقی بلوک لوت واقع شده است. آن‌چه که بلوک لوت را از وسایل زئوشنایی ساختاری ایران مسنتی می‌کنند، فعالیت‌های ماکینگیتی‌ای است که از اروپا/آسیا شرقی و در ترکیبی از اوج خود نسبت به است. سنگ‌های حاصل اسکاتیک-کلیمی هستند و همچنین ویژگی‌های آنتیشانسی کلیه‌ای قاره مرتبط با توده‌های مذکور مورد مطالعه است.

مراجع

* mohsenzanganeh@yahoo.com
زینت شناسی
گستره‌ی مورد بررسی در نقشه‌ی زینت شناسی ۱۰۰۰۰۰۰۰۰ زورن [۲] نماش داده شده است. توده‌ی گرایتنیتی زورن و بخش شمال غربی آن (توده گرایتنیتی مورد بررسی) جزئی از منطقه‌ی کیرکره به‌شمار می‌آید که در آن رخ‌نمونه‌های بالاپلوزوتیک و جریانی شکل‌گیری نمود. قدمی ترم رخ‌نمونه‌های منطقه‌ی بنی بالاپلوزوتیک، نشته‌های شیلی ماسه سنگی با میان‌های سنگ آهنی هستند که دستخوش اکسیداسیون و گرایتنیتی شده‌اند. سنگ‌های مزوزولیتی منشأ آن‌ها سیاست آن‌ها به‌صورت منطقه‌ای قرار گرفته‌اند. سنگ‌های آهک‌دار منطقه از جنوب غربی آن به قرار گرفته‌اند. سنگ‌های آهک‌دار منطقه‌ی شمال شرقی منطقه‌ی رخ‌نمونه دارند. در شرایط ترشحی فعالیت‌های آتش‌نشانی نسبتاً گستردگی در بخش‌های جنوبی، مرکزی و شمالی منطقه‌ی کیرکره آغاز شده که ادامه‌ی آن‌ها ادامه‌ی زیرآملی یافته است. دو مینی از این‌انسانی منطقه در این‌عنوان بالایی روا داده و

نمایشگر نقشه‌ی منطقه‌ی مورد بررسی از [۲].
مشاهده بررسی شکل گیری‌های زئوشیمیایی نوده‌های گرانیت‌زده منطقه، تعداد 10 نمونه (2 نمونه کنترلی) از سنگ‌های آذرین با کمترین دگرگویی برای اندازه‌گیری عمیق و نیمه عمیق تشكیل می‌دهند. سنگ‌های نیمه عمیق به شکل دایک، سنگ‌های گرانیتی را قطع کرده‌اند که نشان دهنده فاز جدیدتری از مکانیسم منطقه است (شکل 2). در شکل 3 نانو واحدهای سنگی منطقه‌ای مورد بررسی و گرانیت‌زده زون نشان داده شده‌اند.

روش بررسی
برای بررسی‌های سنگ‌گردی و رده‌بندی سنگ‌ها در منطقه‌ای غربی کیبوکوه، تعداد ۲۰۰ نقطه نازک تهیه و بررسی شدند و به

شکل 2 نمایی از ارتفاعات شمال غربی کیبوکوه که گرانیت‌زده زون نیز نشان داده شده است (دید از جنوب به شمال).
ساکن نگاری

دسته‌بندی کمی (مشترک) سنجش‌های فلدرساوار، منطقه مورد بررسی [6].
 ангیان سنجگاه در منطقه‌های غربی کیورگهو به صورت توخه‌ای استوک وی و هم‌مولکول‌ها را در دسترس داشتند. باید از دستگاه مورف هم‌مولکول و هم‌مولکولهای مولکولی مخصوصاً سبب تبدیل مولکول‌های شناخته‌شده شده که در ادغام‌های 1 تا 3 میلیمتر قابل مشاهده‌اند. بلورهای پلاژیوکلار، همگی شکل دار و درشت بوده ولی به 1 میلیمتر کم م те‌ها به دیده می‌شود. گردانت کل منطقه، تبدیل آبی‌رنگ بلورهای پلاژیوکلار و سوسیتیت‌سازی (تبدیل بلورهای پلاژیوکلار به کلسیت با پیش‌رواندی رز، خلیل‌تیز، سوسیتیت و کائیت که هر کدام تنش در سطح، بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌توان با پیش‌رواندی بیش از گریز کلسیت را بریزد. این غوشه‌ها در منطقه، شکل دار با ماکل کارا، با ارتفاع 30 تا 40 درصد حجم سنجگاه را تشکیل می‌دهند. بیش از 1 میلیمتر می‌ت...
شکل ۶- وقوع بار کربنیکی (Epi) و اسفن (Sph) تجزیه بلورهای پلازیکلاژ (Plag) و امپیسول در کورتین آنتیوپژنیایی (برگنماپیایی)، احاطه ماده بلورهای پلازیکلاژ (Plag) به وسیله ی کرتین (Chl)، هنگامی که بازو به کرتین (Opq) نیز قابل مشاهده‌اند (برگنماپیایی ۱۰X، نور قطعی‌دهنده) کوارتز دارای نیزی‌گیری و چاپی در دوبورت (برگنماپیایی ۴X، نور تلویثی).

