ژئوشیمی و زمین‌گاهشماری گرانیت گناصی بن‌دودونو (بوتانی فارس) و مقایسه آن با گرانیت‌های ایران مرکزی

کمال نوری خانکه‌دانی‌ی، مسیب سبزه‌ی

دانشگاه آزاد اسلامی، واحد شیراز، گروه زمین‌شناسی، شیراز، ایران

چکیده: توده‌ی گرانیت گناصی بن دو ن در هشتیه تاقسیم کوه‌سیفی تونک و در ۲۰۰ کیلومتری شمال شرق شیراز رخ‌خورنام یافته است. این توده گرانیت‌پیدی به خیال، از مجموعه‌ی گروگانیبودک است که در مورد بررسی‌های واقع است. بررسی‌های سنجش‌سازی، سنجش‌های مورد بررسی در گسترشی از گدازه‌ی ایران داشته است. براساس بررسی‌های جاری ویژگی‌های زئوشیمی‌ای، محیط زمین، ساختار و زمین‌گاهشماری گرانیت گناصی بن دو ن با برخی از توده‌های گرانیت‌پیدی ایران مرتبط در مناطق واقع آمده، به‌طور زیاد، شوره‌ی زیست‌زناشویی و زیر کناره‌ی بسیاری از ناحیه‌ی گردش آن. این این توده‌های سه‌تایش گراشته‌ای، قلب‌های و پرآمونتیوسیتی داشته و در حالی فعال قاره‌ای شکل‌دهی شده‌اند. با بررسی‌های زمین‌گاهشماری جاری، سنی گرانیت گناصی بن دو ن به روش زیکون ارائه‌ی - سرب مشاهده می‌شود. ۲۸۸ میلویون سال تعیین شده است که سن توده‌های گرانیت‌پیدی به طور زیادی است. سن تعیین شده معرف تشکیل گرانیت گناصی بن دو ن در کامبرین زیرین است که در این صورت با فعالیت‌های کوه‌هایی کانال‌گذاری قابل مقایسه است.

واژه‌های کلیدی: بوتانی فارسی گرانیت گناصی بن‌دودونو، ژئوشیمی و زمین‌گاهشماری

مقدمه گرانیت‌ها فراوانی ترین سنگ‌های آذرین در ملت هستند که از نظر جهش‌های مختلف علمی مورد توجه قرار گرفته‌اند. ویژگی‌های زئوشیمی‌ای و زمین‌گاهشماری از جمله مهم‌ترین این جنیه‌های علمی محسوب می‌شوند. در این پژوهش گرانیت گناصی بن‌دودونو که در خاور شرستان بوتان در شمال شرق استان فارس از نظر این ویژگی‌ها مورد بررسی قرار گرفته‌است. گرچه این گرانیت‌گناصی‌ها در فرآیندهای گرانیت‌پیدی و پیوست‌گردانی [1]، [۲] و پیآسپری [۳] مورد اشاره قرار گرفته‌اند ولی باعث اندوز کردن که با این پژوهش سنجش‌سازی بر روی آن توسط همواره‌دراده و همکاران [۴] صورت گرفته‌است. گفته می‌شود که این پژوهشگران

