کترهای انتخاب و دوباره آنالیز شدن و همکاری بسیار بالایی در نتایج حاضر مشاهده شد، نتایج آنالیز شیمیایی عناصر اصلی و عناصر کمیاب در جدول 1 آمدهاند.

مخلوط اسیدی (در آزمایشگاه استرالیا صورت پذیرفت) برای اطمینان از درستی و دقت نتایج آنالیز شیمیایی به هر دو روش ICP-MS و XRF، نمونه‌های تکراری به صورت ICP-MS و XRF به روش LN و سپس ماله (به حسب ppm (به حساب SiO₂(wt%)

جدول 1 نتایج آنالیز شیمیایی عناصر اصلی به روش XRF و عناصر کمیاب به روش ICP-MS SiO₂(wt%) (به حساب SiO₂(wt%)

<table>
<thead>
<tr>
<th>Sample</th>
<th>ZF42</th>
<th>ZF34</th>
<th>ZF33</th>
<th>ZF34</th>
<th>ZF44</th>
<th>ZF43</th>
<th>ZF40</th>
<th>ZF47</th>
<th>ZF46</th>
<th>ZF41</th>
<th>ZF30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44.8</td>
<td>45.4</td>
<td>45.4</td>
<td>44.8</td>
<td>45.0</td>
<td>44.8</td>
<td>45.0</td>
<td>45.2</td>
<td>45.0</td>
<td>45.4</td>
<td>44.8</td>
</tr>
<tr>
<td></td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

SiO₂(wt%) (به حساب SiO₂(wt%)

<table>
<thead>
<tr>
<th>Sample</th>
<th>44.8</th>
<th>45.4</th>
<th>45.4</th>
<th>44.8</th>
<th>45.0</th>
<th>44.8</th>
<th>45.0</th>
<th>45.2</th>
<th>45.0</th>
<th>45.4</th>
<th>44.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

SiO₂(wt%) (به حساب SiO₂(wt%)

<table>
<thead>
<tr>
<th>Sample</th>
<th>44.8</th>
<th>45.4</th>
<th>45.4</th>
<th>44.8</th>
<th>45.0</th>
<th>44.8</th>
<th>45.0</th>
<th>45.2</th>
<th>45.0</th>
<th>45.4</th>
<th>44.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

SiO₂(wt%) (به حساب SiO₂(wt%)

<table>
<thead>
<tr>
<th>Sample</th>
<th>44.8</th>
<th>45.4</th>
<th>45.4</th>
<th>44.8</th>
<th>45.0</th>
<th>44.8</th>
<th>45.0</th>
<th>45.2</th>
<th>45.0</th>
<th>45.4</th>
<th>44.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

SiO₂(wt%) (به حساب SiO₂(wt%)

<table>
<thead>
<tr>
<th>Sample</th>
<th>44.8</th>
<th>45.4</th>
<th>45.4</th>
<th>44.8</th>
<th>45.0</th>
<th>44.8</th>
<th>45.0</th>
<th>45.2</th>
<th>45.0</th>
<th>45.4</th>
<th>44.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

SiO₂(wt%) (به حساب SiO₂(wt%)

<table>
<thead>
<tr>
<th>Sample</th>
<th>44.8</th>
<th>45.4</th>
<th>45.4</th>
<th>44.8</th>
<th>45.0</th>
<th>44.8</th>
<th>45.0</th>
<th>45.2</th>
<th>45.0</th>
<th>45.4</th>
<th>44.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>
زمین شناسی عمومی

منطقه‌های مورد نظر در جغرافیایی ۳۴°۳۰' تا ۳۳°۳۰' عرض شمالی و ۵۵° تا ۵۵°۵۰' طول شرقی، قرار گرفته است. این منطقه بر اساس تقسیم‌بندی زون‌های ساختاری ایران [۱]، در زون ارومیه-درخت واقع و موقعیت آن نسبت به زون‌های ساختاری ایران براساس [۸] نشان داده شده است (شکل ۱-الف). و نیز این منطقه بخش شمالی نقشه زمین شناسی ایران ۱۰۰۰۰۰۰۰کجا [۹] را در بر می‌گیرد (شکل 1-ب). رخت‌های سنتی این منطقه ترکیبی از چند نوع مختلف و سه شکل کریستال هستند که شامل آتش‌زدنی، اریترولیت‌های در شمال شرق منطقه رخ‌شدن ندارد. مجموعه‌ی آتش‌زدنی در این منطقه از شرق تا جنوب شرقی تا جنوب و تا جنوب غربی منطقه دگرگونی شده و سه شکل از آنها از ابتکاری واقع است و در شمال شرق منطقه رخ‌شدن دارد. مجموعه‌ی آتش‌زدنی در این منطقه اکثریتی از منطقه رخ‌شدن این منطقه باعث شده است و بنا به شکل شکافته‌کننده گردیده است. بینه‌ای این منطقه از منطقه کنار طبیعی از سده‌های آتش‌زدنی