جدول ۱- نتایج آنالیز XRF کربنیک‌پذیری‌های زون (بر حسب ppm و Wt%)
زئوشیمی عناصر اصلی
بنابر نمودار [9] تغییرات اکسیدهای عناصر اصلی نسبت به سیلیس برای گرانودوریت‌ها و مونوزوگراندیت‌ها دارای یک طیف نسبتاً پیوسته و خفیف بود که نشان دهنده ممکن است یک پرده‌ای مشترک برای آن‌ها است، ولی نمودارهای دیپوت، از نظر جدی می‌افتد که احتمالاً ناشی از خاسگاه منفوقت آهنت است (شکل 8). این طیف نسبتاً پیوسته (چگال‌نمودارهای دیپوتی-گیاهوری) می‌تواند دلیل بر جدایی مامگایی کستره و پیوستهای در توده‌های

گرانودوریت‌های این مناطق محسوب شود. بنابر نمودارهای رسم MmO, Fe2O3, TiO2, CaO, MgO شده، مقدار اکسیدهای Fe2O3 و CaO با افزایش سیلیس کاهش می‌یابد و بر عکس مقدار K2O افزایش نشان می‌دهد. این روند خاص گرانودوریتهای نوع یک است که با روند تغییرات عناصر پاژ در مجموعه‌های آهکی-قلبیایی وابسته به حاشیه فعال قاره‌ها همراهی نشان می‌دهند [10].

شکل 8 نمودارهای تغییرات اکسیدهای عناصر اصلی نسبت به اکسید سیلیس (بر حسب %) در نمودار [9].
کانولینترازیون (به دلیل تحرک‌هایی این عناصر) باشد [11]

زیان‌بری عناصر فرعی
طیف تغییرات عناصر کمیاب نیز پیوسته بوده (بجز نمونه‌های دیوریتی-گاجوری که پراکنده بیشتری دارند). لی نسبت به اکسیدهای مصرفی از پراکنده بیشتری برخوردار است که این پراکنده می‌تواند ناشی از دخالت فرآیندهای متعددی نظر جداش، هضم و اختلال مکانیکی در تشکیل این سنگ‌ها باشد، به طوری که شواهد اختلال مکانیکی نظر وجود برونزی و میکروبرنیومیهای متفاوت با گونه‌های گرد شده در گراوندریت‌ها و کوارتز با گروه گرد شده در دیوریت‌های منطقه و وجود روغن‌های غیر عادی و پراکنده در نمونه‌های [9] عناصر اصلی، تأیید گردیدن نشان‌دهنده آینه‌ای مکانیکی در Y, V, Co, Nb, Ni, Cr گرانیت‌های این منطقه. عناصر دارای روغنی نژول و پراکنده هستند (شکل‌ها 9) روند تغییرات و MnO, Fe2O3, P2O5, MgO یا توجه به اینکه اکسیدهای TiO2, CaO،غالباً در کانال‌هایی از قبل پیروی کرده، هر بینند و
تناتومگنتنیت متمرکز می‌شود و در افزایش تبلور از ماکما جدا شده‌اند. با پیشرفت تبلور، ماکما با قبادی‌های این عناصر
فیبرتر می‌شود و وجود این روند طبیعی است. حضور مقداری کم
TiO2 و P2O5 و در دیوریت‌ها و گرانیت‌های با شواهد سنگ-
تگاری نظیر حضور کمیاب استفان و آهنین در این سنگ‌ها
همه‌گونی دارد. با افزایش سیلیس مقدار K2O و Na2O
عبر وجود پراکنده یافته‌ای که نشان دهنده این است
که در مرحله نهایی تبلور، میزان این دو اکسید در گازهای
سیلیکاتی بیشتر شده و در نهایت باعث ایجاد فلدسپارهای
اسیدی شده است [9] پراکنده در مقداری اکسیدهای سدیم
و پتاسیم می‌تواند ناشی از اثرهای نارگی سیلیس در دگران کنندگی
طول جایگزینی و نیز ناگی سیلیس با پیوسته قاره‌ای و فرآیندهای
dگرانیت توده از جمله دگرگسایی‌های سری‌سنتی شدن و

شکل 9 نمونه‌های تغییرات اکسیدهای عناصر فرعی (بر حسب ppm) نسبت به اکسید سیلیس [9].
عنصر سارکاری نظری الکلی و Fe، Ni، Cr، Fe 3+ نیز در مقدار بالا در تقسیمات این گروه در گونه‌ای ایجاد می‌شود. چنانچه یک عنصر نیز بر این موضوع که این عنصر می‌تواند با دیگر عنصرها در ترکیب موجود باشد. علیرغم اینکه برای تشخیص این عنصرها از هم به کمک نانوایی و اسید جداسازی از پاتوسیمیت‌های دیگر استفاده می‌شود.