*نویسنده مسئول: تلفن: ۰۹۷۷۴۹۹۹۹، نامی: ۷۱۷۱۸۲۳۹۹۴، پست الکترونیکی : knk@iaushiraz.net
دگرگونی حرکتی علاوه بر گرانیت‌ها، روی دیگر واحدهای
سونگ منطقه از جمله میکاپیت‌ها نیز تأثیر گذاره بهطوری
که در برخی موارد میکاپیت‌ها دارای دو چهت برگوارگی
شدیداند [8]. در بررسی های جاری، سعی شد اساسی که ضریب
بررسی شرایط رژئوژی‌باپی محدودیت تشکیل این گرانیت
گنبدی، نتایج آخرین بررسی بر روی آنها که تغییرات سن
مطلق آنها به روش اورانیوم – سرب بوده است. حالا شده تا
بتولان راهگشای بررسی‌های بعدی باشد. همچنین با استفاده از
نتایج حاصل از بررسی‌های رضمایی و ناکر [9] در شرایط
گونه‌ای گاه‌هماری و سکگ‌زاپی گرانیت‌های ایران مرکزی،
سعت شدای مقایسه‌ای بین این نتایج و برداشت‌های بررسی‌های
های جاری شدیداً برادر چراکه این بررسی‌های مقایسه‌ای نشان
می‌دهد که گرانیت‌گنسین بن دیون از نظر شرایط زمین
گاه‌هماری، زئوژی‌باپی و محیط زنین شناسی تشکیل، به برخی
توبده‌های گیاندینی ایران مرکزی سبب شده است.

مطالعه منطقه‌ای مورده بررسی
منطقه‌ای بنیان بکار غنی است از شهستان بوتان (به
مرکزی سوریان) در حیاط تجمعی از ایالت ساختاری سنندج
سیرجان جنوبی است که به دو حاصل ایالت‌های زاگرس و

دگرگونی حرکتی علاوه بر گرانیت‌ها، روی دیگر واحدهای
سونگ منطقه از جمله میکاپیت‌ها نیز تأثیر گذاره بهطوری
که در برخی موارد میکاپیت‌ها دارای دو چهت برگوارگی
شدیداند [8]. در بررسی های جاری، سعی شد اساسی که ضریب
بررسی شرایط رژئوژی‌باپی محدودیت تشکیل این گرانیت
گنبدی، نتایج آخرین بررسی بر روی آنها که تغییرات سن
مطلق آنها به روش اورانیوم – سرب بوده است. حالا شده تا
بتولان راهگشای بررسی‌های بعدی باشد. همچنین با استفاده از
نتایج حاصل از بررسی‌های رضمایی و ناکر [9] در شرایط
گونه‌ای گاه‌هماری و سکگ‌زاپی گرانیت‌های ایران مرکزی،
سعت شدای مقایسه‌ای بین این نتایج و برداشت‌های بررسی‌های
های جاری شدیداً برادر چراکه این بررسی‌های مقایسه‌ای نشان
می‌دهد که گرانیت‌گنسین بن دیون از نظر شرایط زمین
گاه‌هماری، زئوژی‌باپی و محیط زنین شناسی تشکیل، به برخی
توبده‌های گیاندینی ایران مرکزی سبب شده است.

مطالعه منطقه‌ای مورده بررسی
منطقه‌ای بنیان بکار غنی است از شهستان بوتان (به
مرکزی سوریان) در حیاط تجمعی از ایالت ساختاری سنندج
سیرجان جنوبی است که به دو حاصل ایالت‌های زاگرس و

شکل 1 موقعیت منطقه‌ای مورد بررسی در نقشه ایالت‌های ساختاری ایران زمین [8] و نقشه راه‌های دسترسی [9].
شکل ۲ نقشه زمین‌شناسی ساده شده منطقهی مورد بررسی بر اساس [۵، ۱۰].

شکل ۳ چگونگی رخ‌گذاری عمومی گرانیت گناهی‌های بن‌دونو (TCG) در دماوند، شمال غربی تاقی‌پس (NW Anticline nose) شرق مزایجان.
گناپس بن دونو کامپیون زیرین تعبیه شده است لازم است این سن مورد کامپیون قرار گیرد، زیرا پیشتر نتایج شده است [5] که گرایی‌های بن دونو روی میکاسپیست‌های سیاه‌رنگ میزبان خود اثر دوگانه گرمایی داشته و توانسته است در برخی موارد، آن‌ها را به میکاسپیست‌های هورنفلسی تبدیل کند (شکل 5). بنابراین ضرورت دارد بخش میکاسپیست‌های سیاه‌رنگ مجموعه دوگانه تونک از نظر تعبیه سن، مورد بررسی‌های دقیق‌تر جیخشناسی قرار گیرد.