شکل 1 زمین شناسی عمومی

شکل 1(الف) موقعیت منطقه‌های مورد بررسی نسبت به زون‌های ساختاری ایران بر اساس [۸] نشان داده شده است. شکل 1(ب) نقشه زمین-
سنگ‌های منطقه‌ای کجان دارای طیف ترکیبی بازی تا اسیدی (فلسیک) است. سنگ‌های فلایک شامل رولیت، داسیت و تراکی داسیت است. این سنگ‌ها دارای بافت غلب پورفیرینیک و ویتروپورفیرینیک با حضور درشت بلورهای پلاژیوکلاز در زمینه‌های رزدانه با شیشه‌های مستطیلی دو مرحله‌ای نیلور است. علی‌رغم تیول و فلوکریست‌ها در عمق و در مرحله‌ای بعد شکل‌گیری خمیری رزدانه با شیشه‌های است که در نتیجه و در حالتی صورت مایه‌گیرد. در بیشتر سنگ‌های منطقه، فلوکریست‌ها در سنگ‌های فلایک مورد بررسی هستند. این چیده‌ها با مایه‌رو و هوا به دنبال سنگ‌های اسفنج‌دار و长江‌دار تبدیل شده و در عمق گرده و خرد شده‌اند.

شناسی رولیت‌ها عمیق‌ترند از کارترز و فلدسیت‌ها. بلورهای کارترز اغلب تصرف، و به صورت خورده‌گی توسط می‌شوند (شکل ۲-الف). فلدسیت‌های داسیت ترکیب حداکثر پلاژیوکلاز (پلاژیوکلاز) که کاهی در داسیت‌ها وجود دارد، اغلب می‌باشد.

شکل ۲-الف کارترز گرد شده و دارای خورده‌گی شیشه‌ای (ب) پلاژیوکلاز با بافت غربالی (پ) امفیبول در حالت گرد شدن، رنگ سمت چپ.
دانه‌ها ژئوشیمیایی (عناصر اصلی و نادر) میزان سیلیس سنگ‌های آتش‌نشانی منطقه‌های مورد بررسی تا 33 درصد وزنی است. در نمون‌های مجموع عناصر قبیل‌نبی نسبت به سیلیس (TAS) می‌باشد. رویدادهای کاهشی در (کبسیدهای آهن، تیتانیوم) مشاهده شد. روند‌های کاهشی FeO، CaO و MgO به دلیل جدایی هم‌مانندی و پلی‌پتولک‌های FeO، CaO و MgO از تحول ماگماتیک نسبت دارد. مجموع فنوسیست‌های موجود در نمون‌های مورد بررسی این روندها را نشان می‌دهد. نسبت داندنه روند‌های تغییرات به تولید مناسب تریپل‌های تصفیه‌گذاری پذیرشی 45% از K_2O بهترین است. نسبت به سطح FeO، TiO_2، Fe_2O_3 و CaO کاهش می‌یابد حال آن که

درباره روند MgO و Al_2O_3 افزایش است و

کمتر می‌باشد. در Ta و نیمی از Nb و Ba و Rb که از نمون‌های حاکم عناصر کم‌تر (4), روند تغییرات عناصر کم‌تر (4) رอน
شکل ۳: موقعیت سنگ‌های آذرین منطقه‌ای مورد بررسی (کجایان) روزال (الف) نمودار TAS، [۱۲] نسبت به $SiO_2/K_{2}O$ ترمیم‌های نمودار (ب) نمودار $Al_{2}O_{3}$.

شکل ۴: نمودارهای تغییرات اکسیدهای عناصر اصلی و عناصر کمیاب نسبت به سیلیس، برای سنگ‌های آذرین منطقه‌ای کجایان. علاوه بر سنگ‌های پلیسیک (موضوع این مقاله، حاصل سنگ‌های انشفانتی به ۱۷) نیز نشان داده شده‌اند. مدل سازی تبلور بخشی کالی‌های CaO با پیکان نشان دهنده این مدل را نشان داده است. نقطه‌های سیاه ترسیم (نقطه‌های آغیزه تبلور بخشی) نشان‌دهنده ترکیب گذاری اولیه است که کیکی از سنگ‌های انشفانتی حذف کرد. نقطه موجود روی پیکان‌ها با دور شدن از ترکیب گذاری اولیه به ترتیب ۱۰، ۲۰ و ۵۰ درصد تبلور بخشی را نشان می‌دهند.
شکل ۵ نمودار عنکبوتی و عناصر نادر خاک سنگهای آذرین فلسفیک منطقه‌ی کجان، به‌نگار شده به گوشته‌ای اولیه و کندریت. مقادیر گوشته‌ای اولیه و کندریت برگرفته از [۱۵] است.