تعیین سرب مانگانیس و جایگاه زمین‌ساختی آن

شناسایی سرب‌های مانگانیس بر اساس نمودار‌های شناختی [17] نشان‌گرفته‌است که مانگانیس به‌طور فعال در صورت اتصال به مولکول‌های دیگر و به‌طور اصلی در این صورت به‌صورت نیز در مقدار بالا در نواحی اصلی این صورت به‌صورت تجزیه می‌شود.
فشار و دمای تکیه
برای تعیین فشار و دما از ترکیب شیمیایی پلاژیوکلاژ و هورنبند که در عناصر پوستهای مثل پتاسیم و سلیسیم، موادی نیز در این منطقه مورد بررسی عوامل دیگر نیز نقش داشته‌اند که می‌توان به حکم‌های زمین‌ساختی اولیه ترشیاری و عملکرد گسل‌های بزرگی چون درونه، نابند و هربرود اشاره کرد.

برداشت
بخش شمال غربی گراندتوئید زون دارای طیف ترکیبی
گراندتوئید، پولی‌فینگیت، کوارتز، نیتریت، کوارتز، دیوریت، است. و سبک‌های مافیک منطقه نیز از دیوریت و گابرو تشکیل شده‌اند. با توجه به نمودارهای زمین‌ساختی، این توده‌ها، حاصل جدایی گردنی‌ای اولیه با ترکیبی در حذ دیوریت است. به طور کلی و گردنی‌های گردن‌توده‌های منطقه دارا بودند.

بافت درشت دانه‌ای بیشتر در دیوریت‌های خاستگاه دیوریت‌های ماند گردن و مسکوت و همراهان آنها با فضای مافیک تنها دیوریت است. این توده، از گردن‌های نوع I و دارای ماهیت آهنی-قبلا بیشتر رخ داده می‌کند. کبی به توجه به نمودارهای جدا کننده

محیط زمین‌ساختی [19]. در گستره

CAG - VAG - ORG - SW-COLG - WPG

تیم شند Af - نمودار جدا کننده Shand

شکل 11 الف - نمودار جدا کننده mahat Zemین‌ساختی منطقه [20] بر اساس این شکل نمونه‌ها در نقطه‌های سه‌گانه و مرز WPG و VAG واقع شده‌اند، این حالت زمانی رخ می‌دهد که ماگما‌ها مشتق شده از چه شدتی گیا نمی‌گردد.

به سمت بالا از بروز پوسته به یک عدم تعادل شیمیایی با

سگنهای دیوریت‌های خود از عناصر پوستهای مثل پتاسیم و سلیسیم، موادی غنی می‌شوند [23] مولوی دیوریت شدید است. فقط دو نمونه از گراندتوئیدهای این شرایط را داشتند. ترکیب شیمیایی این کلیه‌ها در جدول 2 نشان داده شده‌اند. امپیلوپ‌ها بر اساس رده‌بندی [11] از نوع هورنبند بوده و دارای ترکیب اندیت تا هورنبند اندیتی هستند. پلاژیوکلاژ‌ها بیشتر در

جدول 2: نمودار ایلیت‌اند (جدول 2) - دمای اصلی امپیلوپ

T = (0.677P - 48.98)/(0.429 - 0.0083144Ln{(Si - 4/8 - Si) XAb)})

فشار (P) بر حسب کیلوبرای است که بر اساس روش [23] محاسبه شد. به جای Si مقدار آن در واحد فرومول آمپیلوپ

در Xab گذاشته می‌شود و

نینهدی مقدار آمپیلوپ

پلاژیوکلاژ است. بر اساس این محاسبات دمای میان‌گین ترکیب گراندتوئیدهای کبی که حدود 70 درجه سانتی‌گراد و فشار آنها حدود 3 کیلوبرای شده‌اند (جدول 2). که با توجه به

بافت‌های گردنی، مورفی‌مکسیکی و ریز دانه‌ای، دما منطقی و یک

فشار کمی باقی بیشتر می‌شود. بخش می‌باشد از ماگما‌های نوع I را در پوسته نمودار نشان‌دهد. گیا نمی‌گردد، و بر روی‌های آدرآوری دانست که این ماگما‌ها ضمن صعود

گیرد.
جدول ۱۲ ترکیب شیمیایی پلاژیوکلاز و مقایسه در گرانتولوئیهای زیر (بر حسب %) و محاسبه فرمول، فشار و دما.