هوشمندزده و همگان [4] ضمن بحث جیخشناسی چهارگوش اغلب در خصوص سن میکاسپیست‌های سیاه‌رنگ فوق اظهار داشته‌اند که هیچ گونه آثار فسیلی در این واحد مشاهده نشده است بنابراین نمی‌توان سن دقیقی برای آن متصور بود اما آن‌ها با توجه به سن واحد مرومی کوه سفید‌تونک (TCM) که دونین تعبیه شده است و صرف براساس همکفونی (TCM) چیخشناسی، سن میکاسپیست‌های داده‌های سال‌های اولین پیشنهاد کردند که براساس بررسی‌های جدی که سن گرایی

شکل 5 ارتباط صحرایی میکاسپیست‌های سیاه‌رنگ هورنفلسی شده (SH) با گرانی‌های بن دونو (TCG) و مرمرهای کوه سفید تونک (BSH) در منطقه اولین پرو، تنها بن دونو، دیده به سمت شمال. توضیح آن که گرانی‌های بن دونو روی میکاسپیست‌های سیاه‌رنگ مجموعه تونک، اثر دوگانه گرمایی داشته و آن‌ها را به میکاسپیست هورنفلسی شده تبدیل کرده‌اند.
روی گرینیت‌های مجموعه ونک، دو نوع سنگ‌شناسی، نمودار (SCM) و میکا‌پستی (SCG) مجموعه‌ی سوریان به سو کربنتر - بینم در 43 قرار گرفته است.

از نظر زمین‌خورشانسی، گرینیت گنابس‌های بن‌دونو عموماً ترکیب‌های ماهورهای کم ارتقاء داده و فاقد فرسایش (escarpment) برخی سطح‌ها و مناطق اراضی سطحی مورد جستجو قرار گرفته است. در مقياس نمونه دستی، کاتی‌های شریف، فلدسپار، موسمویت و بیونیت در گرینیت گنابس‌های بی‌دونو مشاهده می‌شوند (شکل 6) که در نمونه‌های گنابس‌های بی‌دونو، جهت مشخصی به‌ویژه در میکا‌ها قابل روبی است (شکل 7). بررسی‌های میکروسکوپی نشان داد که علاوه بر کاتی‌های اصلی، با سنگ مسوم‌کننده سیلیت یاد شده، کاتی‌هایی همچون زیرکون و تورمالین در بین سنگ‌های مشاهده می‌شوند (شکل‌های 8 و 9) و وجود زیرکون برای بررسی‌های زمین‌گاهشماری یا اهمیت فرض شده و ضمن بررسی میکروسکوپی گرینیت‌گنابس‌ها، نمودارهای جاداسازی کردن بررسی‌های میکروسکوپی میکا‌پستی‌های هورنفلس، وجود باند‌های هورنفلس‌های را در میکا‌پستی‌های سیاهرگ نشان داد که خود مبنا بعنوان اثر از ترمودوکی مجاورتی‌های بن‌دونو روی میکا‌پستی‌های سیاهرگ می‌باشد (شکل 10).

![عکس شکل 7 ساخته‌های جهت‌بندی در گرینیت گنابس‌های بی‌دونو، این ساخته‌ها حاصل دگرگونی حرکتی و پدیده‌گذاری سنگ‌نشینی در گرینیت‌ها فرض شده و در سنگ‌های اطراف مناطق مرطوب مشاهده می‌شود. برخی طرح‌گذاری از نوع راست‌گرد تعمیم شده‌است.](image-url7)

![عکس شکل 8 کاتی بی‌دونو (Zrm) با حاشیه‌های مناسب‌کننده در گرینیت گنابس‌های بی‌دونو.](image-url8)