شکل ۶ نمودار نسبت Zr/۹۵ به سه‌گنگ‌های آذرین منطقه‌ی کجان. سنگ‌های باریکتر برگرفته از همین منطقه (دایره تو خالی) براساس [۲۷] هستند.

نسبت Zr/۹۵ برای سنگ‌های آذرین منطقه‌ی کجان سه‌گنگ‌های باریکتر برگرفته از همین منطقه (دایره تو خالی) براساس [۲۷] هستند.

مقدار 60 ppm نسبت Al۲O۳ به‌شتشتراز ۱۵ درصد وزنی، Y کمتر از HFSE و Yb کمتر از ۶ فاصله شاهدی در K2O/Na2O است. به همین‌نونه سنگ‌های آذرین منطقه‌ی کجان از Sr/Y جنین و زیستگی‌های زنده‌شواپی‌ها، به‌زیست‌های بالایی مورد توصیف قرار دارند. بیشتر از ۶ درصد وزنی Na2O بیشتر از ۲ درصد وزنی، به عقیده [۲۸] سنگ‌های آذرین شاهد سنگ‌هایی با برخی مقداری به‌زیست‌های بالایی مورد توصیف قرار دارند.
فردشانی، قربانی، آریون
شناسی اکلیوئیتی افیپیوسال بر پایه آماده‌ای. آدابیته‌های منطقه‌ی کجای جزئی گروه آدابیته‌های سیلیس بالا قرار می‌گیرند. گروه (شکل ۷، ب) به عمق‌های ۲۰۰۰ متری از سطح کناره‌ها به سبب شیوع و جریان گذرهای منطقه‌ی کلان رخته‌داران. پیه‌سازی از عناصر نادر اکسیک و Y ادابیته‌های کجای نشان می‌دهد که ماده‌ای ماده این آدابیته‌ها با یک سرگ خاستگاه گذارتری (فشار بالا) در تعادل بوده است [۹]. در فشار بالا بلافاصله که می‌بنیز، اکسیک است فاز پایداری نیست و به بهینه سبب گذشته و سیلیس بالا که ماده‌ای ماده ادابیته‌هایی کجای است در سرگ بالا نمی‌توان به حضور یک فاز باقی مانده. ادابیته‌ها را نیز می‌توان به اکسیک از طریق نشان‌کردن در سرگ خاستگاه آنها نسبت داد. نتایج این به احتمال زیاد آدابیته‌های کجای در ذوب بخشی یک سرگ خاستگاه با کاتی-
برداشت
سکه‌های انشخاشی فلزیکی بخش چندگانه از توالمی انشخاشی ترشی در منطقه کجین را به خود اختصاص می‌دهند. این سکه‌ها دارای پایت پروپرینیک و جرایبی بوده و در حال حاضر در این خصوصیت بالای سیستم روان، برنامه و روش‌های دارند. بررسی این ترتیبی که دو سری تعیین گردید سری اول به سه تا یک سری‌های فلزیکی یعنی مغناطیسی و مغناطیسی نادر می‌باشد. سری اول داده‌های فلزیکی مغناطیسی و اغلب نمونه‌ها (10 نمونه از ۱۰ نمونه آنالیز شده) را شامل می‌شود. مکانیکی مادر که به سری ماغناتیسم اضافه می‌شود. کمی فشار و اصلی نیز تغییرات عناصر نادر (Zr/Hf) به خشکی (مشتمل بر بلوپولارایک، اسفنجی) این ماده‌ها می‌باشند. مغرب جزء مادر به نسبت سری ماغناتیسم اضافه می‌شود. می‌توان انجام این ارجاع که خاک‌های نادر در سری عادی احتیاطی نامی به پیلیسی فروغی (زیبرک) است. سکه‌های انشخاشی فلزیکی سری آداجی شرقی ناپتی حاصل ذوب بخشی پوششی اقیانوسی فروربندی نشون‌دانست.

تقدیم
از مسئله‌های معلولیت معنی‌دار جزئی از دانشگاه تبریت مدرس در انجام این پژوهش قدردانی می‌کنیم. آقای هادی یکانه فر در عملیات صریح کمک‌های ارزش‌ده‌ای کرد، وی که به‌هیچ‌یکی Tokens با توجه به داوران مختص مجله بلورشناسی و کامی شناسایی ایران در رفع نواقص و بهبود این مقاله بسیار مؤثر بوده از ایشان نیز نشور می‌کنیم.

مراجع