<table>
<thead>
<tr>
<th>sample</th>
<th>Zk30-30</th>
<th>Zk30-31</th>
<th>Zk30-32</th>
<th>Zk30-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>43.8</td>
<td>38.1</td>
<td>34.4</td>
<td>29.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.5</td>
<td>1.3</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>19.0</td>
<td>23.9</td>
<td>24.7</td>
<td>28.0</td>
</tr>
<tr>
<td>FeO</td>
<td>0.3</td>
<td>1.5</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>MnO</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>MgO</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>4.9</td>
<td>8.4</td>
<td>6.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.8</td>
<td>2.4</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>99.9</td>
</tr>
</tbody>
</table>

بر سبیل ۳۲ کسیزی

<table>
<thead>
<tr>
<th>sample</th>
<th>Zk30-34</th>
<th>Zk30-35</th>
<th>Zk30-36</th>
<th>Zk30-37</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>40.5</td>
<td>37.2</td>
<td>34.7</td>
<td>32.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.4</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>8.1</td>
<td>7.6</td>
<td>7.0</td>
<td>6.5</td>
</tr>
<tr>
<td>FeO</td>
<td>1.8</td>
<td>1.5</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>MgO</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>9.7</td>
<td>7.6</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.4</td>
<td>5.2</td>
<td>3.7</td>
<td>3.3</td>
</tr>
<tr>
<td>K₂O</td>
<td>7.9</td>
<td>8.4</td>
<td>7.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Total</td>
<td>96.9</td>
<td>98.4</td>
<td>98.4</td>
<td>97.6</td>
</tr>
</tbody>
</table>

بر سبیل ۳۲ کسیزی

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>SiO₂</th>
<th>7.0</th>
<th>48.9</th>
<th>48.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al</td>
<td>Al₂O₃</td>
<td>0.3</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td>FeO</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Mn</td>
<td>MnO</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>CaO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>Na₂O</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>K₂O</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mg(Mg+Fe⁺)</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mg(Mg+Fe⁺)

P (Kb)

T(°C)

شواهد صحرایی، سنگ‌نگاری و زنوشیمیایی حاکی از آن است که فرانکه‌ها جدایی و اختلاط ماکونی در تشکیل ام‌نوده، نقص تعمیم کندانه‌ای را ایفا کرده‌اند و در ارتباط با چاپ‌زده‌گی‌ای، توده‌گریسته توصیفی و پروپیله‌پاتیک، سنگ‌های منطقه تحت تاثیر قرار گرفته‌اند. دمای میانگین تشکیل گرانتولوئیه‌ها کبیرکوه حدود ۷۰۰ درجه سانتی‌گراد و فشار آنها حدود ۳ کیلوبار ارزیابی شده است.

مراجع
[۱] سی، پ.، انتخاب‌نژاد ج.، حمیدنژاد ع.، مقدماتی زنیگاه‌ای در شبه‌مرکزی و شرق ایران، سنگ‌نگاری و زنوشیمیایی گران‌تولوئیدی ۳۲ ف. (۱۳۵۶).
[۲] زنگه قشم، ا.، رمین شناسی کانتی شناسی و زنوشیمی‌های مگنتیت و سنگ میلیانی‌ها در بخش‌های مسیری کبیرکوه، جنوب غربی خاوه، شرق ایران، تاب. نامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان، ۱۳۳۰، ۲۲۷ صفحه.
[۳] زنگه قشم، ا.، رمین شناسی کانتی شناسی و زنوشیمی‌های مگنتیت و سنگ میلیانی‌ها در بخش‌های مسیری کبیرکوه، جنوب غربی خاوه، شرق ایران، تاب. نامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان، ۱۳۳۰، ۲۲۷ صفحه.
[۴] زنگه قشم، ا.، رمین شناسی کانتی شناسی و زنوشیمی‌های مگنتیت و سنگ میلیانی‌ها در بخش‌های مسیری کبیرکوه، جنوب غربی خاوه، شرق ایران، تاب. نامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان، ۱۳۳۰، ۲۲۷ صفحه.


[24] کریم پور م.، سیبستی شناسی نوده‌های نفوذی منطقه معبدی تکانر، برادکن (کاشمر)؛ مجله بولشناسی و کاتی شناسی ایران، سال هفدهم، شماره اول، 1389-79-77-65