![عکس شکل 9 بلوهای تورمالین (Tur) در گرینیت گنابس‌های بی‌دونو (منطقه جنوبی نوچنار).](image-url9)
بلورهای زیکرون از کلیه‌های دیگر جداسازی شدند و یک نمونه با ظرفیت و مقدار MIT ارکیده شد. این نمونه که در اتاق جهانی سالمندی و نمایشگاه های مختلف قرار گرفت که در آنها تجربه گرفتاری و زیکرون بروز رفت. در این بررسی ها، ضمن مطالعه شرایط کننده شناسی و باین سنجگانه، نمونه‌هایی که در ای سنجگانه، میزان تجزیه و دوگانه شناسی (MINPET) و جدا شدن تا بیست در بررسی‌های زیکرونیمی از آنها استفاده کرد. از طرف دیگر، نمونه‌های حاوی زیکرون نیز به منظور تعیین سینمی متعلق به نمونه‌هایی دیگر شده شدند.

نتایج بررسی‌های زیکرونیمی

پس از بررسی‌های تقاضای شیمیایی سنجگانه، میزان تجزیه و دوگانه شناسی (MINPET) و جدا شدن آنها استفاده کرد. از طرف دیگر، نمونه‌های حاوی زیکرون نیز به منظور تعیین سینمی متعلق به نمونه‌هایی دیگر شده شدند.

برای بررسی‌های زیکرونیمی و تعیین فراوانی عناصر استیلی و فرعي، 11 نمونه سنجگانه به آزمایشگاه کانسانران بنالود ارسال شده و روی آنها تعیین تجزیه‌های به روش XRF و با صورت گرفته دستگاه فیلیپس مدل PW1480 از طرف دیگر تعیین فراوانی ICP-MS در سويئ آلومینیوم استرالیا صورت گرفت. و REE از آزمایشگاه AMDEL استفاده شد. برای بررسی‌های زیکرونیمی و تعیین فراوانی عناصر استیلی و فرعي، 11 نمونه سنجگانه به آزمایشگاه کانسانران بنالود ارسال شده و روی آنها تعیین تجزیه‌های به روش XRF و با صورت گرفته دستگاه فیلیپس مدل PW1480 از طرف دیگر تعیین فراوانی ICP-MS در سويئ آلومینیوم استرالیا صورت گرفت. و REE از آزمایشگاه AMDEL استفاده شد. برای بررسی‌های زیکرونیمی و تعیین فراوانی عناصر استیلی و فرعي، 11 نمونه سنجگانه به آزمایشگاه کانسانران بنالود ارسال شده و روی آنها تعیین تجزیه‌های به روش XRF و با صورت گرفته دستگاه فیلیپس مدل PW1480 از طرف دیگر تعیین فراوانی ICP-MS در سويئ آلومینیوم استرالیا صورت گرفت. و REE از آزمایشگاه AMDEL استفاده شد. برای بررسی‌های زیکرونیمی و تعیین فراوانی عناصر استیلی و فرعي، 11 نمونه سنجگانه به آزمایشگاه کانسانران بنالود ارسال شده و روی آنها تعیین تجزیه‌های به روش XRF و با صورت گرفته دستگاه فیلیپس مدل PW1480 از طرف دیگر تعیین فراوانی ICP-MS در سويئ آلومینیوم استرالیا صورت گرفت. و REE از آزمایشگاه AMDEL استفاده شد. برای بررسی‌های زیکرونیمی و تعیین فراوانی عناصر استیلی و فرعي، 11 نمونه سنجگانه به آزمایشگاه کانسانران بنالود ارسال شده و روی آنها تعیین تجزیه‌های به روش XRF و با صورت گرفته دستگاه فیلیپس مدل PW1480 از طرف دیگر تعیین فراوانی ICP-MS در سويئ آلومینیوم استرالیا صورت گرفت. و REE از آزمایشگاه AMDEL استفاده شد. برای بررسی‌های زیکرونیمی و تعیین فراوانی عناصر استیلی و فرعي، 11 نمونه سنجگانه به آزمایشگاه کانسانران بنالود ارسال شده و روی آنها تعیین تجزیه‌های به روش XRF و با صورت گرفته دستگاه فیلیپس مدل PW1480 از طرف دیگر تعیین فراوانی ICP-MS در سويئ آلومینیوم استرالیا صورت گرفت. و REE از آزمایشگاه AMDEL استفاده شد. برای بررسی‌های زیکرونیمی و تعیین فراوانی عناصر استیلی و فرعي، 11 نمونه سنجگانه به آزمایشگاه کانسانران بنالود ارسال شده و روی آنها تعیین تجزیه‌های به روش XRF و با صورت گرفته D
جدول ۱: نتایج شیمیایی نمونه‌های مورد بررسی به روش‌های ICP-MS و XRF

<table>
<thead>
<tr>
<th>نمونه ناپ ment</th>
<th>ICP-MS</th>
<th>XRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>75.5</td>
<td>76.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.3</td>
<td>4.4</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.5</td>
<td>13.7</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>MgO</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>CaO</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Nb</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ba</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cr</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sr</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>U</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>La</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ce</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Pr</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nd</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sm</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Dy</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ho</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Lu</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Eu/Eu'</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

نوع: مرحله دوم ۱۳۹۳

زمان: ۱۳۹۳ شوهر صادق بنده، جلد ۲۳، شماره ۱
نتیجه‌ی زاویه‌داری دیگر در مورد بررسی‌های سنسی‌ها.

تعیین خاستگاه رسوبی (پارانگیناس) با آزمایش (آورونگنیاس)، ان‌هیس. گرچه برداشت‌های صحرایی و بررسی مقاطع نازک، نشان داد که سنس‌هایی بن‌دونو حاصل پیشرفت در گروه میکاسیت‌های خفیف‌نیستند ولی به منظور تایید

زنوشیمی‌پیوسته‌ی جدید، از نموادرهای (۱۶۱۵) استفاده شد. به

عده‌ای نمودارها به عنوان شکل‌های ۱۵ و ۱۶ مشخص می‌شود

که گروه‌های مورد بررسی از نوع آورونگنیاس پیشنهاد محسوب

می‌شوند.

شکل ۱۴: چگونگی سنس‌های مورد بررسی در نموادرهای ایران و پاراگار

سطح قابل پرسی‌های دیگر در خوشهٔ گروه‌های بن‌دونو و نیز گروه مورد مقایسه با آنها در ایران مرکزی، مخیت‌های زیم‌سرخی‌های آمان‌س. گرچه براساس ماهیت

ژنوسپیکی سری ماهی‌ای این سنس‌ها که از نوع اکینی قلویی

بوده‌اند، نشان‌های این سنس‌ها در یک حاصله مهگرا

قابل پیش‌بینی است اما برای تایید (Convergent margin)

این ادعا از نموادرهای بیرس و همکاران (۱۷۶۱) استفاده شد

(شکل‌های ۱۷ و ۱۸). بر این اساس سنس‌های مورد بررسی در

گستره‌ی حواشی فاصله‌ای فعال با گروه‌هایی که این انشافات (VAG)

گری‌گرفته‌اند که با نواحی به این که جزء گروه‌های

یک قابل‌پرسی محسوب است. این خصوصیت نیز

ویژگی مشترک گروه‌های مورد بررسی منطقه بن‌دونو و

گروه‌های مقایسه‌ای دیگر در آنها در ایران مرکزی است.

شکل ۱۳: موضع‌های گروه‌های مورد بررسی در نموادرهای AFM

اساس (۱۶۱۵).
به منظور بررسی چگونگی توسعه انواع فرعی و نیز عناصر کربنات خاکی (REE) فراوانی این انواع در نمونه‌های سنگی مورد بررسی نسبت به کندیت عادی سایر شده است (شکل‌های 19 و 20). بر اساس این الگو توسعه انواع نادر خاکی، منشأ وجود شدگی و در کسب و کار انواع نادر خاکی سبک (LREE) شدگی و در عناصر (HFSE) (REE) شدگی نشان می‌دهد.

به هر حال، در قاره‌های نزدیک به شرایط لایه‌باران سیستم‌های هدایت‌های شیمیایی موارد است. در اینجا نشان داده شده که فراوانی نسبت به کندیت عادی سایر شده است (شکل‌های 19 و 20). بر اساس این الگو توسعه انواع نادر خاکی، منشأ وجود شدگی و در کسب و کار انواع نادر خاکی سبک (LREE) شدگی و در عناصر (HFSE) (REE) شدگی نشان می‌دهد.

به هر حال، در قاره‌های نزدیک به شرایط لایه‌باران سیستم‌های هدایت‌های شیمیایی موارد است. در اینجا نشان داده شده که فراوانی نسبت به کندیت عادی سایر شده است (شکل‌های 19 و 20). بر اساس این الگو توسعه انواع نادر خاکی، منشأ وجود شدگی و در کسب و کار انواع نادر خاکی سبک (LREE) شدگی و در عناصر (HFSE) (REE) شدگی نشان می‌دهد.

به هر حال، در قاره‌های نزدیک به شرایط لایه‌باران سیستم‌های هدایت‌های شیمیایی موارد است. در اینجا نشان داده شده که فراوانی نسبت به کندیت عادی سایر شده است (شکل‌های 19 و 20). بر اساس این الگو توسعه انواع نادر خاکی، منشأ وجود شدگی و در کسب و کار انواع نادر خاکی سبک (LREE) شدگی و در عناصر (HFSE) (REE) شدگی نشان می‌دهد.

به هر حال، در قاره‌های نزدیک به شرایط لایه‌باران سیستم‌های هدایت‌های شیمیایی موارد است. در اینجا نشان داده شده که فراوانی نسبت به کندیت عادی سایر شده است (شکل‌های 19 و 20). بر اساس این الگو توسعه انواع نادر خاکی، منشأ وجود شدگی و در کسب و کار انواع نادر خاکی سبک (LREE) شدگی و در عناصر (HFSE) (REE) شدگی نشان می‌دهد.

به هر حال، در قاره‌های نزدیک به شرایط لایه‌باران سیستم‌های هدایت‌های شیمیایی موارد است. در اینجا نشان داده شده که فراوانی نسبت به کندیت عادی سایر شده است (شکل‌های 19 و 20). بر اساس این الگو توسعه انواع نادر خاکی، منشأ وجود شدگی و در کسب و کار انواع نادر خاکی سبک (LREE) شدگی و در عناصر (HFSE) (REE) شدگی نشان می‌دهد.
نتایج بررسی‌های سال سنگی
پس از عملیات جداسازی و آماده‌سازی بلورهای زیرکون که در بخش ۴ (روش مطالعه) بدان اشاره نشده بود که بررسی‌های سال سنگی به روش اورانیوم – سرب در این زیرکون‌ها افزایش یافته است.
نمونه‌های جداسازی شده زیرکون، به دانشگاه MIT و نمونه‌های روسی سال سنگی فرآیندهای تجزیه‌ای در آزمایش‌های سال سنگی این دو سال به دست آمده و از آن در نتایج حاصل از این بررسی در تحلیل حاصل از این بررسی به عنوان گرافیتی بین دو نمونه به سن مطلق توده‌های گرافیت‌بندی مشاهده شده و در جدول ۳ خلاصه شده‌اند. به استناد این جدول چنانچه ملاحظه می‌شود سه مکانیسم سال سنگی ایران مربوط به دو نمونه بین دو نمونه بیار زیرکونی گرافیت‌بندی به ترتیب نشان می‌دهد در این بررسی خودکار بیار گرافیت‌بندی از آن گرفته شده و می‌تواند شباهت فراوانی دارد از نظر سن مطلق نزدیک‌تر هم از یکدیگر محسوب می‌شود.

شکل ۲۱ نمونه‌های کنکورسی ایران برای سال‌های گرافیت‌ها و دو نمونه با روش زیرکونی اورانیوم – سرب.
جدول 2 نتایج آزمایش‌های سال سنجی به روش U-Pb بر روی نمونه‌های زیرکون گرانیت‌های گاماس بن‌دیوتو.

<table>
<thead>
<tr>
<th>سن (میلیون سال)</th>
<th>207Pb/235U</th>
<th>206Pb/238U</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>5386</td>
<td>0.06</td>
<td>0.0871</td>
<td>Z1</td>
</tr>
<tr>
<td>5386</td>
<td>0.07</td>
<td>0.0872</td>
<td>Z2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>Z3</td>
</tr>
</tbody>
</table>

جدول 3 مقایسه نتایج سال سنجی ایزوتوپی اورانیوم-سرب گرانیت‌های گاماس‌های بن‌دیوتوپات و گرانیت‌های ایران مرکزی

<table>
<thead>
<tr>
<th>سن مطلق</th>
<th>نام نمونه</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>5385Ma</td>
<td>گرانیت گاماس بن دیوتو</td>
<td>1</td>
</tr>
<tr>
<td>533±1Ma</td>
<td>گرانیت گاماس در درون</td>
<td>2</td>
</tr>
<tr>
<td>544±7Ma</td>
<td>گرانیت گاماس به شوره</td>
<td>3</td>
</tr>
<tr>
<td>529±6Ma</td>
<td>لوکوفنگیت زرگان (کوه پشتی سرخ)</td>
<td>4</td>
</tr>
<tr>
<td>526±5Ma</td>
<td>لوکوفنگیت زرگان (کوه نیزگان)</td>
<td>5</td>
</tr>
<tr>
<td>535±7Ma</td>
<td>لوکوفنگیت دورخ دره</td>
<td>6</td>
</tr>
</tbody>
</table>

برداشت‌ها
مهم ترین نتایج حاصل از این پژوهش را می‌توان به صورت زیر خلاصه کرد:
1- توده‌ای گرانیتی بن دیوتو در شرق شهرستان بوتان و در شمال شرق استان فارس واقع شده و جزئی از سنجش سیرجان جنوبی محسوب می‌شود.
2- یک دیل یک‌پیکر در گونه‌های خصوصی پیدا کننده گمان گیت بن دیوتو به گاماس تبدیل شده و طوری که اکنون نام گرانیت گاماس بزاره آن‌هاست.
3- به دلیل جنبه‌های مختلف از جمله سنگ‌شناسی زئوشیمی و سن مطلق توده‌ای گرانیت گاماس بن دیوتو با توده‌های گرانیت‌های ایران مرکزی شاهد حاکمیت توده‌های این منطقه می‌باشد.
4- همه‌ای این توده‌ها دارای ماهیت نیمه قلبی از نوع آهکی قلبی یا دوچرخه‌ای. این می‌تواند نشان‌دهنده قلبی یا دوچرخه‌ای بود.
5- جایگاه زمین‌ساخت‌های سنگ‌های مورد بررسی نیز در هماهنگ با مورد ۳ حواشی در قرار گرفتن مسائل، نتایج بررسی قرارا افراد و نادر خلک‌های این منطقه را ناپذیرنده می‌کند.
6- سن مطلق گرانیت گاماس بن دیوتو ۵۳۸۵±۵۸Ma است که به سن مطلق توده‌های گرانیت‌های ایران مرکزی در مناطقی هم چون آذربایجان، بهار شوره، زرگان و دورخ دره بسیار مطابقت دارد.

[14] میمن وزیری ج، پترولوزی سنگهای آتشفشانی، انتشارات جهاد دانشگاهی (۱۳۶۴) ۲۲۸ صفحه.